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ON RIGHT IDEALS AND DERIVATIONS
IN PRIME RINGS WITH ENGEL CONDITION

Basudeb Dhara and Deepankar Das

Abstract. Let R be an associative ring with center Z(R) and d a nonzero derivation of R.
The main object in this paper is to study the situation [[d(z")z™, z"]s, [y, d(y)]:]™ € Z(R) for all
z,y in some appropriate subset of R, where n > 0, s > 0,t >0, m > 1, r > 1 are fixed integers
and R is a prime or semiprime ring.

1. Introduction

Throughout this paper, unless specifically stated, R denotes a prime ring with
center Z(R), with extended centroid C, and two-sided Martindale quotient ring
Q. Given 2,y € R, we set [z,y]o = z, [z,y]1 = [2,y] = zy — yz and inductively
[z, y]k = [[%,y]k—1,y] for k > 1. By d, we mean a derivation of R.

In [12], Herstein proved that if char (R) # 2 and a derivation d is nonzero
such that [d(z),d(y)] = O for all z,y € R, then R is commutative. Chang and
Lin [5] proved that if p is a nonzero right ideal of R such that d(x)z™ = 0 for all
x € p, n > 1 a fixed integer, then d(p)p = 0. Recently, De Filippis [10] proved
that if char (R) # 2 and p a nonzero right ideal of R such that [d(z)z",d(y)] =0
for all 2,y € p, then either R is commutative or d(p)p = 0. In another paper, De
Filippis [11] proved that if char (R) # 2, d is nonzero and p is a nonzero right ideal
of R such that [[d(z),z],[d(y),y]] = 0 for all z,y € p, then either [p,p]p = 0 or
d(p)p = 0. In [8], the first author of this paper extended the result of De Filippis
by considering Engel conditions. The result of [8] states that if char (R) # 2 and
p a non-zero right ideal of R such that [[d(x), z]n, [y, d(y)]m]" = 0 for all z,y € p,
where n > 0,m > 0,t > 1 are fixed integers and [p, p|p # 0, then d(p)p = 0.

On the other hand, a well known result of Posner [22] states that if [d(z), z] €
Z(R) for all x € R, then either d = 0 or R is commutative. In [18], Lee considered
any constant power values of z and proved that if R be a prime ring and A\ a
nonzero left ideal of R such that [d(z™),2"]r = 0 for all © € A, then either d = 0
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or R is commutative. Lee and Shiue [20] proved that if R is noncommutative and
A a nonzero left ideal of R then: (i) if [d(z™)z™,2"]x = 0 for all z € A, then d = 0,
except when R = My(GF(2)); (ii) if [z"d(z™),x"]r = 0 for all € A, then either
d = ad(b) with Ab =0 for some b € Q or A[\,\] =0 and d(\) C AC.

From the results above, it is natural to consider the situation when
[[d(z")z™, "5, [y, d(y)]:]™ € Z(R) for all x,y in some appropriate subset of R,
where n > 0, s >0, ¢t >0, m > 1, r > 1 are fixed integers. As a particular case,
we obtain results, when [z, d(x)]; = 0 for all z in some right ideal of a prime ring
R or for all z in a semiprime ring R.

Let R be a prime ring and @ its two-sided Martindale quotient ring. Then @
is also a prime ring with center C' = Z(Q), a field, which is the extended centroid
of R. It is well known that any derivation of R can be uniquely extended to a
derivation of @), and hence any derivation of R can be defined on the whole of Q.
We refer to [2, 19] for more details.

Denote by Q xc C{x,y, z} the free product of the C-algebra @ and C{x,y, z},
the free C-algebra in noncommuting indeterminates z,y, z.

2. The case: R a prime ring
We need the following lemma.

LEMMA 2.1. Let I be a nonzero right ideal of R and d a derivation of R.
Then the following conditions are equivalent: (i) d is an inner derivation induced
by some b € Q such that bI = 0; (i) d(I)I = 0.

For its proof we refer to [13] or [4, Lemma).

