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THE EULER THEOREM AND DUPIN INDICATRIX FOR
SURFACES AT A CONSTANT DISTANCE FROM EDGE

OF REGRESSION ON A SURFACE IN E3
1

Derya Sağlam and Özgür Boyacıoğlu Kalkan

Abstract. In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a
constant distance from edge of regression on a surface in E3

1 .

1. Introduction

Let k1, k2 denote principal curvature functions and e1, e2 be principal direc-
tions of a surface M , respectively. Then the normal curvature kn(vp) of M in the
direction vp = (cos θ)e1 + (sin θ)e2 is

kn(vp) = k1 cos2 θ + k2 sin2 θ.

This equation is called Euler’s formulae (Leonhard Euler, 1707–1783). The gen-
eralized Euler theorem for hypersurfaces in Euclidean space En+1 can be found
in [8]. In 1984, A. Kılıç and H.H. Hacısalihoğlu gave the Euler theorem and Dupin
indicatrix for parallel hypersurfaces in En [12]. Also the Euler theorem and Dupin
indicatrix are obtained for the parallel hypersurfaces in pseudo-Euclidean spaces
En+1

1 and En+1
ν in the papers [4, 6, 7].

In 2005 H.H. Hacısalihoğlu and Ö. Tarakçı introduced surfaces at a constant
distance from edge of regression on a surface. These surfaces are a generalization
of parallel surfaces in E3. Because the authors took any vector instead of normal
vector [15]. Euler theorem and Dupin indicatrix for these surfaces are given [2]. In
2010 we obtained the surfaces at a constant distance from edge of regression on a
surface in E3

1 [14].

In this paper we give the Euler theorem and Dupin indicatrix for surfaces at
a constant distance from edge of regression on a surface in E3

1 .
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Definition 1.1. [3, 9, 10, 11, 13] (i) Hyperbolic angle: Let x and y be
timelike vectors in the same timecone of Minkowski space. Then there is a unique
real number θ ≥ 0, called the hyperbolic angle between x and y, such that

〈x, y〉 = −‖x‖ ‖y‖ cosh θ.

(ii) Central angle: Let x and y be spacelike vectors in Minkowski space that
span a timelike vector subspace. Then there is a unique real number θ ≥ 0, called
the central angle between x and y, such that

|〈x, y〉| = ‖x‖ ‖y‖ cosh θ.

(iii) Spacelike angle: Let x and y be spacelike vectors in Minkowski space that
span a spacelike vector subspace. Then there is a unique real number θ between 0
and π called the spacelike angle between x and y, such that

〈x, y〉 = ‖x‖ ‖y‖ cos θ.

(iv) Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike
vector in Minkowski space. Then there is a unique real number θ ≥ 0, called the
Lorentzian timelike angle between x and y, such that

|〈x, y〉| = ‖x‖ ‖y‖ sinh θ.

Definition 1.2. Let M and Mf be two surfaces in E3
1 and Np be a unit

normal vector of M at the point P ∈ M . Let Tp(M) be tanjant space at P ∈ M and
{Xp, Yp} be an orthonormal bases of Tp(M). Let Zp = d1Xp+d2Yp+d3Np be a unit
vector, where d1, d2, d3 ∈ R are constant numbers and ε1d

2
1 + ε2d

2
2 − ε1ε2d

2
3 = ±1.

If a function f exists and satisfies the condition f : M → Mf , f(P ) = P + rZp,
r constant, Mf is called as the surface at a constant distance from the edge of
regression on M and Mf denoted by the pair (M,Mf ).

If d1 = d2 = 0, then we have Zp = Np and f(P ) = P + rNp. In this case M
and Mf are parallel surfaces [14].

Theorem 1.3. [14] Let the pair (M, Mf ) be given in E3
1 . For any W ∈ χ(M),

we have f∗(W ) = W + rDW Z, where W =
∑3

i=1 wi
∂

∂xi
,W =

∑3
i=1 wi

∂

∂xi
and

∀P ∈ M , wi(P ) = wi(f(p)), 1 ≤ i ≤ 3.

