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FIXED POINT TECHNIQUES AND STABILITY IN NONLINEAR
NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. In this paper we use fixed point techniques to obtain asymptotic stability re-
sults of the zero solution of a nonlinear neutral differential equation with variable delays. This
investigation uses new conditions which allow the coefficient functions to change sign and do not
require the boundedness of delays. An asymptotic stability theorem with a necessary and suffi-
cient condition is proved. The obtained results improve and extend those due to Burton, Zhang,
Raffoul, Jin and Luo, Ardjouni and Djoudi, and Djoudi and Khemis. Two examples are also given
to illustrate this work.

1. Introduction

For more than 100 years, stability properties of ordinary, functional, partial
differential equation have been mainly investigated by the ultimate Lyapunov direct
method. But the method has encountered serious obstacles and a number of prob-
lems remain unsolved. In recent years, investigators such as Burton, Furumochi,
Zhang and others began a project in the idea to overcome some of these difficulties.
Particularly, Burton and Furumochi considered, in a series of papers (see [3–10]),
specific examples and challenging problems for stability using Lyapunov’s method
and have presented solutions by means of various fixed point techniques. In the
same time, they pointed out that the fixed point method have other significant ad-
vantages over Lyapunov’s method. The former asks conditions of averaging nature
while the latter usually asks pointwise conditions (see [1–14,16]).

Having in mind the above ideas, we consider, here, the following nonlinear
neutral differential equation with variable delays

x′(t) = −a(t)x(t−τ1(t))+b(t)G(x(t−τ2(t)))+c(t)x′(t−τ2(t))Q′(x(t−τ2(t))), (1.1)

with the initial condition

x(t) = ψ(t) for t ∈ [m(t0), t0],
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where ψ ∈ C([m(t0), t0],R) and for each t0 ≥ 0,

mj(t0) = inf{t− τj(t), t ≥ t0}, m(t0) = min{mj(t0), j = 1, 2}.
Here C(S1, S2) denotes the set of all continuous functions ϕ : S1 → S2 with the
supremum norm ‖ · ‖. Throughout this paper we assume that a, b ∈ C(R+,R),
c ∈ C1(R+,R) and τ1, τ2 ∈ C(R+,R+) with t − τ1(t) → ∞ and t − τ2(t) → ∞ as
t → ∞. The functions Q and G are locally Lipschitz continuous. That is, there
are positive constants L1 and L2 so that if |x|, |y| ≤ L for some positive constant
L then

|Q(x)−Q(y)| ≤ L1‖x− y‖ and Q(0) = 0, (1.2)

and
|G(x)−G(y)| ≤ L2‖x− y‖ and G(0) = 0. (1.3)

Less general forms of equation (1.1) have been previously investigated by many
authors. For example, Burton in [5], and Zhang in [16] have studied the equation

x′(t) = −a(t)x(t− τ1(t)), (1.4)

and proved the following.

Theorem A. [5] Suppose that τ1(t) = τ and there exists a constant α < 1 such
that

∫ t

t−τ

|a(s + τ)| ds +
∫ t

0

|a(s + τ)|e−
∫ t

s
a(u+τ) du(

∫ s

s−τ

|a(u + τ)| du) ds ≤ α, (1.5)

for all t ≥ 0 and
∫∞
0

a(s)ds = ∞. Then, for every continuous initial function
ψ : [−τ, 0] → R, the solution x(t) = x(t, 0, ψ) of (1.4) is bounded and tends to zero
as t →∞.

Theorem B. [16] Suppose that τ1 is differentiable, the inverse function g
of t − τ1(t) exists, and there exists a constant α ∈ (0, 1) such that for t ≥ 0,
lim inft→∞

∫ t

0
a(g(s)) ds > −∞ and

∫ t

t−τ1(t)

|a(g(s))| ds +
∫ t

0

e
−

∫ t

s
a(g(u)) du|a(s)||τ ′1(s)| ds

+
∫ t

0

e
−

∫ t

s
a(g(u)) du|a(g(s))|(

∫ s

s−τ1(s)

|a(g(u))| du) ds ≤ α. (1.6)

Then the zero solution of (1.4) is asymptotically stable if and only if
∫ t

0
a(g(s)) ds →

∞, as t →∞.