THEOREM 2.2. Let R be a prime ring of char (R) # 2 and d a non-zero
derivation of R such that [[d(x")x™, x"]s, [y, d(y)]:]™ = 0 for all x,y € R, where
n,s,t >0 and m,r > 1 are fixed integers, then R is commutative.

Proof. Assume that R is noncommutative, otherwise we are done. Assume
next that d is Q-inner derivation i.e., d(z) = [a,«] for all z € R and for some
a € Q. Then we have

[laz", 2" 511, [y [a, yl))™ = 0

for all z,y € R. Since d # 0, a ¢ C and hence R satisfies a nontrivial generalized
polynomial identity (GPI). Since @ and R satisfy the same generalized polynomial
identities with coefficients in @ (see [7]), [[ax™, 2" ]s+1, [y, [@, y]]¢]™ is also satisfied
by @Q. Since @ is prime, we may replace R by @ and then assume that a € R and
C = Z(R). In this case R is centrally closed (i.e. RC = R) prime C-algebra [9)].
Then by Martindale’s theorem [21], R is a primitive ring. By Jacobson’s theorem
[15, p. 75] R is isomorphic to a dense ring of linear transformations of a vector space
V over a division ring D. Since R is noncommutative, dimpV > 2. We assume
that for some v € V, {av,v} is linearly D-independent. If a*v ¢ spanp{v,av},
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then {v,av,a?v} is linearly D-independent. By density there exist 2,y € R such
that

w=v, zw=0 za?v=0;
yo=0, yav=v, ya’v=0>0

for which we have [a, y]v = —v, [a,ylav = av, [ax™, z"]s11v = av and hence

[y, [a,y]]tv = Zt: (—1)7 (;) [a, y[ yla, y]'=7v =0

7=0
and , . e /s
ol = 3519 () Jlabyfo o = 3 ()= 2
Thus
0= Hazn’ ‘TT]S+17 [y7 [a7 y]]t]v
= [az", 2" |s1ly, [a,yllev = [y, [a, y]laz™, "] s 10
=0-2=-2%
and hence
0= [[az"™, 2"]s11, [y, [a, y]]) ™o = (=1)™2™ v,

which is a contradiction, since char (R) # 2.

If a®v € spanp{v,av}, then a?v = av + Bav for some a, 3 € D. Then again
by density there exist z,y € R such that zv = v,zav = O;yv = 0,yav = v for
which we get [a, y]Jv = —v, [a,y]"av = av or av — fv according as n is even or odd,
[az™, 2"]s4+1v = av and hence [y, [a,y]]:v = Z;:O(—l)j (;)[a,y]jy[a,y]t’jv =0 and

[y, [a,y]]rav = Z;-:o(_l)j (;) [a, y[ yla, y]' T av = Z;‘:o (;)v = 2%y, Therefore,

laz™, 2541, [y, [a, Y]] Jv = —2"v

and hence
0 = [laz", 2" o1, [y, [a, y]le] ™0 = (=1)"2™,

which is a contradiction, since char (R) # 2. Thus we conclude that v and av are
linearly D-dependent for all v € V. Let av = a,v for all v € V| where «,, € D. It
is very easy to prove that «a, is independent of choice of v € V. Hence av = av
for all v € V|, where a € D is fixed. Then for all r € R and v € V, we have
[a,7]v = a(rv) — r(av) = a(rv) — r(aw) = 0 that is [a, 7]V = 0. Since V is a left
faithful irreducible R-modulo, [a,r] = 0 for all r € R, that is a € Z(R). This leads
d = 0, a contradiction.

Assume next that d is not a Q-inner derivation in R. By assumption, we have

n@: sd(x)e N2, 2], [y, d()])" = 0
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for all 2,y € R. Then by Kharchenko’s theorem [16], we have

r—1

(S, atuam==1)am, a7, [y, ol = 0
i=0
for all z,y,u,v € R. This is a polynomial identity for R and hence there exists a
field F such that R C My (F) with k > 1 and My (F) satisfies the same polynomial
identity [17, Lemma 1]. But by choosing u = eg1,v = €22, = €11, y = €12, we get
r—1

0=1(2 rhua’ ", 2 [y, vl = e22 + (1) Menn,

a contradiction. m

Our next theorem is to study the central case.