Let (φ,U) be a parametrization of M , so we can write that

φ : U
(u,v)

⊂ E3
1 → M

P=φ(u,v)
.

In this case {φu|p, φv|p} is a basis of TM (P ). Let Np is a unit normal vector
at P ∈ M and d1, d2, d3 ∈ R be a constant numbers then we may write that
Zp = d1φu|p + d2φv|p + d3Np. Since Mf = {f(P ) | f(P ) = P + rZp}, a parametric
representation of Mf is ψ(u, v) = φ(u, v) + rZ(u, v). Thus we may write

Mf = {ψ(u, v) | ψ(u, v) = φ(u, v) + r(d1φu(u, v) + d2φv(u, v) + d3N(u, v)),

d1, d2, d3, r are constant, ε1d
2
1 + ε2d

2
2 − ε1ε2d

2
3 = ±1,

}
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If we take rd1 = λ1, rd2 = λ2, rd3 = λ3 then we have

Mf = {ψ(u, v)|ψ(u, v) = φ(u, v) + λ1φu(u, v) + λ2φv(u, v) + λ3N(u, v),

λ1, λ2, λ3 are constant}.
Let {φu, φv} is basis of χ(Mf ). If we take 〈φu, φu〉 = ε1, 〈φv, φv〉 = ε2 and 〈N, N〉 =
−ε1ε2, then

ψu = (1 + λ3k1)φu + ε2λ1k1N,

ψv = (1 + λ3k2)φv + ε1λ2k2N

is a basis of χ(Mf ), where N is unit normal vector field on M and k1, k2 are
principal of M [14].

Theorem 1.4. [14] Let the pair (M, Mf ) be given. Let {φu, φv} (orthonormal
and principal vector fields on M) be basis of χ(M) and k1, k2 be principal cur-
vatures of M . The matrix of the shape operator of Mf with respect to the basis
{ψu = (1 + λ3k1)φu + ε2λ1k1N, ψv = (1 + λ3k2)φv + ε1λ2k2N} of χ(Mf ) is

Sf =
[

µ1 µ2

µ3 µ4

]

where

µ1 =
(1 + λ3k2)

A3

{
ελ1

∂k1

∂u
(λ2

2k
2
2 − ε1(1 + λ3k2)2) + k1A

2

}

µ2 =
ελ2

1λ2k1k2(1 + λ3k2)
A3

∂k1

∂u

µ3 =
−ελ1λ

2
2k1k2(1 + λ3k1)

A3

∂k2

∂v

µ4 =
(1 + λ3k1)

A3

{
−ελ2

∂k2

∂v
(λ2

1k
2
1 − ε2(1 + λ3k1)2) + k2A

2

}

and A =
√

ε (ε1λ2
1k

2
1(1 + λ3k2)2 + ε2λ2

2k
2
2(1 + λ3k1)2 − ε1ε2(1 + λ3k1)2(1 + λ3k2)2).

Definition 1.5. [6] Let M be a pseudo-Euclidean surface in E3
1 and p is

nonumbilic point in M . A function kn which is defined in the following form

kn : TpM → R, kn(Xp) =
1

‖Xp‖2
〈S(Xp), Xp〉

is called a normal curvature function of M at p.

Definition 1.6. [7] Let M be a pseudo-Euclidean surface in E3
1 and S be

shape operator of M . Then the Dupin indicatrix of M at the point p is

Dp = {Xp | 〈S(Xp), Xp〉 = ±1, Xp ∈ TpM } .
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2. The Euler theorem for surfaces at a constant distance
from edge of regression on a surface in E3

1

Theorem 2.1. Let Mf be a surface at a constant distance from edge of re-
gression on a M in E3