Obviously, Theorem B improves Theorem A. On the other hand, Raffoul in
[14], Jin and Luo in [13], and the authors in [1] considered the following linear
neutral differential equation

x′(t) = −a(t)x(t)− b(t)x(t− τ2(t)) + c(t)x′(t− τ2(t)), (1.7)

and obtained the following.
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Theorem C [14] Let τ2 be twice differentiable and τ ′2(t) 6= 1 for all t ∈ R+.
Suppose that there exists a constant α ∈ (0, 1) such that for t ≥ 0,

∫ t

0
a(s) ds →∞ as

t →∞, and

| c(t)
1− τ ′2(t)

|+
∫ t

0

e
−

∫ t

s
a(u) du|b(s) + r1(s)| ds ≤ α, (1.8)

where r1(t) =
[c(t)a(t) + c′(t)](1− τ ′2(t)) + c(t)τ ′′2 (t)

(1− τ ′2(t))2
. Then every solution x(t) =

x(t, 0, ψ) of (1.7) with a small continuous initial function ψ is bounded and tends
to zero as t →∞.

Theorem D. [13] Let τ2 be twice differentiable and τ ′2(t) 6= 1 for all t ∈ R+.
Suppose that there exists a constant α ∈ (0, 1) and a function h ∈ C(R+,R) such
that for t ≥ 0, lim inft→∞

∫ t

0
h(s)ds > −∞, and

| c(t)
1− τ ′2(t)

|+
∫ t

t−τ2(t)

|h(s)− a(s)| ds

+
∫ t

0

e
−

∫ t

s
h(u) du| − b(s) + [h(s− τ2(s))− a(s− τ2(s))]− r2(s)| ds

+
∫ t

0

e
−

∫ t

s
h(u) du|h(s)|(

∫ s

s−τ2(s)

|h(u)− a(u)| du) ds ≤ α, (1.9)

where r2(t) =
[c(t)h(t) + c′(t)](1− τ ′2(t)) + c(t)τ ′′2 (t)

(1− τ ′2(t))2
. Then the zero solution of

(1.7) is asymptotically stable if and only if
∫ t

0
h(s) ds →∞ as t →∞.

Theorem E. [1] Suppose that τ2is twice differentiable and τ ′2(t) 6= 1for all
t ∈ R+,and there exist continuous functions hj : [mj(t0),∞) → Rfor j = 1, 2and a
constant α ∈ (0, 1)such that for t ≥ 0

lim inf
t→∞

∫ t

0

H(s) ds > −∞,

and

| c(t)
1− τ ′2(t)

|+
∫ t

t−τ2(t)

|h2(s)| ds

+
∫ t

0

e
−

∫ t

s
H(u) du(| − a(s) + h1(s)|+ | − b(s) + h2(s− τ2(s))(1− τ ′2(s))− r(s)|) ds

+
∫ t

0

e
−

∫ t

s
H(u) du|H(s)|(

∫ s

s−τ2(s)

|h2(u)| du) ds ≤ α, (1.10)

where H(t) =
∑2

j=1 hj(t)and r(t) =
[c(t)H(t) + c′(t)](1− τ ′2(t)) + c(t)τ ′′2 (t)

(1− τ ′2(t))2
. Then

the zero solution of (1.7)is asymptotically stable if and only if
∫ t

0

H(s) ds →∞ as t →∞.
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Obviously, Theorem E improves Theorems C and D. On the other hand,
the second author with Khemis in [11], considered the following nonlinear neutral
differential equation

x′(t) = −a(t)x(t) + b(t)G(x(t− τ2(t))) + c(t)x′(t− τ2(t)), (1.11)

and obtained the following.

Theorem F. [14] Suppose (1.3)holds with L2 = 1. Let τ2 be twice differentiable
and τ ′2(t) 6= 1 for all t ∈ R+. Suppose that there exists a constant α ∈ (0, 1) such
that for t ≥ 0,

∫ t

0
a(s) ds →∞ as t →∞, and

| c(t)
1− τ ′2(t)

|+
∫ t

0

e
−

∫ t

s
a(u) du(|b(s)|+ |r1(s)|) ds ≤ α, (1.12)

where r1is as in Theorem C. Then every solution x(t) = x(t, 0, ψ) of (1.11) with a
small continuous initial function ψ is bounded and tends to zero as t →∞.