THEOREM 2.3. Let R be a prime ring of char (R) # 2 and d a nonzero
derivation of R such that [[d(z")z™, 2" ]s, [y, d(y)]:] € Z(R) for all x,y € R, where
n,s,t >0 and r > 1 are fized integers, then R is commutative.

Proof. If R is commutative, we are done. So, let R be noncommutative. We
have that R satisfies

([d(z")2", 2"]s, [y, d(y)]i] € Z(R). (1)

If for all x,y € R, [[d(z")z™,z"]s, [y, d(y)]:] = 0, then we are done by Theorem 2.2.
So, let there exist x1, 22 € R, such that 0 # [[d(a])a}, z]]s, [x2,d(z2)]t] € Z(R).
Then (1) is a central differential identity for R. It follows from [6, Theorem 1]
that R is a prime Pl-ring and so RC' = @ is a finite-dimensional central simple
C-algebra by Posner’s theorem for prime Pl-ring.

Let d be an inner derivation of ) induced by a € Q. Since R and @ satisfy
same GPIs [7], we have

[Haxnv xr]5+17 [yv [a7 y]]t]v Z] =0 (2)

for all z,y € Q). Since there exist x1,x2 € R, such that [[az], 27]s1, [22, [a, x2]]¢] #
0, (2) is a nontrivial GPI for Q. Since @ is a finite-dimensional central simple
C-algebra, it follows from Lemma 2 in [17] that there exists a suitable field F' such
that @ C My (F'), k > 1, the ring of all k x k matrices over F', and moreover My, (F)
satisfies (2), that is,

[[faz™, 2 ]s41, [y, [a,y]]e], 2] = 0 ®3)
for all x,y,z € My(F). Let e and f be any two orthogonal idempotent elements
in Mp(F). Now, we replace z with e, y with exf and z with exf in (3) and let
Y = [[ae™, €]s11, [exf, [a, exf]]:]. Then we compute

Ye= [[aen’ e}s+17 [eva [av exf]]t]e

= [ac", ey salenf, [, cafllie — [eaf, [a, cxfllifac™, €]y s1e
t

~loe" s 3 (<19 (). cofresla,caflt-se

=0
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- 3 (19 ()l cafpentio o et e
=0

t

—0— Y (~1) C) (—exfa)iexf(aex ) ~iae

j=0
= —2%(exfa)e. (4)

fY = f[[aen7 e]3+17 [emf’ [av €.Z‘f]]t]

= flae", elsi1]exf, [a,exf]]s — flexf, [a, exf]]t[ae™, €]si1

= flae" els1 30 (=1)7 (;) [a, exfexfla, exf]i—

Jj=0

-1 517 () leasbenlo,eaft-loer el

_ fae i(q)j <t) (—exfa)iexf(aexf)t =i — 0

7=0 J
= 2!(faex)" f. (5)
Hence
0 = [[lae", €]st1, [exf, [a, exf]]s], ex f]
= [Y, exf]
= {2'(exfa) T exf — 2'ex(faex) T £}
= 2" (exfa) T exf. (6)

Since char (R) # 2, this implies (faex)'™3 = 0 for all x € My (F). By Levitzki’s
lemma [14, Lemma 1.1}, faex = 0 for all z € M(F') and so fae = 0. Since f and e
are any two orthogonal idempotent elements in M (F), we have for any idempotent
e in My(F), (1 —e)ae =0 = ea(l — e) which implies [a,e] = 0. Since a commutes
with all idempotents in My (F'), a € C' and hence d = 0.

