COMMON FIXED POINT RESULTS FOR NON-LINEAR CONTRACTIONS IN G-METRIC SPACES

Hassen Aydi

Abstract. We establish common fixed point results for three self-mappings on a *G*-metric space satisfying non linear contractions. Also, we prove the uniqueness of such common fixed point, as well as studying the *G*-continuity at such point. Our results extend some known works. Also, an example is given to illustrate our obtained results.

1. Introduction and preliminaries

The notion of generalized metric spaces was introduced in 2004 by Z. Mustafa and B. Sims [3, 5, 6]. They generalized the concept of a metric space. Then, based on the notion of generalized metric spaces, many authors obtained some fixed point results for a self-mapping under some contractive conditions, see [1, 3–10]. In the present work, we study some common fixed point results for three self-mappings in a complete generalized metric space X involving non linear contractions related to a function $\varphi \in \Phi$, where Φ is given by the following

DEFINITION 1.1. Let Φ be the set of non-decreasing continuous functions $\varphi : \mathbb{R} \to \mathbb{R}$ satisfying:

- (a) $0 < \varphi(t) < t$ for all t > 0,
- (b) the series $\sum_{n>1} \varphi^n(t)$ converge for all t > 0.

From (b), we may have $\lim_{n\to+\infty} \varphi^n(t) = 0$ for all t > 0. Again from (a), we have $\varphi(0) = 0$. Now, we present some necessary definitions and results in generalized metric spaces, which will be needed in the sequel.

DEFINITION 1.2. [5] Let X be a nonempty set, and let $G: X \times X \times X \to R_+$ be a function satisfying the following properties

- (G1) G(x, y, z) = 0 if x = y = z,
- (G2) 0 < G(x, x, y) for all $x, y \in X$, with $x \neq y$,

²⁰¹⁰ AMS Subject Classification: 47H10, 54H25, 54E35, 54E99

Keywords and phrases: G-metric space; common fixed point; non-linear contraction; G-continuity.

(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$

(G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$, (symmetry in all three variables),

(G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$, (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the pair (X, G) is called a G-metric space.

DEFINITION 1.3. [5] Let (X, G) be a *G*-metric space and let (x_n) be a sequence of points of X, a point $x \in X$ is said to be the limit of the sequence (x_n) , if $\lim_{n,m\to+\infty} G(x, x_n, x_m) = 0$, and we say that the sequence (x_n) is *G*-convergent to x or (x_n) *G*-converges to x.

Thus, $x_n \to x$ in a *G*-metric space (X, G) if for any $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that $G(x, x_n, x_m) < \varepsilon$ for all $m, n \ge k$.

PROPOSITION 1.4. [5] Let (X, G) be a G-metric space. Then the following are equivalent

- (1) $\{x_n\}$ is is G-convergent to x;
- (2) $G(x_n, x_n, x) \to 0 \text{ as } n \to +\infty$
- (3) $G(x_n, x, x) \to 0 \text{ as } n \to +\infty$
- (4) $G(x_n, x_m, x) \to 0 \text{ as } n, m \to +\infty.$

DEFINITION 1.5. [5] Let (X, G) be a *G*-metric space. A sequence $\{x_n\}$ is is called a *G*-Cauchy sequence if for any $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \varepsilon$ for all $m, n, l \ge k$, that is $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

PROPOSITION 1.6. [6] Let (X, G) be a *G*-metric space. Then the following are equivalent:

(1) the sequence $\{x_n\}$ is G-Cauchy;

(2) for any $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$ for all $m, n \geq k$.

PROPOSITION 1.7. [5] Let (X, G) be a G-metric space. Then, $f : X \to X$ is G-continuous at $x \in X$ if and only if it is G-sequentially continuous at x, that is, whenever (x_n) is G-convergent to x, $(f(x_n))$ is G-convergent to f(x).

PROPOSITION 1.8. [5] Let (X, G) be a G-metric space. Then, the function G(x, y, z) is jointly continuous in all three of its variables.

PROPOSITION 1.9. [5] A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Every G-metric on X will define a metric d_G on X by

$$d_G(x, y) = G(x, y, y) + G(y, x, x), \text{ for all } x, y \in X.$$
(1.1)

H. Aydi

In this paper, we address the question to find some common fixed point results on G-metric spaces. More precisely, taking three self-mappings on a complete Gmetric space satisfying non-linear contractions, we establish a common fixed point result. Also, some corollaries and an example are given.