Also, the second author with Khemis in [11] considered the following nonlinear
neutral differential equation

x′(t) = −a(t)x(t)− b(t)x2(t− τ2(t)) + c(t)x′(t− τ2(t))x(t− τ2(t)), (1.13)

and obtained the following.

Theorem G. [11] Let τ2be twice differentiable and τ ′2(t) 6= 1for all t ∈
R+.Suppose that there exists a constant α ∈ (0, 1) such that for t ≥ 0,

∫ t

0
a(s) ds →

∞ as t →∞, and

L{| c(t)
1− τ ′2(t)

|+
∫ t

0

e
−

∫ t

s
a(u) du|r1(s) + 2b(s)| ds} ≤ α, (1.14)

where r1is as in Theorem C. Then every solution x(t) = x(t, 0, ψ) of (1.13) with a
small continuous initial function ψ is bounded and tends to zero as t →∞.

Our purpose here is to give, by using a fixed point approach, asymptotic sta-
bility results of the zero solution of the nonlinear neutral differential equation with
variable delays (1.1). We provide, what we think, minimal conditions to reach these
objectives for a such general equation. An asymptotic stability theorem with a nec-
essary and sufficient condition is proved. It is worth pointing out that our results do
not ask for a fixed sign on the coefficient functions nor do they need boundedness of
delays. We end by giving two examples to illustrate our work. The results presented
in this paper improve and generalize the main results in [1, 5, 11, 13, 14, 16].

2. Main results

For each (t0, ψ) ∈ R+ × C([m(t0), t0],R), a solution of (1.1) through (t0, ψ)
is a continuous function x : [m(t0), t0 + α) → R for some positive constant α > 0
such that x satisfies (1.1) on [t0, t0 + α) and x = ψ on [m(t0), t0]. We denote such
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a solution by x(t) = x(t, t0, ψ). For each (t0, ψ) ∈ R+ × C([m(t0), t0],R), there
exists a unique solution x(t) = x(t, t0, ψ) of (1.1) defined on [t0,∞). For fixed t0,
we define ‖ψ‖ = max{|ψ(t)| : m(t0) ≤ t ≤ t0}. Stability definitions may be found
in [3], for example.

Our aim here is to improve and generalize Theorems A–G to (1.1).

Theorem 1. Suppose (1.2) and (1.3) hold. Let τ1 be differentiable and τ2

be twice differentiable with τ ′2(t) 6= 1 for all t ∈ R+. Suppose that there exist
continuous functions hj : [mj(t0),∞) → R for j = 1, 2 and a constant α ∈ (0, 1)
such that for t ≥ 0

lim inf
t→∞

∫ t

0

H(s)ds > −∞, (2.1)

and

L1

∣∣∣∣
c(t)

1− τ ′2(t)

∣∣∣∣ +
2∑

j=1

∫ t

t−τj(t)

|hj(s)| ds

+
∫ t

0

e
−

∫ t

s
H(u) du{| − a(s) + h1(s− τ1(s))(1− τ ′1(s))|

+ |h2(s− τ2(s))(1− τ ′2(s))|+ L1|r(s)|+ L2|b(s)|} ds

+
2∑

j=1

∫ t

0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)| du

)
ds ≤ α, (2.2)

where H(t) =
∑2

j=1 hj(t) and r(t) =
[c(t)H(t) + c′(t)](1− τ ′2(t)) + c(t)τ ′′2 (t)

(1− τ ′2(t))2
. Then

the zero solution of (1.1) is asymptotically stable if and only if∫ t

0

H(s) ds →∞ as t →∞. (2.3)

Proof. First, suppose that (2.3) holds. For each t0 ≥ 0, we set

K = sup
t≥0

{e−
∫ t

0
H(s) ds}. (2.4)

Let ψ ∈ C([m(t0), t0],R) be fixed and define
Sψ = {ϕ ∈ C([m(t0),∞),R) : ϕ(t) → 0 as t →∞, ϕ(t) = ψ(t) for t ∈ [m(t0), t0]}.
Then Sψ is a complete metric space with metric ρ(x, y) = supt≥t0{|x(t)− y(t)|}.

