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THE EULER THEOREM AND DUPIN INDICATRIX FOR
SURFACES AT A CONSTANT DISTANCE FROM EDGE
OF REGRESSION ON A SURFACE IN Ej}

Derya Saglam and ézgﬁr Boyacioglu Kalkan

Abstract. In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a
constant distance from edge of regression on a surface in Ei"

1. Introduction

Let ki1, ko denote principal curvature functions and ey, e; be principal direc-
tions of a surface M, respectively. Then the normal curvature k, (v,) of M in the
direction v, = (cosf)e; + (sinf)es is

kn(vp) = k1 cos? 0 + ko sin? 6.

This equation is called Euler’s formulae (Leonhard Euler, 1707-1783). The gen-
eralized Euler theorem for hypersurfaces in Euclidean space E™*! can be found
in [8]. In 1984, A. Kili¢ and H.H. Hacisalihoglu gave the Euler theorem and Dupin
indicatrix for parallel hypersurfaces in E™ [12]. Also the Euler theorem and Dupin

indicatrix are obtained for the parallel hypersurfaces in pseudo-Euclidean spaces
E and E?H in the papers [4, 6, 7).

In 2005 H.H. Hacisalihoglu and O. Tarake: introduced surfaces at a constant
distance from edge of regression on a surface. These surfaces are a generalization
of parallel surfaces in E3. Because the authors took any vector instead of normal
vector [15]. Euler theorem and Dupin indicatrix for these surfaces are given [2]. In
2010 we obtained the surfaces at a constant distance from edge of regression on a
surface in F3 [14].

In this paper we give the Euler theorem and Dupin indicatrix for surfaces at
a constant distance from edge of regression on a surface in Ef.
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DEFINITION 1.1. [3, 9, 10, 11, 13] (i) Hyperbolic angle: Let = and y be
timelike vectors in the same timecone of Minkowski space. Then there is a unique
real number 6 > 0, called the hyperbolic angle between x and y, such that

(z,y) = — ||z|| ||y|| cosh 6.

(ii) Central angle: Let z and y be spacelike vectors in Minkowski space that
span a timelike vector subspace. Then there is a unique real number 6 > 0, called
the central angle between x and y, such that

[{z, 9)| = [l[ ly]| cosh 6.

(iii) Spacelike angle: Let = and y be spacelike vectors in Minkowski space that
span a spacelike vector subspace. Then there is a unique real number 6 between 0
and 7 called the spacelike angle between x and y, such that

(z,y) = ||| Iyl cos 6.

(iv) Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike
vector in Minkowski space. Then there is a unique real number 6 > 0, called the
Lorentzian timelike angle between x and y, such that

[z, y)| = ||lz|| |ly|| sinh 6.

DEFINITION 1.2. Let M and M/ be two surfaces in E} and N, be a unit
normal vector of M at the point P € M. Let T),(M) be tanjant space at P € M and
{X,,Y,} be an orthonormal bases of T,(M). Let Z,, = d1 X, +d2Y,+d3N, be a unit
vector, where di, da,d3 € R are constant numbers and e1d? + e2d3 — e162d3 = +1.
If a function f exists and satisfies the condition f : M — M7, f(P) = P+ rZ,,
r constant, M7 is called as the surface at a constant distance from the edge of
regression on M and M/ denoted by the pair (M, M7).

If dy = d2 = 0, then we have Z, = N, and f(P) = P+ rN,. In this case M
and M7 are parallel surfaces [14].

THEOREM 1.3. [14] Let the pair (M, M') be given in E}. For any W € x(M),
we have f,(W) = W + rDwZ, where W = Z?:l wiaixi W= Z?:1 Ea%z and
VP e M, wi(P)=wi(f(p)), 1<i<3.

Let (¢,U) be a parametrization of M, so we can write that

¢: U CE}—> M .
(u,v) ! P=¢(u,v)

In this case {¢ulp, dulp} is a basis of Th(P). Let N, is a unit normal vector
at P € M and di,ds,d3 € R be a constant numbers then we may write that
Zy = d1¢u|p + dady|p + dzN,. Since M/ = {f(P) | f(P) = P+rZ,}, a parametric
representation of M7 is ¥(u,v) = ¢(u,v) + rZ(u,v). Thus we may write