2. Main results

Our first main result is the following

THEOREM 2.1. Let (X,G) be a complete G-metric space. Suppose the maps $T_1, T_2, T_3 : X \to X$ satisfy for all $x, y, z \in X$

$$G(T_1x, T_2y, T_3z) \le \varphi(M(x, y, z)), \tag{2.1}$$

where

$$M(x, y, z) =: \max\{G(x, y, z), G(x, T_1x, T_1x), G(y, T_2y, T_2y), G(z, T_3z, T_3z)\},\$$

and $\varphi \in \Phi$. Then T_1, T_2 and T_3 have a unique common fixed point, say u. Moreover, each $T_i, i = 1, 2, 3$, is continuous at u.

Proof. Let x_0 be an arbitrary point in X. Take $x_1 = T_1x_0$, $x_2 = T_2x_1$ and $x_3 = T_3x_2$. Then, we can construct a sequence $\{x_n\}$ in X such that for any $n \in \mathbb{N}$

$$\begin{cases} x_{3n+1} = T_1 x_{3n} \\ x_{3n+2} = T_2 x_{3n+1} \\ x_{3n+3} = T_3 x_{3n+2}. \end{cases}$$
(2.2)

• If there exists $p \in \mathbb{N}^*$ such that $x_{3p} = x_{3p+1} = x_{3p+2}$, then applying the contractive condition (2.1) with $x = x_{3p}$, $y = x_{3p+1}$ and $z = x_{3p+2}$, we get

$$G(x_{3p+1}, x_{3p+2}, x_{3p+3}) =: G(T_1x_{3p}, T_2x_{3p+1}, T_3x_{3p+2})$$

$$\leq \varphi(\max\{G(x_{3p}, x_{3p+1}, x_{3p+2}), G(x_{3p}, T_1x_{3p}, T_1x_{3p}),$$

$$G(x_{3p+1}, T_2x_{3p+1}, T_2x_{3p+1}), G(x_{3p+2}, T_3x_{3p+2}, T_3x_{3p+2})\})$$

$$= \varphi(\max\{G(x_{3p}, x_{3p+1}, x_{3p+2}), G(x_{3p}, x_{3p+1}, x_{3p+1}),$$

$$G(x_{3p+1}, x_{3p+2}, x_{3p+2}), G(x_{3p+2}, x_{3p+3}, x_{3p+3})\})$$

$$= \varphi(G(x_{3p+2}, x_{3p+3}, x_{3p+3})).$$
(2.3)

If $x_{3p+3} \neq x_{3p+1}$, then from the conditions (G3), (G4) and the property (a) of φ , we get

$$0 < G(x_{3p+1}, x_{3p+2}, x_{3p+3}) \le \varphi(G(x_{3p+1}, x_{3p+2}, x_{3p+3})) < G(x_{3p+1}, x_{3p+2}, x_{3p+3})$$

that is a contradiction. So we find $x_n = x_{3p}$ for any $n \ge 3p$. This implies that (x_n) is a *G*-cauchy sequence. The same conclusion holds if $x_{3p+1} = x_{3p+2} = x_{3p+3}$, or $x_{3p+2} = x_{3p+3} = x_{3p+4}$ for some $p \in \mathbb{N}$.

• Assume for the rest that $x_n \neq x_m$ for any $n \neq m$. Applying again (2.1) with $x = x_{3n}, y = x_{3n+1}$ and $z = x_{3n+2}$ and using the condition (G3), we get that

 $G(x_{3n+1}, x_{3n+2}, x_{3n+3}) \le \varphi(\max\{G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n}, x_{3n+1}, x_{3n+1}), x_{3n+1}\}$

Common fixed point results in G-metric spaces

$$G(x_{3n+1}, x_{3n+2}, x_{3n+2}), G(x_{3n+2}, x_{3n+3}, x_{3n+3})\}) = \varphi(\max\{G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n+1}, x_{3n+2}, x_{3n+3})\}).$$
(2.4)

The case where

 $\max\{G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n+1}, x_{3n+2}, x_{3n+3})\} = G(x_{3n+1}, x_{3n+2}, x_{3n+3})$ is excluded, because if it holds we have from (2.4)

$$0 < G(x_{3n+1}, x_{3n+2}, x_{3n+3}) \le \varphi(G(x_{3n+1}, x_{3n+2}, x_{3n+3}))$$