Multiply both sides of (1.1) by e

∫ t

t0
H(u) du

and then integrate from t0 to t to
obtain

x(t) = ψ(t0)e
−

∫ t

t0
H(u) du

+
2∑

j=1

∫ t

t0

e
−

∫ t

s
H(u) du

hj(s)x(s) ds

+
∫ t

t0

e
−

∫ t

s
H(u) du{−a(s)x(s− τ1(s))

+ c(s)x′(s− τ2(s))Q′(x(s− τ2(s))) + b(s)G(x(s− τ2(s)))} ds.
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Performing an integration by parts, we have

x(t) =
(
ψ(t0)− c(t0)

1− τ ′2(t0)
Q(ψ(t0 − τ2(t0)))

)
e
−

∫ t

t0
H(u) du

+
c(t)

1− τ ′2(t)
Q(x(t− τ2(t))) +

2∑

j=1

∫ t

t0

e
−

∫ t

s
H(u) du

d

(∫ s

s−τj(s)

hj(u)x(u) du

)

+
2∑

j=1

∫ t

t0

e
−

∫ t

s
H(u) du

hj(s− τj(s))(1− τ ′j(s))x(s− τj(s)) ds

+
∫ t

t0

e
−

∫ t

s
H(u) du{−a(s)x(s−τ1(s))−r(s)Q(x(s−τ2(s)))+b(s)G(x(s−τ2(s)))} ds

=
(
ψ(t0)− c(t0)

1− τ ′2(t0)
Q(ψ(t0 − τ2(t0)))

)
−

2∑

j=1

∫ t0

t0−τj(t0)

hj(s)ψ(s) ds)e
−

∫ t

t0
H(u) du

+
c(t)

1− τ ′2(t)
Q(x(t− τ2(t))) +

2∑

j=1

∫ t

t−τj(t)

hj(s)x(s) ds

+
∫ t

t0

e
−

∫ t

s
H(u) du{(−a(s) + h1(s− τ1(s))(1− τ ′1(s)))x(s− τ1(s))

+ h2(s− τ2(s))(1− τ ′2(s))x(s− τ2(s))} ds

+
∫ t

t0

e
−

∫ t

s
H(u) du{−r(s)Q(x(s− τ2(s))) + b(s)G(x(s− τ2(s)))} ds

−
2∑

j=1

∫ t

t0

e
−

∫ t

s
H(u) du

H(s)
(∫ s

s−τj(s)

hj(u)x(u) du

)
ds. (2.5)

Use (2.5) to define the operator P : Sψ → Sψ by (Pϕ)(t) = ψ(t) for t ∈ [m(t0), t0]
and

(Pϕ)(t) =
(

ψ(t0)− c(t0)
1− τ ′2(t0)

Q(ψ(t0 − τ2(t0)))−
2∑

j=1

∫ t0

t0−τj(t0)

hj(s)ψ(s) ds

)
×

× e
−

∫ t

t0
H(u) du

+
c(t)

1− τ ′2(t)
Q(ϕ(t− τ2(t))) +

2∑

j=1

∫ t

t−τj(t)

hj(s)ϕ(s) ds

+
∫ t

t0

e
−

∫ t

s
H(u) du{(−a(s) + h1(s− τ1(s))(1− τ ′1(s)))ϕ(s− τ1(s))

+ h2(s− τ2(s))(1− τ ′2(s))ϕ(s− τ2(s))} ds

+
∫ t

t0

e
−

∫ t

s
H(u) du{−r(s)Q(ϕ(s− τ2(s))) + b(s)G(x(s− τ2(s)))} ds

−
2∑

j=1

∫ t

t0

e
−

∫ t

s
H(u) du

H(s)
(∫ s

s−τj(s)

hj(u)ϕ(u) du

)
ds. (2.6)
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for t ≥ t0. It is clear that (Pϕ) ∈ C([m(t0),∞),R). We now show that (Pϕ)(t) → 0
as t →∞. Since ϕ(t) → 0 and t− τj(t) →∞ as t →∞, for each ε > 0, there exists
a T1 > t0 such that s ≥ T1 implies that |x(s − τj(s))| < ε for j = 1, 2. Thus, for
t ≥ T1, the last term I6 in (2.6) satisfies

|I6| =
∣∣∣∣

2∑

j=1

∫ t

t0

e
−

∫ t

s
H(u) du

H(s)
(∫ s

s−τj(s)

hj(u)ϕ(u) du

)
ds

∣∣∣∣

≤
2∑

j=1

∫ T1

t0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)||ϕ(u)| du

)
ds

+
2∑

j=1

∫ t

T1

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)||ϕ(u)| du

)
ds

≤ sup
σ≥m(t0)

|ϕ(σ)|
2∑

j=1

∫ T1

t0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)| du

)
ds

+ ε

2∑

j=1

∫ t

T1

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)| du

)
ds.