Mf = {w(uﬂf) ‘ ¢(UaU) = ¢(u7v) + r<d1¢u(u7v) + d2¢v(u7 7}) + dgN(’u,U)),

dy, dy, dz,r are constant, Eld% + 52d§ — 5152d§ = :I:l,}
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If we take rd; = A1, rds = A9, rds = A3 then we have

Mf = {¢(Uav)|¢(ua U) = ¢(u7v) + )‘1¢u(u7v) + )‘2¢U(U7U) + )‘3N(ua U)7
A1, A2, A3 are constant}.
Let {¢u, ¢, } is basis of x(MY). If we take (¢y,, d) = €1, (Gv, ¢y) = g2 and (N, N) =
—E&1€&9, then
Py = (1 4+ A3k1)py + e2M1k1 N,
y = (14 Agk2)dy + €1 A2ka N

is a basis of x(M7), where N is unit normal vector field on M and ky,ky are
principal of M [14].

THEOREM 1.4. [14] Let the pair (M, M7) be given. Let {¢y, ¢} (orthonormal
and principal vector fields on M) be basis of x(M) and ki,ks be principal cur-
vatures of M. The matriz of the shape operator of M7 with respect to the basis
{0 = (14 Ask1)u + e2M1k1 N, 1y = (L + A3k2)¢y + 1 X2ka N} of x(MY) is

[z
Hn3 g
where

(1 + )\3]62) { Oky

H = VE 6/\187()\316% -1+ A3k2)2) + k1A2}
- 6)\%/\2]’61]{32(1 + /\3]{12) Oky

M2 = VE ou
- —6)\1>\§k?1]€2(1 + )\3]431) Oko

M3 = A3 Do

M4 = (1—’;17)\33]@ {—E)\Qa(;f()\fk% — 62(1 + )\3/@1)2) + ]{32142}

and A = \/8 (El)\%k‘%(l + )\3](52)2 + 82)\%]6%(1 + )\3]()1)2 — 5152(1 + )\3]{)1)2(1 + )\3]@2)2).

DEFINITION 1.5. [6] Let M be a pseudo-Euclidean surface in E$ and p is
nonumbilic point in M. A function k,, which is defined in the following form

1
kn : TpM — R, kn(Xp) = ———5 (S(Xp), Xp)
X
is called a normal curvature function of M at p.

DEFINITION 1.6. [7] Let M be a pseudo-Euclidean surface in E5 and S be
shape operator of M. Then the Dupin indicatrix of M at the point p is

Dp = {Xp ‘ <S<Xp)aXp> = %1, Xp € TPM}'
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2. The Euler theorem for surfaces at a constant distance
from edge of regression on a surface in E;

THEOREM 2.1. Let M/ be a surface at a constant distance from edge of re-
gression on a M in E}. Let k1 and ko denote principal curvature function of M
and let {¢y, o} be orthonormal basis such that ¢,, and ¢, are principal directions
on M. LetY, € T,M and we denote the normal curvature by ki (f.(Y,)) of M7 in
the direction f.(Yp). Thus

x,.2 * *,.2

H1Yi +E1€200Y1Y2 + H3Y3
L (F.(Y)) = 2.1
n(f(5)) INiy? — 2e180 1 Aok kay1y2 + A5y3| @1)

where
Y1 = <Y;77 ¢u> y Y2 = <Y2m ¢v> ,

A =ei(1+ Aski)? — e18207K7, (i =1,2),

177

i = e (1+ Ask1)? = Aki(e182p1 M kr + paoks), 22)
Wy = eapa(l+ >\3k2)2 — Aaka(piAik1 + e162p02ks) .
+eps(l+ )\3/€1)2 — Mk (e1eap3 M k1 + paroks),
w3 = eopa(l+ )\3k2)2 — Aok (psAikr + e1eaptadoks).
Proof. Let f.(Y,) € Ty M7/, Then
1
kL (fe(Yp) = ———— (ST (f.(¥p)), . (Yp)) (2.3)
I £(Yp)l

Let us calculate f,(Y,) and SY(f.(Y})). Since ¢, and ¢, are orthonormal we have

}/p =& <vav ¢u> ¢u + &2 <Ypa ¢v> ¢U = 51y1¢u + 52y2¢v

Further without lost of generality, we suppose that Y, is a unit vector. Then

f* (Yp) == 51y1f*(¢u) + 52y2f*(¢v) == €1y1wu + 52y21/)v~ (24)
On the other hand we find that

Sf(f*(yp)) = €1y15‘f(¢u) =+ €2y25'f(1/)v)
=1y (1 (1 4+ Azk1)du + p2(1 + Aska)dy + (182A1k1 + poe1 Aok2)N)