1 . Let k1 and k2 denote principal curvature function of M
and let {φu, φv} be orthonormal basis such that φu and φv are principal directions
on M . Let Yp ∈ TpM and we denote the normal curvature by kf

n(f∗(Yp)) of Mf in
the direction f∗(Yp). Thus

kf
n(f∗(Yp)) =

µ∗1y
2
1 + ε1ε2µ

∗
2y1y2 + µ∗3y

2
2

|λ∗1y2
1 − 2ε1ε2λ1λ2k1k2y1y2 + λ∗2y

2
2 |

(2.1)

where
y1 = 〈Yp, φu〉 , y2 = 〈Yp, φv〉 ,
λ∗i = εi(1 + λ3ki)2 − ε1ε2λ

2
i k

2
i , (i = 1, 2),

µ∗1 = ε1µ1(1 + λ3k1)2 − λ1k1(ε1ε2µ1λ1k1 + µ2λ2k2),

µ∗2 = ε2µ2(1 + λ3k2)2 − λ2k2(µ1λ1k1 + ε1ε2µ2λ2k2)

+ ε1µ3(1 + λ3k1)2 − λ1k1(ε1ε2µ3λ1k1 + µ4λ2k2),

µ∗3 = ε2µ4(1 + λ3k2)2 − λ2k2(µ3λ1k1 + ε1ε2µ4λ2k2).

(2.2)

Proof. Let f∗(Yp) ∈ Tf(p)M
f . Then

kf
n(f∗(Yp)) =

1
‖f∗(Yp)‖2

〈
Sf (f∗(Yp)), f∗(Yp)

〉
(2.3)

Let us calculate f∗(Yp) and Sf (f∗(Yp)). Since φu and φv are orthonormal we have

Yp = ε1 〈Yp, φu〉φu + ε2 〈Yp, φv〉φv = ε1y1φu + ε2y2φv

Further without lost of generality, we suppose that Yp is a unit vector. Then

f∗(Yp) = ε1y1f∗(φu) + ε2y2f∗(φv) = ε1y1ψu + ε2y2ψv. (2.4)

On the other hand we find that

Sf (f∗(Yp)) = ε1y1S
f (ψu) + ε2y2S

f (ψv)

= ε1y1 (µ1(1 + λ3k1)φu + µ2(1 + λ3k2)φv + (µ1ε2λ1k1 + µ2ε1λ2k2)N)

+ ε2y2 (µ3(1 + λ3k1)φu + µ4(1 + λ3k2)φv + (µ3ε2λ1k1 + µ4ε1λ2k2)N)
(2.5)

Thus using equations (2.4) and (2.5) in equation (2.3) we obtain (2.1).

Corollary 2.2. Let Mf be a surface at a constant distance from edge of
regression on M in E3

1 . Let k1 and k2 denote principal curvature function of M
and let {φu, φv} be orthonormal basis such that φu and φv are principal directions on
M . Let us denote the angle between Yp ∈ TpM and φu, φv by θ1 and θ2 respectively.
Thus the normal curvature of Mf in the direction f∗(Yp)
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(a) Let Np be a timelike vector then

kf
n(f∗(Yp)) =

µ∗1 cos2 θ1 + µ∗2 cos θ1 cos θ2 + µ∗3 cos2 θ2

|λ∗1 cos2 θ1 + λ∗2 cos2 θ2 − 2λ1λ2k1k2 cos θ1 cos θ2|
(b) Let Np be a spacelike vector.
(b.1) If Yp and φu are timelike vectors in the same timecone then

kf
n(f∗(Yp)) =

µ∗1 cosh2 θ1 + δ2µ
∗
2 cosh θ1 sinh θ2 + µ∗3 sinh2 θ2∣∣λ∗1 cosh2 θ1 + λ∗2 sinh2 θ2 − 2δ2λ1λ2k1k2 cosh θ1 sinh θ2

∣∣

(b.2) If Yp and φv are timelike vectors in the same timecone then

kf
n(f∗(Yp)) =

µ∗1 sinh2 θ1 + δ1µ
∗
2 sinh θ1 cosh θ2 + µ∗3 cosh2 θ2∣∣λ∗1 sinh2 θ1 + λ∗2 cosh2 θ2 − 2δ1λ1λ2k1k2 sinh θ1 cosh θ2