By (2.3), there exists T2 > T1 such that t ≥ T2 implies

sup
σ≥m(t0)

|ϕ(σ)|
2∑

j=1

∫ T1

t0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)| du

)
ds

= sup
σ≥m(t0)

|ϕ(σ)|e−
∫ t

T1
H(u) du

2∑

j=1

∫ T1

t0

e
−

∫ T1

s
H(u) du|H(s)|×

×
(∫ s

s−τj(s)

|hj(u)| du

)
ds < ε.

Apply (2.2) to obtain |I6| < ε + αε < 2ε. Thus, I6 → 0 as t → ∞. Similarly,
we can show that the rest of the terms in (2.6) approach zero as t → ∞. This
yiel ds (Pϕ)(t) → 0 as t → ∞, and hence Pϕ ∈ Sψ. Also, by (2.2), P is a
contraction mapping with contraction constant α. By the contraction mapping
principle (Smart [15, p. 2]), P has a unique fixed point x in Sψ which is a solution
of (1.1) with x(t) = ψ(t) on [m(t0), t0] and x(t) = x(t, t0, ψ) → 0 as t →∞.

To obtain the asymptotic stability, we need to show that the zero solution
of (1.1) is stable. Let ε > 0 be given and choose δ > 0 (δ < ε) satisfying

2δKe

∫ t0

0
H(u) du + αε < ε. If x(t) = x(t, t0, ψ) is a solution of (1.1) with ‖ψ‖ < δ,

then x(t) = (Px)(t) defined in (2.6). We claim that |x(t)| < ε for all t ≥ t0. Notice
that |x(s)| < ε on [m(t0), t0]. If there exists t∗ > t0 such that |x(t∗)| = ε and
|x(s)| < ε for m(t0) ≤ s < t∗, then it follows from (2.6) that

|x(t∗)| ≤ ‖ψ‖
(

1 + L1| c(t0)
1− τ ′2(t0)

|+
2∑

j=1

∫ t0

t0−τj(t0)

|hj(s)| ds

)
e
−

∫ t∗

t0
H(u) du
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+ εL1

∣∣∣∣
c(t∗)

1− τ ′2(t∗)

∣∣∣∣ + ε

2∑

j=1

∫ t∗

t∗−τj(t∗)
|hj(s)| ds

+ ε

∫ t∗

t0

e
−

∫ t∗

s
H(u) du{| − a(s) + h1(s− τ1(s))(1− τ ′1(s))|

+ |h2(s− τ2(s))(1− τ ′2(s))|+ L1|r(s)|+ L2|b(s)|} ds

+ ε

2∑

j=1

∫ t∗

t0

e
−

∫ t∗

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)| du

)
ds

≤ 2δKe

∫ t0

0
H(u) du + αε < ε,

which contradicts the definition of t∗. Thus, |x(t)| < ε for all t ≥ t0, and the zero so-
lution of (1.1) is stable. This shows that the zero solution of (1.1) is asymptotically
stable if (2.3) holds.

Conversely, suppose (2.3) fails. Then by (2.1) there exists a sequence {tn},
tn → ∞ as n → ∞ such that limn→∞

∫ tn

0
H(u) du = l for some l ∈ R. We may

also choose a positive constant J satisfying

−J ≤
∫ tn

0

H(u) du ≤ J,

for all n ≥ 1. To simplify our expressions, we define

ω(s) = | − a(s) + h1(s− τ1(s))(1− τ ′1(s))|+ |h2(s− τ2(s))(1− τ ′2(s))|

+ L1|r(s)|+ L2|b(s)|+ |H(s)|
2∑

j=1

∫ s

s−τj(s)

|hj(u)| du,

for all s ≥ 0. By (2.2), we have
∫ tn

0

e
−

∫ tn

s
H(u) du

ω(s) ds ≤ α.