< $G(x_{3n+1}, x_{3n+2}, x_{3n+3}),$

which is a contradiction. Thus, we deduce

 $\max\{G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n+1}, x_{3n+2}, x_{3n+3})\} = G(x_{3n}, x_{3n+1}, x_{3n+2}).$

Therefore, (2.4) gives us

 $G(x_{3n+1}, x_{3n+2}, x_{3n+3}) \le \varphi(G(x_{3n}, x_{3n+1}, x_{3n+2})) < G(x_{3n}, x_{3n+1}, x_{3n+2}).$ (2.5)

Similarly

$$G(x_{3n+2}, x_{3n+3}, x_{3n+4}) < G(x_{3n+1}, x_{3n+2}, x_{3n+3}),$$

$$G(x_{3n+3}, x_{3n+4}, x_{3n+5}) < G(x_{3n+2}, x_{3n+3}, x_{3n+4}).$$

From the above three inequalities, one can assert that

$$G(x_n, x_{n+1}, x_{n+2}) < G(x_{n-1}, x_n, x_{n+1}) \quad \forall n \in \mathbb{N}^*.$$
(2.6)

If we take $t_n = G(x_n, x_{n+1}, x_{n+2})$, then $0 \le t_n \le t_{n-1}$, so the real sequence (t_n) is decreasing, hence it converges to some $r \ge 0$. Assume that r > 0, then letting $n \to +\infty$ in (2.5),

$$r \le \varphi(r) < r,$$

using the properties of φ . It is a contradiction, so we have r = 0. Thus

$$\lim_{n \to +\infty} G(x_n, x_{n+1}, x_{n+2}) = 0.$$
(2.7)

Next, we prove that (x_n) is a G-Cauchy sequence. Following (2.5) and (2.6), one can write

$$G(x_n, x_{n+1}, x_{n+2}) \le \varphi(G(x_{n-1}, x_n, x_{n+1})).$$
(2.8)

Consequently,

$$G(x_n, x_{n+1}, x_{n+2}) \le \varphi^n(G(x_0, x_1, x_2)).$$
(2.9)

Therefore, using conditions (G3), (G4), (G5) and (2.9), we have for any $k \in \mathbb{N}$

$$G(x_n, x_{n+k}, x_{n+k})$$

$$\leq G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2}) + G(x_{n+2}, x_{n+3}, x_{n+3})$$

$$+ \dots + G(x_{n+k-2}, x_{n+k-1}, x_{n+k-1}) + G(x_{n+k-1}, x_{n+k}, x_{n+k})$$

H. Aydi

$$\leq G(x_n, x_{n+1}, x_{n+2}) + G(x_{n+1}, x_{n+2}, x_{n+3}) + G(x_{n+2}, x_{n+3}, x_{n+4}) \\ + \dots + G(x_{n+k-2}, x_{n+k-1}, x_{n+k}) + G(x_{n+k-1}, x_{n+k}, x_{n+k+1}) \\ \leq \varphi^n(G(x_0, x_1, x_2)) + \varphi^{n+1}(G(x_0, x_1, x_2)) + \varphi^{n+2}(G(x_0, x_1, x_2)) \\ + \dots + \varphi^{n+k}(G(x_0, x_1, x_2)) \\ = \sum_{i=n}^{n+k} \varphi^i(G(x_0, x_1, x_2)) \leq \sum_{i=n}^{+\infty} \varphi^i(G(x_0, x_1, x_2)).$$

The property (b) yields that $\sum_{i=n}^{+\infty} \varphi^i(G(x_0, x_1, x_2))$ tends to 0 as $n \to +\infty$. Therefore

$$\lim_{k \to +\infty} G(x_n, x_{n+k}, x_{n+k}) = 0 \quad \forall k \in \mathbb{N}.$$

This means that (x_n) is a G-Cauchy sequence and since (X, G) is G-complete, (x_n) is G-convergent to some $u \in X$, that is

$$\lim_{n \to +\infty} G(x_n, x_n, u) = \lim_{n \to +\infty} G(x_n, u, u) = 0.$$
(2.10)