∣∣

(b.3) If Yp ∈ TpM is a spacelike vector and φu is timelike vector then

kf
n(f∗(Yp)) =

µ∗1 sinh2 θ1 − δ1δ2µ
∗
2 sinh θ1 cosh θ2 + µ∗3 cosh2 θ2∣∣λ∗1 sinh2 θ1 + λ∗2 cosh2 θ2 + 2δ1δ2λ1λ2k1k2 sinh θ1 cosh θ2

∣∣

(b.4) If Yp ∈ TpM is a spacelike vector and φv is timelike vector then

kf
n(f∗(Yp)) =

µ∗1 cosh2 θ1 − δ1δ2µ
∗
2 cosh θ1 sinh θ2 + µ∗3 sinh2 θ2∣∣λ∗1 cosh2 θ1 + λ∗2 sinh2 θ2 + 2δ1δ2λ1λ2k1k2 cosh θ1 sinh θ2

∣∣

where λ∗1, λ
∗
2, µ

∗
1, µ

∗
2 and µ∗3 are given in (2.2) and δi, (i = 1, 2) is 1 or −1

depending on yi is positive or negative, respectively.

Proof. (a) Let Np be a timelike vector. In this case θ1 and θ2 are spacelike
angle then

y1 = 〈Yp, φu〉 = cos θ1

y2 = 〈Yp, φv〉 = cos θ2.

Substituting these equations in (2.1), we get kf
n(f∗(Yp)).

(b) Let Np be a spacelike vector.
(b.1) If Yp and φu are timelike vectors in the same timecone then there is a

hyperbolic angle θ1 and a Lorentzian timelike angle θ2. Since

y1 = − cosh θ1 and y2 = δ2 sinh θ2

the proof is obvious.
(b.2) If Yp and φv are timelike vectors in the same timecone then there is a

Lorentzian timelike angle θ1 and a hyperbolic angle θ2. Thus

y1 = δ1 sinh θ1 and y2 = − cosh θ2.
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(b.3) If Yp ∈ TpM is a spacelike vector and φu is timelike vector then there is
a Lorentzian timelike angle θ1 and a central angle θ2. Thus

y1 = δ1 sinh θ1 and y2 = δ2 cosh θ2.

(b.4) If Yp ∈ TpM is a spacelike vector and φv is timelike vector then there is
a central angle θ1 and a Lorentzian timelike angle θ2. Thus

y1 = δ1 cosh θ1 and y2 = δ2 sinh θ2.

As a special case if we take λ1 = λ2 = 0, λ3 = r = constant, then we obtain
that M and Mf are parallel surfaces. The following corollary is known the Euler
theorem for parallel surfaces in E3

1 .

Corollary 2.3. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2

denote principal curvature function of M and let {φu, φv} be orthonormal basis
such that φu and φv are principal directions on M . Let Yp ∈ TpM and we denote
the normal curvature by kr

n(f∗(Yp)) of Mr, in the direction f∗(Yp). Thus

kr
n(f∗(Yp)) =

ε1k1(1 + rk1)y2
1 + ε2k2(1 + rk2)y2

2

|ε1(1 + rk1)2y2
1 + ε2(1 + rk2)2y2

2 |
.

Proof. Since

λ∗i = εi(1 + rki)2, (i = 1, 2),

µ∗1 = ε1k1(1 + rk1),

µ∗2 = 0,

µ∗3 = ε2k2(1 + rk2),

from (2.1) we find kr
n(f∗(Yp)).

Corollary 2.4. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2

denote principal curvature function of M and let {φu, φv} be orthonormal basis
such that φu and φv are principal directions on M . Let us denote the angle between
Yp ∈ TpM and φu, φv by θ1 and θ2 respectively. Thus the normal curvature of Mf

in the direction f∗(Yp)
(a) Let Np be a timelike vector then

kr
n(f∗(Yp)) =

k1(1 + rk1) cos2 θ1 + k2(1 + rk2) cos2 θ2

(1 + rk1)2 cos2 θ1 + (1 + rk2)2 cos2 θ2
.