This yields ∫ tn

0

e

∫ s

0
H(u) du

ω(s) ds ≤ αe

∫ tn

0
H(u) du ≤ J.

The sequence {∫ tn

0
e

∫ s

0
H(u) du

ω(s) ds} is bounded, so there exists a convergent sub-
sequence. For brevity of notation, we may assume that

lim
n→∞

∫ tn

0

e

∫ s

0
H(u) du

ω(s) ds = γ,

for some γ ∈ R+ and choose a positive integer m so large that
∫ tn

tm

e

∫ s

0
H(u) du

ω(s) ds < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies 2δ0KeJ + α ≤ 1.
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By (2.1), K in (2.4) is well defined. We now consider the solution x(t) =
x(t, tm, ψ) of (1.1) with ψ(tm) = δ0 and |ψ(s)| ≤ δ0 for s ≤ tm. We may choose ψ
so that |x(t)| ≤ 1 for t ≥ tm and

ψ(tm)− c(tm)
1− τ ′2(tm)

Q(ψ(tm − τ2(tm)))−
2∑

j=1

∫ tm

tm−τj(tm)

hj(s)ψ(s) ds ≥ 1
2
δ0.

It follows from (2.6) with x(t) = (Px)(t) that for n ≥ m
∣∣∣∣x(tn)− c(tn)

1− τ ′2(tn)
Q(x(tn − τ2(tn)))−

2∑

j=1

∫ tn

tn−τj(tn)

hj(s)x(s) ds

∣∣∣∣

≥ 1
2
δ0e

−
∫ tn

tm
H(u) du −

∫ tn

tm

e
−

∫ tn

s
H(u) du

ω(s) ds

=
1
2
δ0e

−
∫ tn

tm
H(u) du − e

−
∫ tn

0
H(u) du

∫ tn

tm

e

∫ s

0
H(u) du

ω(s) ds

= e
−

∫ tn

tm
H(u) du

(
1
2
δ0 − e

−
∫ tm

0
H(u) du

∫ tn

tm

e

∫ s

0
H(u) du

ω(s) ds

)

≥ e
−

∫ tn

tm
H(u) du

(
1
2
δ0 −K

∫ tn

tm

e

∫ s

0
H(u) du

ω(s) ds

)

≥ 1
4
δ0e

−
∫ tn

tm
H(u) du ≥ 1

4
δ0e

−2J > 0. (2.7)

On the other hand, if the zero solution of (1.1) is asymptotically stable, then x(t) =
x(t, tm, ψ) → 0 as t → ∞. Since tn − τj(tn) → ∞ as n → ∞ and (2.2) holds, we
have

x(tn)− c(tn)
1− τ ′2(tn)

Q(x(tn − τ2(tn)))−
2∑

j=1

∫ tn

tn−τj(tn)

hj(s)x(s) ds → 0 as n →∞,

which contradicts (2.7). Hence condition (2.3) is necessary for the asymptotic
stability of the zero solution of (1.1). The proof is complete.

Remark 1. It follows from the first part of the proof of Theorem 1 that the
zero solution of (1.1) is stable under (2.1) and (2.2). Moreover, Theorem 1 still
holds if (2.2) is satisfied for t ≥ tσ for some tσ ∈ R+.

For the special case b = 0 and c = 0, we get

Corollary 1. Let τ1 be differentiable, and suppose that there exist continuous
function h1 : [m1(t0),∞) → R for and a constant α ∈ (0, 1) such that for t ≥ 0

lim inf
t→∞

∫ t

0

h1(s) ds > −∞,

and∫ t

t−τ1(t)

|h1(s)| ds +
∫ t

0

e
−

∫ t

s
h1(u) du| − a(s) + h1(s− τ1(s))(1− τ ′1(s))| ds

+
∫ t

0

e
−

∫ t

s
h1(u) du|h1(s)|

(∫ s

s−τ1(s)

|h1(u)| du

)
ds ≤ α. (2.8)
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Then the zero solution of (1.4) is asymptotically stable if and only if
∫ t

0

h1(s) ds →∞ as t →∞.

Remark 2. When τ1(s) = τ , a constant, h1(s) = a(s+τ), Corollary 1 contains
Theorem A. When h1(s) = a(g(s)), where g(s) is the inverse function of s− τ1(s),
Corollary 1 reduces to Theorem B.