+ oy (13(1 + A3k1) Py + pa(1 + Aska)dy + (puseaAikr + prag1Aoka)N)
(2.5)

Thus using equations (2.4) and (2.5) in equation (2.3) we obtain (2.1). m

COROLLARY 2.2. Let Mf be a surface at a constant distance from edge of
regression on M in E}. Let ki and ko denote principal curvature function of M
and let {¢u, ¢y} be orthonormal basis such that ¢, and ¢, are principal directions on
M. Let us denote the angle between Y, € T,M and ¢, ¢, by 01 and 05 respectively.
Thus the normal curvature of M7 in the direction f.(Y))
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(a) Let N, be a timelike vector then

Wi cos? 0y + uj cos by cos By + 3 cos? 0y
|AT cos? 01 + A5 cos? 0y — 2A1 Aok ko cos 01 cos bs|

ki (fo(Yp) =
(b) Let N, be a spacelike vector.
(b.1) If Y, and ¢, are timelike vectors in the same timecone then

_ i cosh? 0; + 0245 cosh 61 sinh 05 + 3 sinh? 0,
| A% cosh® 61 + A} sinh® 62 — 262 A1 Azk1 ko cosh 6 sinh 6,

ki (f<(Y))

(b.2) If Y, and ¢, are timelike vectors in the same timecone then

EL(f.(Y,) = M1 sinh” 6, + 015 sinh 64 cosh 6y + 115 cosh? 6,
n\Jx\{{Lp - ’)\’{ sinh2 01 —+ )\3 COSh2 92 — 261)\1)\2]61]152 sinh 01 COSh 92|

(b.3) If Y,, € T,M is a spacelike vector and ¢, is timelike vector then

B i sinh® @) — 01025 sinh 6 cosh Oy + % cosh® 6,
B |>\>i< Sinh2 91 + )\3 COSh2 02 + 2(5152)\1)\2]{}1]?2 sinh 91 cosh 02‘

ki (f(Yp))

(b.4) If Y, € T,M is a spacelike vector and ¢, is timelike vector then

w3 cosh? 6, — 010245 cosh @1 sinh 6 + 113 sinh? 6,

kL (f.(Y) =
n(F+(35)) |)\*1‘ cosh? 0, + ¥ sinh? 0 + 261851 Aok ko cosh 67 sinh 92‘

where Ny, AS i, ph oand @y are given in (2.2) and 0;, (1 = 1,2) is 1 or —1
depending on y; is positive or negative, respectively.

Proof. (a) Let N, be a timelike vector. In this case 6, and 6, are spacelike
angle then
y1 = (Yp, du) = cos by
y2 = (Yp, ) = cosbs.

Substituting these equations in (2.1), we get k7 (f.(Y})).

(b) Let N, be a spacelike vector.

(b.1) If Y, and ¢, are timelike vectors in the same timecone then there is a
hyperbolic angle 6; and a Lorentzian timelike angle #5. Since

y1 = —cosh#; and yo = s sinh 6o

the proof is obvious.

(b.2) If Y, and ¢, are timelike vectors in the same timecone then there is a
Lorentzian timelike angle 6; and a hyperbolic angle #5. Thus

y1 = 01sinh#; and yo = — coshbs.
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(b.3) If Y, € T, M is a spacelike vector and ¢, is timelike vector then there is
a Lorentzian timelike angle 6, and a central angle 6. Thus

y1 = 01 sinh#; and yo = 5 cosh .

(b.4) If Y, € T, M is a spacelike vector and ¢, is timelike vector then there is
a central angle #; and a Lorentzian timelike angle 6. Thus

y1 = 01cosh@; and yo = dosinhfy. m

As a special case if we take Ay = Ay = 0, \3 = r = constant, then we obtain
that M and M/ are parallel surfaces. The following corollary is known the Euler
theorem for parallel surfaces in Ej.