If d is not @-inner derivation of R, then by Kharchenko’s Theorem [16], we
have 0 = [[(X/— z'ua” """ Y)a", 2], [y, v]¢), 2] for all z,y, 2,u,v € R. Since this
is a polynomial identity for R, there exists a field F' such that R C M (F) with
k> 1 and R and M (F) satisfy the same polynomial identity [17, Lemma 1]. But
by choosing v = es1,v = €32, = €11, Yy = €12, We get

r—1

H(; crux™ ) a ams, [y, v]i] = ea2 — enn € Z(My(F)),

a contradiction, since char (F') # 2. m

THEOREM 2.4. Let R be a prime ring of char (R) # 2, d a nonzero derivation
of R and I a nonzero right ideal of R such that [[d(z")z™, x"]s, [y, d(y)]:] € Z(R)
for allz,y € I, wheren >0, s> 0,1t >0, r > 1 are fized integers. If [I,I]I # 0,
then d = ad(b) with bI =0 for some b € Q.
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We begin with the following lemma.

LEMMA 2.5. Ifd(I)I # 0 and [[d(z")z™, 2" ]s, [y, d(y)]:] € Z(R) for allz,y € I,
then R satisfies a non-trivial generalized polynomial identity (GPI).

Proof. Suppose on the contrary that R does not satisfy any non-trivial GPI. We
may assume that R is noncommutative, otherwise R satisfies trivially a non-trivial
GPL

Case I. Suppose that d is a Q-inner derivation induced by an element a € Q.
Then for any u € I

[lla(uz)”™, (uz)"]s 1, [uy, [a, uy]li], uz]

is a GPI for R, so it is the zero element in @ *¢c C{z,y, z}. Expanding this we get,

(e () waratuey -9 s fo, )

Jj=0
t

= (507 (1) tann = wya) st )t Yauo), () o

j=0
— uz{[a(uz)”, (ur) |st1, [uy, [a, uy]ls] = 0. (7)
If au and u are linearly C-independent for some u € I then

r(s+1)[

a(ux)" (ux) uy, [a, uy]]ruz

- é(*”j C) (auy — uya)’ ~ uyla, uy) 7 a(uz)", (uz)"]ss1uz = 0. (8)
This implies
a(ux)"(ua:)r(sﬂ) [uy, [a, uy]]iuz = 0 (9)

in @ x¢c C{z,y, z}. Expanding this we write

t
a(uz)™ (uz)"TY 3 (=1)7 (;) (auy — uya)’uy(auy — uya)*~Juz = 0.
7=0

Again, since au and u are linearly C-independent, in the above expression we see
that a(ux)™(uz)"tYuy(auy)tuz appears nontrivially, a contradiction. Thus for
any u € I, au and u are C-dependent. Then (a — «)I = 0 for some a € C.
Replacing a with @ — a, we may assume that al = 0. But then by Lemma 2.1,
d(I)I =0, contradiction.

Case II. Suppose that d is not a Q-inner derivation of R. If for all u € I,
d(u) € uC, then [d(u),u] = 0 which implies R to be commutative (see [3]), a
contradiction. Therefore there exists v € I such that d(u) ¢ uC i.e., v and d(u
are linearly C-independent.

By our assumption we have that R satisfies

[[[d((ua)")(uz)", (uz)"]s, [d(uy), uyl), uz] = 0
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that is
r—1

[([(X (ua)(d(w)a + ud(x)) (uz)" ) (uz)", (uz)" s, [uy, d(u)y + ud(y)]], uz] = 0.

i=0
By Kharchenko’s theorem [16],

r—1

(Il ;}(ux)i(d(U)x +uwy) (uz)" T ual [uy, d(w)y + ugn)d,uz] =0 (10)

for all x,y, z,z1,y1 € R. In particular, for x; =y; =0,

r—1

[[[ZIO(wv)"(d(U)x)(UfE)””’H, uls, [uy, d(u)yli], uz] = 0 (11)
which is a non-trivial GPI for R, because u and d(u) are linearly C-independent, a
contradiction. m

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. If d(I)I = 0, then by Lemma 2.1 we obtain our con-
clusion. So, let d(I)I # 0. By Lemma 2.5, R is a GPIl-ring, so is Q [7]. By
[21], @ is a primitive ring with H = Soc(Q) # 0. Moreover, we may assume that
[[H,TH|IH # 0, otherwise by [7], [IQ,IQ]IQ = 0, which is a contradiction. We
may also assume that d(IH)IH # 0, otherwise by Lemma 2.1, d is an inner deriva-
tion induced by an element b € @ such that bIH = 0 that is bl = 0, implying
d(I)I =0, a contradiction.