Remark 3. When τ1 = 0, G(x) = −x and Q(x) = x, Theorem E is a corollary
of Theorem 1.

For the special case τ1 = 0 and Q(x) = x, we get

Corollary 2. Suppose (1.3) holds with L2 = 1. Let τ2 be twice differentiable
and τ ′2(t) 6= 1 for all t ∈ R+. Suppose that there exist continuous functions hj :
[mj(t0),∞) → R for j = 1, 2 and a constant α ∈ (0, 1) such that for t ≥ 0

lim inf
t→∞

∫ t

0

H(s) ds > −∞,

and∣∣∣∣
c(t)

1− τ ′2(t)

∣∣∣∣ +
∫ t

t−τ2(t)

|h2(s)| ds

+
∫ t

0

e
−

∫ t

s
H(u) du{| − a(s) + h1(s)|+ |h2(s− τ2(s))(1− τ ′2(s))− r(s)|+ |b(s)|} ds

+
∫ t

0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τ2(s)

|h2(u)| du

)
ds ≤ α, (2.9)

where H(t) =
∑2

j=1 hj(t) and r(t) =
[c(t)H(t) + c′(t)](1− τ ′2(t)) + c(t)τ ′′2 (t)

(1− τ ′2(t))2
. Then

the zero solution of (1.11) is asymptotically stable if and only if
∫ t

0

H(s) ds →∞ as t →∞.

For the special case τ1 = 0, G(x) = −x2 and Q(x) = 1
2x2, we get

Corollary 3. Let τ2 be twice differentiable with τ ′2(t) 6= 1 for all t ∈ R+.
Suppose that there exist continuous functions hj : [mj(t0),∞) → R for j = 1, 2 and
a constant α ∈ (0, 1) such that for t ≥ 0

lim inf
t→∞

∫ t

0

H(s) ds > −∞,

and

L

{∣∣∣∣
c(t)

1− τ ′2(t)

∣∣∣∣ +
∫ t

0

e
−

∫ t

s
H(u) du|2b(s) + r(s)| ds

}
+

∫ t

t−τ2(t)

|h2(s)| ds
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+
∫ t

0

e
−

∫ t

s
H(u) du{| − a(s) + h1(s)|+ |h2(s− τ2(s))(1− τ ′2(s))|} ds

+
∫ t

0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τ2(s)

|h2(u)| du

)
ds ≤ α, (2.10)

where H(t) =
∑2

j=1 hj(t) and r(t) =
[c(t)H(t) + c′(t)](1− τ ′2(t)) + c(t)τ ′′2 (t)

(1− τ ′2(t))2
. Then

the zero solution of (1.13) is asymptotically stable if and only if
∫ t

0

H(s) ds →∞ as t →∞.

Remark 4. When h1(s) = a(s) and h2(s) = 0, then Corollaries 2 and 3
contain Theorems F and G, respectively.

3. Two examples

In this section, we give two examples to illustrate the applications of Corollary
2 and Theorem 1.

Example 1. Consider the following nonlinear neutral differential equation

x′(t) = −a(t)x(t) + b(t)G(x(t− τ2(t))) + c(t)x′(t− τ2(t)), (3.1)

where τ2(t) = 0.066t, a(t) = 1/(t + 1), b(t) = 0.55/(t + 1), c(t) = 0.32 and G(x) =
sin x. Then the zero solution of (3.1) is asymptotically stable.

Proof. Choosing h1(t) = 1/(t + 1) and h2(t) = 0.25/(t + 1) in Corollary 2, we
have H(t) = 1.25/(t + 1),

| c(t)
1− τ ′2(t)

| = 0.32
0.934

< 0.3427,

∫ t

t−τ2(t)

|h2(s)| ds =
∫ t

0.934t

0.25
s + 1

ds = 0.25 ln
( t + 1

0.934t + 1

)
< 0.0171,

∫ t

0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τ2(s)

|h2(u)| du

)
ds

<

∫ t

0

e
−

∫ t

s
(1.25/(u+1)) du 1.25

s + 1
· 0.0171 < 0.0171,

and
∫ t

0

e
−

∫ t

s
H(u) du{| − a(s) + h1(s)|+ |h2(s− τ2(s))(1− τ ′2(s))− r(s)|+ |b(s)|} ds

=
∫ t

0

e
−

∫ t

s
(1.25/(u+1)) du

(∣∣∣∣
0.25× 0.934
0.934s + 1

− 1.25× 0.32
0.934(s + 1)

∣∣∣∣ +
0.55
s + 1

)
ds

<
0.32
0.934

− 0.25
1.25

+
0.55
1.25

< 0.5827.
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It is easy to see that all the conditions of Corollary 2 hold for α = 0.3427+0.0171+
0.5827 + 0.0171 = 0.9596 < 1. Thus, Corollary 2 implies that the zero solution of
(3.1) is asymptotically stable.