Now, we show that u is a common fixed point of the maps T_i , i = 1, 2, 3. We start by proving the case $T_1 u = u$. From (2.1), we get that

$$\begin{aligned} G(u, u, T_1 u) \\ &\leq G(u, u, x_{3n+1}) + G(x_{3n+1}, x_{3n+1}, T_1 u) \\ &= G(u, u, x_{3n+1}) + G(T_1 x_{3n}, T_1 x_{3n}, T_1 u) \\ &\leq G(u, u, x_{3n+1}) + \varphi(M(x_{3n}, x_{3n}, u)), \quad (\text{here } T_3 = T_2 = T_1) \\ &= G(u, u, x_{3n+1}) + \varphi(\max\{G(x_{3n}, x_{3n}, u), G(x_{3n}, T_1 x_{3n}, G(u, u, T_1 u)\}) \\ &= G(u, u, x_{3n+1}) + \varphi(\max\{G(x_{3n}, x_{3n}, u), G(x_{3n}, x_{3n+1}, x_{3n+1}), G(u, u, T_1 u)\}). \end{aligned}$$

$$(2.11)$$

Using (2.10), the continuity of φ and letting $n \to +\infty$ in (2.11), we get that $G(u, u, T_1 u) \leq \varphi(G(u, u, T_1 u))$. Assume that $T_1 u \neq u$; hence the condition (G2) implies that $G(u, u, T_1 u) > 0$, so

$$G(u, u, T_1u) \le \varphi(G(u, u, T_1u)) < G(u, u, T_1u),$$

which is a contradiction, so $T_1 u = u$. By symmetry, we can find that $T_2 u = u = T_3 u$, so u is a common fixed point of the three maps T_1 , T_2 and T_3 . Let v be another fixed point of each T_i , i = 1, 2, 3. By (2.1)

$$\begin{aligned} G(u, u, v) &= G(T_1 u, T_2 u, T_3 v) \\ &\leq \varphi(\max\{G(u, u, v), G(u, T_1 u, T_1 u), G(u, T_2 u, T_2 u), G(v, T_3 v, T_3 v)\}) \\ &= \varphi(\max\{G(u, u, v), G(u, u, u), G(v, v, v)\}) \\ &= \varphi(G(u, u, v)), \end{aligned}$$

which is true unless G(u, u, v) = 0. This yields that u = v. Let us show that each T_i , i = 1, 2, 3, is G-continuous at u. By symmetry again, it suffices to prove

the G-continuity of one of them, for example for T_1 . For this, let $(u_n) \subseteq X$ be a sequence such that (u_n) G-converges to u. First, we have

$$\begin{aligned} G(u,,T_{1}u_{n},T_{1}u_{n}) &= G(T_{1}u,T_{1}u_{n},T_{1}u_{n}) \\ &\leq \varphi(\max\{G(u,u_{n},u_{n}),G(u,u,u),G(u_{n},T_{1}u_{n},T_{1}u_{n})\}) \\ &= \varphi(\max\{G(u,u_{n},u_{n}),G(u_{n},T_{1}u_{n},T_{1}u_{n})\}) \\ &\leq \varphi(G(u,u_{n},u_{n})+G(u_{n},T_{1}u_{n},T_{1}u_{n})) \\ &\leq \varphi(G(u,u_{n},u_{n})+G(u_{n},u,u)+G(u,T_{1}u_{n},T_{1}u_{n})). \end{aligned}$$

Say $\lim_{n\to+\infty} G(u, T_1u_n, T_1u_n) = s$, then if s > 0, using (2.10) and the continuity of φ and letting $n \to +\infty$ in the above inequality we have

$$s \le \varphi(s) < s;$$

it is a contradiction, hence s = 0. On the other hand, we have

$$\begin{split} G(u, u, T_1u_n) &= G(T_1u, T_1u, T_1u_n) \\ &\leq \varphi(\max\{G(u, u, u_n), G(u, u, u), G(u, u, u), G(u_n, T_1u_n, T_1u_n)\}) \\ &= \varphi(\max\{G(u, u, u_n), G(u_n, T_1u_n, T_1u_n)\}) \\ &\leq \varphi(\max\{G(u, u, u_n), G(u_n, u, u) + G(u, T_1u_n, T_1u_n)\}) \\ &= \varphi(G(u_n, u, u) + G(u, T_1u_n, T_1u_n)). \end{split}$$

Take $\lim_{n\to+\infty} G(u, u, T_1u_n) = t$; then letting $n \to +\infty$ and using s = 0 and the continuity of φ , we get that

$$t \le \varphi(0) = 0,$$

that is t = 0. We rewrite this as

$$\lim_{n \to +\infty} G(u, u, T_1 u_n) =: \lim_{n \to +\infty} G(T_1 u, T_1 u, T_1 u_n) = 0.$$

This means that the sequence (T_1u_n) G-converges to $u = T_1u$, so T_1 is G-continuous at u. By symmetry, we deduce that each T_i , i = 1, 2, 3, is G-continuous at u.