Let a € IH. Since H is a regular ring, there exists e> = e € H such that
eH = aH. Then e € IH and a = ea. By our assumption and by [12, Theorem
2], we may also assume that [[[d(z")z™, a"]s, [y, d(y)]¢], 2] is an identity for IQ.
In particular, [[[d(z")a™, z"]s, [y, d(y)]t], 2] is an identity for IH and so for eH.
Replacing = with e, y with ey(1 — e¢) and z with ey(1 — e), it follows that, for all
y € H,

0= [[ld(e)e™ e]s, [ey(1 — e), d(ey(1 — €))l:], ey(1 — e)]. (12)
Let V = [[d(e)e™, e]s, [ey(1l — e),d(ey(l — €))]:]. We have the facts that for any
idempotent e, d(z (1 —e))e = —z(1 — e)d(e), (1 —e)d(ex) = (1 — e)d(e)ex and

ed(e)e = 0 and hence we compute

Ve = [ld(e)e", els, [ey(1 —e), d(ey(1 — €))lie
= [d(e)e”, ] v[ey(l —e),d(ey(1 —e))lie — ley(1 —e), d(ey(1 — €))]:[d(e)e”, e]se

d(e)e", €] 3 (~1) <f>d(ey(1 —o)ey(l - ed(ey(l — )~
7=0

Mn

(;)d ey(1 —e))ey(1 —e)d(ey(1 —e))t=I[d(e)e™, e]se

<.
Il
O
~

||
Mﬁ

(j) “ey(1— )d(e)yey(1 - e)(d(e)ey(l — e))—Td(c)e

=—2t<ey —e)d(e) e (13)

I
o
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and

(1= )V = (1 - d(e)e™ el [ey(1 — ), dey(1 — e))]]
= (1 e)d()eley(1 — ) dley(1 - o))
(1= Ofey(1 — ), d(ey(1 — e)ld(e)e™ el
— (1 - e)d(e)e Y- (-1 (’f)c«ey(l ~e)ey(l - e)d(ey(1 — )=
0

J

<.
I

-0 ; (~1) C) dey(1 — e)Yey(1 — e)d(ey(1 — &)~ [d(e)e™, el
= (1 atepe (19 () entr = exite)ents — exaeren(r - )T o
7=0 J
=2((1 —e)d(e)ey) (1 —e). (14)

Thus (12) gives

0=[V,ey(1—e)]
=Vey(l—e)—ey(l—e)V
= —2'(ey(1 — e)d(e))ey(1 — e) — 2'ey((1 — e)d(e)ey) ' (1~ ¢)
=~ (ey(1 — e)d(e))ey(1 —e). (15)

Multiplying on the left by (1 — e)d(e) and on the right by d(e)ey and using char
(R) # 2, the above equation gives ((1—e)d(e)ey)!*2 = 0 for ally € H. By Levitzki’s
lemma [14, Lemma 1.1], (1 — e)d(e)eH = 0. By primeness of H, (1 — e)d(e)e = 0.
This implies (1 — e)d(e) = (1 — e)d(e?) = (1 — e)d(e)e = 0. Thus d(e) = ed(e) €
eH C ITH. Now d(a) = d(ea) = d(e)ea + ed(ea) € TH. Hence, d(IH) C IH. Since
d(lg(IH)) C lyg(IH) holds, d naturally induces a derivation 0 on the prime ring

IH = Wff([h’) defined by §(Z) = d(x) for € IH, where I (IH) denotes the

left annihilator of TH in H. Thus by assumption we have
[[5(TT)TH>TT]37 [ya 5(@)]t7§] =0

for all Z,7,%Z € TH. By Theorem 2.3, we have either 6 = 0 or IH is commutative.
Therefore, we have that either d(IH)IH = 0 or [[H,IH]|IH = 0. In both cases,
we have contradictions. This completes the proof of the theorem. m

COROLLARY 2.6. Let R be a prime ring of char (R) # 2, d a nonzero derivation
of R and I a nonzero right ideal of R such that [d(x")x™,z"]s = 0 for all x € I,
where n >0, s >0, r > 1 are fized integers. If [I,I]I # 0, then d(I)I = 0.