However, Theorem F cannot be used to verify that the zero solution of (3.1)
is asymptotically stable. Obviously,

∣∣∣∣
c(t)

1− τ ′2(t)

∣∣∣∣ +
∫ t

0

e
−

∫ t

s
a(u) du(|b(s)|+ |r1(s)|) ds =

0.32(2t + 1)
0.934(t + 1)

+
0.55t

t + 1
.

Thus, we have

lim sup
t≥0

{∣∣∣∣
c(t)

1− τ ′2(t)

∣∣∣∣ +
∫ t

0

e
−

∫ t

s
a(u) du(|b(s)|+ |r1(s)|) ds

}
=

0.64
0.934

+ 0.55 ' 1.2352.

In addition, the left-hand side of the following inequality is increasing in t > 0,
then there exists some t0 > 0 such that for t ≥ t0,

∣∣∣∣
c(t)

1− τ ′2(t)

∣∣∣∣ +
∫ t

0

e
−

∫ t

s
a(u) du(|b(s)|+ |r1(s)|) ds > 1.23.

This implies that condition (1.12) does not hold. Thus, Theorem F cannot be
applied to equation (3.1).

Example 2. Consider the following nonlinear neutral differential equation

x′(t) = −a(t)x(t−τ1(t))+b(t)G(x(t−τ2(t)))+c(t)x′(t−τ2(t))Q′(x(t−τ2(t))), (3.2)

where τ1(t) = 0.068, τ2(t) = 0.074t, a(t) = 0.932/(0.932t + 1), b(t) = 0.082/(t + 1),
c(t) = 0.44, Q(x) = 0.52(1− cos(x)), G(x) = 1.22 sin(x). Then the zero solution of
(3.2) is asymptotically stable.

Proof. Choosing h1(t) = 1/(t + 1) and h2(t) = 0.31/(t + 1) in Theorem 1, we
have H(t) = 1.31/(t + 1),

L1 = 0.52, L2 = 1.22,

L1| c(t)
1− τ ′2(t)

| = 0.52× 0.44
0.926

< 0.2471,

2∑

j=1

∫ t

t−τj(t)

|hj(s)| ds =
∫ t

0.932t

1
s + 1

ds +
∫ t

0.926t

0.31
s + 1

ds

= ln
( t + 1

0.932t + 1

)
+ 0.31 ln

( t + 1
0.926t + 1

)
< 0.0943,

2∑

j=1

∫ t

0

e
−

∫ t

s
H(u) du|H(s)|

(∫ s

s−τj(s)

|hj(u)| du

)
ds

<

∫ t

0

e
−

∫ t

s
(1.31/(u+1)) du 1.31

s + 1
× 0.0943 < 0.0943,
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∫ t

0

e
−

∫ t

s
H(u) du| − a(s) + h1(s− τ1(s))(1− τ ′1(s))| ds = 0,

and
∫ t

0

e
−

∫ t

s
H(u) du{|h2(s− τ2(s))(1− τ ′2(s))|+ L1|r(s)|+ L2|b(s)|} ds

=
∫ t

0

e
−

∫ t

s
(1.31/(u+1)) du

(0.31× 0.926
0.926s + 1

+
0.52× 1.31× 0.44

0.926(s + 1)
+

1.22× 0.082
s + 1

)
ds

<
0.31
1.31

+
0.52× 0.44

0.926
+

1.22× 0.082
1.31

< 0.5601.

It is easy to see that all the conditions of Theorem 1 hold for α = 0.2471+0.0943+
0.5601 + 0.0943 = 0.9958 < 1. Thus, Theorem 1 implies that the zero solution of
(3.2) is asymptotically stable.
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