Now, we give some corollaries of Theorem 2.1. The first corresponds to $\varphi(t) = kt$ where $0 \le k < 1$.

COROLLARY 2.2. Let X be a complete G-metric space. Suppose the maps $T_1, T_2, T_3: X \to X$ satisfy

$$G(T_1x, T_2y, T_3z) \le k \max\{G(x, y, z), G(x, T_1x, T_1x), G(y, T_2y, T_2y), G(z, T_3z, T_3z)\},$$
(2.12)

for all $x, y, z \in X$, where $0 \le k < 1$. Then, the mappings T_i , i = 1, 2, 3 have a unique common fixed point, say u, and each T_i is G-continuous at u.

COROLLARY 2.3. Let X be a complete G-metric space. Suppose the maps $T_1, T_2, T_3: X \to X$ satisfy

$$G(T_1^m x, T_2^m y, T_3^m z) \le \varphi(M(x, y, z)),$$

for all $x, y, z \in X$ and $m \in \mathbb{N}$, where

 $M(x, y, z) =: \max\{G(x, y, z), G(x, T_1^m x, T_1^m x), G(y, T_2^m y, T_2^m y), G(z, T_3^m z, T_3^m z)\},\$

and $\varphi \in \Phi$. Then T_1^m , T_2^m and T_3^m have a unique common fixed point, say u, and are G-continuous at u.

Proof. From Theorem 2.1, we conclude that the maps T_1^m , T_2^m and T_3^m have a unique common fixed point say u. For any i = 1, 2, 3

$$T_i u = T_i(T_i^m u) = T_i^{m+1} u = T_i^m(T_i u),$$

meaning that $T_i u$ is also a fixed point of T_i^m . By uniqueness of u, we get $T_i u = u$.

We have again a common fixed point result for Hardy and Rogers's contraction type [2]. It is a consequence of Corollary 2.2 with k = a + b + c + d.

COROLLARY 2.4. Let X be a complete G-metric space. Suppose the maps $T_1, T_2, T_3: X \to X$ satisfy

$$G(T_1x, T_2y, T_3z) \le aG(x, y, z) + bG(x, T_1x, T_1x) + cG(y, T_2y, T_2y) + dG(z, T_3z, T_3z),$$

for all $x, y, z \in X$, where a, b, c, d are non-negative reals such that a + b + c + d < 1. Then T_1, T_2 and T_3 have a unique common fixed point, say u, and are G-continuous at u.

Our Theorem 2.1 is again an extension of some recent new results by taking particular cases of φ or $T = T_1 = T_2 = T_3$ in 2.1 or in the above corollaries. We cite them in the following corollaries.

COROLLARY 2.5. [4] Let X be a complete G-metric space. Suppose the map $T: X \longrightarrow X$ satisfies

 $G(Tx, Ty, Tz) \le k \max\{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)\},\$

for all $x, y, z \in X$, where $0 \le k < 1$. Then, T has a unique fixed point, say u, and T is G-continuous at u.

COROLLARY 2.6. [4] Let X be a complete G-metric space. Suppose the map $T: X \to X$ satisfies for all $x, y, z \in X$

 $G(Tx, Ty, Tz) \le aG(x, y, z) + bG(x, Tx, Tx) + cG(y, Ty, Ty) + dG(z, Tz, Tz),$

where a, b, c, d are non-negative reals and a + b + c + d < 1. Then T has a unique fixed point, say u, and T is G-continuous at u.

COROLLARY 2.7. [4] Let X be a complete G-metric space. Suppose the map $T: X \to X$ satisfies for $m \in \mathbb{N}$ and $x, y, z \in X$

$$\begin{split} G(T^mx,T^my,T^mz) &\leq aG(x,y,z) + bG(x,T^mx,T^mx) \\ &\quad + cG(y,T^my,T^my) + dG(z,T^mz,T^mz), \end{split}$$

where a, b, c, d are non-negative reals and a + b + c + d < 1. Then T^m has a unique fixed point, say u, and is G-continuous at u.

We give an example illustrating our obtained results.