COROLLARY 2.7. Let R be a prime ring of char (R) # 2, d a nonzero derivation
of R and I a nonzero right ideal of R such that [z,d(x)]s = 0 for all x € I, where
t > 1 is a fized integer. If [I,I)I # 0, then d(I)I = 0.
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3. The case: R a semiprime ring

In this section we extend Theorems 2.2 and 2.3 to the case of semiprime ring.
Let R be a semiprime ring and U be its right Utumi quotient ring. The center of
U is called extended centroid of R and is denoted by C. It is well known fact that
any derivation of a semiprime ring R can be uniquely extended to a derivation of
its right Utumi quotient ring U and so any derivation of R can be defined on the
whole of U [19, Lemma 2]. Let M (C') be the set of all maximal ideals of C. Now
by the standard theory of orthogonal completions for semiprime rings (see [19, p.
31-32]), we have the following lemma.

LEMMA 3.1. [1, Lemma 1 and Theorem 1] Let R be a 2-torsion free semiprime
ring and P a mazimal ideal of C'. Then PU is a prime ideal of U invariant under all
derivations of U. Moreover, {PU | P € M(C) with U/PU 2-torsion free} = 0.

THEOREM 3.2. Let R be a 2-torsion free semiprime ring, d a non-zero deriva-
tion of R such that [[d(x")a™, x"]s, [y, d(y)]:]™ = 0 for all x,y € R, wheren,s,t >0
and m,r > 1 are fized integers. Then d maps R into its centre.

Proof. By assumption and by [19, Theorem 3], we can write [[d(z")z™, x"]s,
[y, d(y)]:]™ = 0 for all z,y € U. Note that U is also a 2-torsion free semiprime ring.
Let P € M(C) such that U/PU is 2-torsion free. Then by Lemma 3.1, PU is a
prime ideal of U invariant under d. Set U = U/PU. Then derivation d canonically
induces a derivation d on U defined by d(z) = d(z) for all x € U. Therefore,
[[d@")Z",Z"]s, [7,d(@)]:]™ = 0 for all 7,7 € U. By Theorem 2.2, either d = 0 or
[U,U] = 0i.e., dU) C PU or [U,U] C PU. In any case d(U)[U,U] C PU for any
P € M(C). By Lemma 3.1, \{PU | P € M(C) with U/PU 2-torsion free } = 0.
Thus d(U)[U,U] = 0. Without loss of generality, we have d(R)[R,R] = 0. This
implies d(R)R[R, R] = 0 and so [R,d(R)]R[R,d(R)] = 0. Since R is semiprime, we
have [R,d(R)] = 0, that is, d(R) C Z(R), as desired. m

By a similar proof, Theorem 2.3 can be extended to semiprime ring as follows:

THEOREM 3.3. Let R be a 2-torsion free semiprime ring, d a non-zero deriva-
tion of R such that [[d(z")a™, z"]s, [y, d¥)]:] € Z(R) for all x,y € R, where
n,s,t >0 and r > 1 are fized integers. Then d maps R into its centre.

COROLLARY 3.4. Let R be a 2-torsion free semiprime ring, d a non-zero
derivation of R such that [d(z")a™,2"]s = 0 for allx € R, wheren,s >0 andr > 1
are fized integers. Then d maps R into its center.

COROLLARY 3.5. Let R be a 2-torsion free semiprime ring, d a non-zero
derivation of R such that [z,d(z)]; = 0 for all x € R, where t > 0 is a fized integer.
Then d maps R into its center.
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