(b) Let Np be a spacelike vector.
(b.1) If Yp and φu are timelike vectors in the same timecone then

kr
n(f∗(Yp)) =

−k1(1 + rk1) cosh2 θ1 + k2(1 + rk2) sinh2 θ2

(1 + rk1)2 cosh2 θ1 − (1 + rk2)2 sinh2 θ2

.
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(b.2) If Yp and φv are timelike vectors in the same timecone then

kr
n(f∗(Yp)) =

k1(1 + rk1) sinh2 θ1 − k2(1 + rk2) cosh2 θ2

−(1 + rk1)2 sinh2 θ1 + (1 + rk2)2 cosh2 θ2

.

(b.3) If Yp ∈ TpM is a spacelike vector and φu is timelike vector then

kr
n(f∗(Yp)) =

−k1(1 + rk1) sinh2 θ1 + k2(1 + rk2) cosh2 θ2

−(1 + rk1)2 sinh2 θ1 + (1 + rk2)2 cosh2 θ2

.

(b.4) If Yp ∈ TpM is a spacelike vector and φv is timelike vector then

kr
n(f∗(Yp)) =

k1(1 + rk1) cosh2 θ1 − k2(1 + rk2) sinh2 θ2

(1 + rk1)2 cosh2 θ1 − (1 + rk2)2 sinh2 θ2

.

3. The Dupin indicatrix for surfaces at a constant distance
from edge of regression on surfaces in E3

1

Theorem 3.1. Let Mf be a surface at a constant distance from edge of re-
gression on M in E3

1 . Let k1 and k2 denote principal curvature functions of M and
{φu, φv} be orthonormal bases such that φu and φv are principal directions on M .
Thus

Df
f(p) =

{
f∗(Yp) ∈ Tf(p)M

f | c1y
2
1 + ε1ε2c2y1y2 + c3y

2
2 = ±1

}
,

where

f∗(Yp) = ε1y1(1 + λ3k1)φu + ε2y2(1 + λ3k2)φv + ε1ε2(y1λ1k1 + y2λ2k2)N

c1 = ε1µ1(1 + λ3k1)2 − λ1k1(ε1ε2µ1λ1k1 + µ2λ2k2),

c2 = ε2µ2(1 + λ3k2)2 − λ2k2(µ1λ1k1 + ε1ε2µ2λ2k2)

+ ε1µ3(1 + λ3k1)2 − λ1k1(ε1ε2µ3λ1k1 + µ4λ2k2),

c3 = ε2µ4(1 + λ3k2)2 − λ2k2(µ3λ1k1 + ε1ε2µ4λ2k2).

Proof. Let f∗(Yp) ∈ Tf(p)M
f . Since

Df
f(p) =

{
f∗(Yp) |

〈
Sf (f∗(Yp)), f∗(Yp)

〉
= ±1

}

the proof is clear.
According to this theorem the Dupin indicatrix of Mf at the point f(p) in

general will be a conic section of the following type:

Corollary 3.2. Let Mf be a surface at a constant distance from edge of
regression on M in E3

1 . The Dupin indicatrix of Mf at the point f(p) is:
(a) an ellipse, if c2

2 − 4c1c3 < 0,
(b) two conjugate hyperbolas, if c2

2 − 4c1c3 > 0,
(c) parallel two lines, if c2

2 − 4c1c3 = 0.
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Corollary 3.3. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2

denote principal curvature functions of M and {φu, φv} be orthonormal bases such
that φu and φv are principal directions on M . In this case

Dr
f(p) =

{
f∗(Yp) ∈ Tf(p)Mr

∣∣ ε1k1(1 + rk1)y2
1 + ε2k2(1 + rk2)y2

2 = ±1
}

.

Hence the point f(p) of Mr is:
(a) an elliptic point, if ε1ε2k1k2(1 + rk1)(1 + rk2) > 0,
(b) a hyperbolic point, if ε1ε2k1k2(1 + rk1)(1 + rk2) < 0,
(c) a parabolic point, if k1k2(1 + rk1)(1 + rk2) = 0.
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[1] N. Aktan, A. Görgülü, E. Özüsağlam, C. Ekici, Conjugate tangent vectors and asymptotic
directions for surfaces at a constant distance from edge of regression on a surface, IJPAM
33 (2006), 127–133.
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