COROLLARY 2.3. Let M and M, be parallel surfaces in Ef Let k1 and ko
denote principal curvature function of M and let {¢u, by} be orthonormal basis
such that ¢, and ¢, are principal directions on M. LetY, € T,M and we denote
the normal curvature by kI (f«(Yy)) of My, in the direction f.(Y,). Thus

- 811{71(1 + Tkl)y% -+ €2k2(1 -+ ’I”kg)y%

Er(f.(Y,)) = .
n(F+(35)) le1 (1 + 7k1)%y3 + e2(1 + rk2)?y3|

Proof. Since

A=l 47k)?, (i =1,2),
,UT = Elkl(l + T’kl),
ps =0,
3 = e2ka (1 + rka),
from (2.1) we find k] (f«(Y,)). m

COROLLARY 2.4. Let M and M, be parallel surfaces in Ej. Let ki and ko
denote principal curvature function of M and let {¢u, ¢y} be orthonormal basis
such that ¢, and ¢, are principal directions on M. Let us denote the angle between
Y, € T,M and ¢, ¢, by 01 and 02 respectively. Thus the normal curvature of M/
in the direction f.(Y))

(a) Let N, be a timelike vector then

K (£ (V) = k1(1 + k1) cos? 01 + ko(1 + 7k2) cos?
PRI (L4 k)2 cos? 0y + (14 1ko)2cos? 0y

(b) Let N, be a spacelike vector.

(b.1) If Y, and ¢, are timelike vectors in the same timecone then

ke (fe(Yp)) = “ki(l+ rk) cosh? ; + kao(1 + rka) sinh? 6,
PP (14 k)2 cosh? 6 — (1 + k)2 sinh? 6y
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(b.2) If Y, and ¢, are timelike vectors in the same timecone then
k(14 7k) sinh? 6 — ky(1 4 rky) cosh? 6,

"~ —(1+7ky)?sinh? 6y + (1 + rko)2 cosh?® 6y
(b.3) If Y,, € T, M is a spacelike vector and ¢, is timelike vector then

K (f«(Yp))

K (fu(Y,) = —ki(1+ rkl)sinh2 01 + ko(1 + Tkz)cosh2 0,
mem —(1 4+ 7ky1)2sinh® 6; + (1 + 7ky)2 cosh® 0y

(b.4) If Y, € T,M is a spacelike vector and ¢, is timelike vector then

K (fu(Y,) = k1 (1 + k1) cosh? 6 — ko (1 + 7ky) sinh® 6,
A (1 + 7k1)2 cosh? 0y — (1 + rky)2sinh? 6,

3. The Dupin indicatrix for surfaces at a constant distance
from edge of regression on surfaces in E?}

THEOREM 3.1. Let M/ be a surface at a constant distance from edge of re-
gression on M in E3. Let ki and ko denote principal curvature functions of M and

{¢u, by} be orthonormal bases such that ¢,, and ¢, are principal directions on M.
Thus

DJ{(p) ={f(Y}) € Tf(p)Mf | c1yf + e1€2cay1yo + c3y3 = £1 1},
where
[e(Yp) = e1yi (1 + Ask1)du + €2y2(1 + Aska)dy + £162(y1A1k1 + Y2 Aoko) N
c1 = erpn (14 Ask1)® — Mki(e1e2p A1 ky + podaks),
co = eapin(1 4 Aska)® — Aoko (i Ark1 + £162p2A0k2)
+e1ps(1+ Ask1)? — Aki(e182p3 A1 k1 + padoks),
c3 = eapa(1+ Ask2)? — Aoka(usAiky + e162p1ad0kz).

Proof. Let f.(Y,) € Ty, M7. Since

Dl = {1 0) (ST (L (V). u(¥y)) = 1}
the proof is clear. m

According to this theorem the Dupin indicatrix of MY at the point f(p) in
general will be a conic section of the following type:

COROLLARY 3.2. Let Mf be a surface at a constant distance from edge of
regression on M in E}. The Dupin indicatriz of M7 at the point f(p) is:

(a) an ellipse, if ¢3 — 4ciez < 0,
(b) two conjugate hyperbolas, if c3 — 4cics > 0,

(c) parallel two lines, if 3 — 4cicz = 0.
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COROLLARY 3.3. Let M and M, be parallel surfaces in Ej. Let ki and ko
denote principal curvature functions of M and {¢., ¢} be orthonormal bases such
that ¢, and ¢, are principal directions on M. In this case

;(p) = {f*(Yp) € TrpyM, ’ ek (14 1k1)y? + eoko(1 4+ 1ko)ys = +1 } .
Hence the point f(p) of M, is:
(a) an elliptic point, if e1e9kika(1 + k1) (1 + ko) > 0,
(b) a hyperbolic point, if e1eakika(l +rk1)(1 +1k2) <0,
(¢) a parabolic point, if kika(1+ rk1)(1 +rke) = 0.
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