EXAMPLE 2.8 Let $X = [0, +\infty)$ be endowed with the complete *G*-metric given as follows:

$$G(x, y, z) = \max\{|x - y|, |x - z|, |y - z|\},\$$

for all $x, y, z \in X$. Define $T_1, T_2, T_3 : X \to X$ by

$$T_1 t = \frac{t}{2}, \quad T_2 t = T_3 t = \frac{t}{4} \quad \forall t \ge 0.$$

Take $k = \frac{1}{4}$. Without loss of generality, we assume that $x \le y \le z$, so

$$G(x, y, z) = \max\{|x - y|, |x - z|, |y - z|\} = z - x,$$

$$G(x, T_1 x, T_1 x) = \frac{x}{2}, \quad G(y, T_2 y, T_2 y) = 3\frac{y}{4} \quad \text{and} \quad G(z, T_3 z, T_3 z) = 3\frac{z}{4}.$$

From these identities, the right-hand side of (2.12), denoted $R_{x,y,z}$, is equal to

$$R_{x,y,z} = \frac{1}{4} \max\{z - x, \frac{x}{2}, \frac{3y}{4}, \frac{3z}{4}\} = \frac{1}{4} \max\{z - x, \frac{3z}{4}\}.$$
 (2.13)

While, the left-hand side of (2.12) is

$$G(T_1x, T_2y, T_3z) = \max\{|\frac{x}{2} - \frac{y}{4}|, |\frac{x}{2} - \frac{z}{4}|, |\frac{y}{4} - \frac{z}{4}|\}.$$
 (2.14)

We distinguish the following cases:

• If $\frac{x}{2} \leq \frac{y}{4}$. From (2.14), we have $G(T_1x, T_2y, T_3z) = \frac{z}{4} - \frac{x}{2}$. Case 1. If $\frac{z}{4} \geq x$. Here, we have from (2.13), $R_{x,y,z} = \frac{1}{4}(z-x)$. Then,

$$G(T_1x, T_2y, T_3z) = \frac{z}{4} - \frac{x}{2} \le \frac{1}{4}(z-x) = R_{x,y,z}.$$

Case 2. If $\frac{z}{4} \leq x$. Here, we have from (2.13), $R_{x,y,z} = \frac{3}{16}z$. Then,

$$G(T_1x, T_2y, T_3z) = \frac{z}{4} - \frac{x}{2} \le \frac{3}{16}z = R_{x,y,z}$$

• If $\frac{x}{2} \geq \frac{y}{4}$. By (2.14), we have $G(T_1x, T_2y, T_3z) = \frac{z}{4} - \frac{y}{4}$. Case 1. If $\frac{z}{4} \geq x$. By (2.13), we have $R_{x,y,z} = \frac{1}{4}(z-x)$, so

$$G(T_1x, T_2y, T_3z) = \frac{z}{4} - \frac{y}{4} \le \frac{1}{4}(z-x) = R_{x,y,z}$$

Case 2. If $\frac{z}{4} \le x$. From (2.13), we have $R_{x,y,z} = \frac{3}{16}z$, so

$$G(T_1x, T_2y, T_3z) = \frac{z}{4} - \frac{y}{4} \le \frac{3}{16}z = R_{x,y,z}.$$

H. Aydi

Note that in all cases, the inequality (2.12) holds for all $x, y, z \in X$. The hypotheses of Corollary 2.2 satisfied, and 0 is the unique common fixed point of the mappings T_1, T_2 and T_3 .

ACKNOWLEDGEMENT. The author thanks the referees for their valuable comments.

REFERENCES

- H. Aydi, B. Damjanović, B. Samet, W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modelling 54 (2011), 2443– 2450.
- [2] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201-206.
- [3] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. thesis, The University of Newcastle, Callaghan, Australia, (2005).
- [4] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete Gmetric spaces, Fixed Point Theory Appl. Vol. 2008, Article ID 189870, 12 pages (2008).
- [5] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
- [6] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, in: Proc. Intern. Conf. Fixed Point Theory Appl. (2004), 189-198, Yokohama, Japan.
- [7] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. Vol. 2009, Article ID 917175, 10 pages (2009).
- [8] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Inter. J. Math. Math. Sci. Vol. 2009, Article ID 283028, 10 pages (2009).
- [9] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. Vol. 2010, Article ID 181650, 9 pages (2010).
- [10] W. Shatanawi, Some fixed point theorems in ordered G-metric spaces and applications, Abstract Appl. Anal. Vol. 2011, Article ID 126205, 11 pages (2011).

(received 21.06.2011; in revised form 31.10.2011; available online 01.01.2012)

Université de Sousse, Institut Supérieur d'Informatique et des Technologies de Communication de Hammam Sousse, Route GP1-4011, H. Sousse, Tunisie

E-mail: hassen.aydi@isima.rnu.tn