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RELATIVE EXT GROUPS OF ABELIAN CATEGORIES

Chaoling Huang and Kai Deng

Abstract. In this article, we characterize the relative Ext groups of abelian categories
relative to a fixed precovering class F and give some examples.

1. Introduction

Let R be a ring with 1. The class of projective R-modules is a cornerstone in
classical homological algebra. Recall that every R-module M admits a projective
resolution:

· · · −−−−→ Pn −−−−→ · · · −−−−→ P0 −−−−→ M −−−−→ 0

which is exact with all Pi projective. Moreover, any such resolution is unique up to
homotopy. Then one can use projective resolution of M to define derived functors
Exti≥1

R (−, N) for any R-module N . It is well-known that for any R-module M
and any integer n ≥ 0, the following are equivalent:

(1) M admits a projective resolution of the form:

0 −−−−→ Pn −−−−→ · · · −−−−→ P0 −−−−→ M −−−−→ 0

(2) ExtkR(M, N) = 0 for any R-module N and k ≥ n + 1;

(3) Extn+1
R (M, N) = 0 for any R-module N ;

(4) Every projective resolution of M has a projective nth syzygy.
Recall that M and M ′ are said to be projectively equivalent if M⊕P ∼= M ′⊕P ′

for some projective R-modules P and P ′. We denote the projective equivalence class
of M by [M ]. Let θ : P → M be an epimorphism with P projective. There is a so-
called Schanuel class S([M ]) := [Kerθ]. One can consider the n-fold compositions
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of S for n ≥ 0. Therefore, the following result (see [1, Chapter V, Proposition 2.1])
is well-known:

For any R-module M and any integer n ≥ 0, the following are equivalent:

(1) Extn+1
R (M, N) = 0 for any R-module N ;

(2) M admits a projective resolution of the form:

0 −−−−→ Pn −−−−→ · · · −−−−→ P0 −−−−→ M −−−−→ 0

(3) Sn([M ]) = [0].

The study of relative homological algebra was initiated by Butler and Horrocks
and Eilenberg and Moore, and has been revitalized recently by a number of authors,
for instance, Enochs and Jenda and Avramov and Martsinkovsky. Let F be a
class of R-modules. Enochs et. al. defined F-precover and F-precovering, cf., [3,
Definition 5.1.1]. Therefore, one can define F-resolution of M , cf., [3, Definition
8.1.2]. Moreover, such F-resolution of M is unique up to homotopy. Then one can
define the relative derived functor ExtiF (−, N) for each i ≥ 0 and R-module N .
Sather-Wagstaff et al. [9] compared the relative cohomology theories with respect
to semidualizing modules.

In this paper, we generalize the result of [1, Chapter V, Proposition 2.1] to
any abelian category relative to some epic precovering class. Our main result is
Theorem 2.8.

2. Main results

Notation 2.1. In this note, A is an abelian category. P = P(A) and I =
I(A) are the subcategories of projective and injective objects in A respectively. F
is a precovering class of A, cf., Definition 2.3, which contains 0 and is closed under
isomorphisms and finite direct sums.

Definition 2.2. An A-complex is a sequence of homomorphisms in A

A = · · · ∂A
n+1−−−−→ An

∂A
n−−−−→ An−1

∂A
n−1−−−−→ · · ·

such that ∂A
n−1∂

A
n = 0 for all n. The nth homology object of A is Hn(A) =

Ker(∂A
n )/Im(∂A

n+1). A is exact the case Ker(∂A
n ) = Im(∂A

n+1).

Definition 2.3. Let A be an abelian category and F be a class of objects
of A. A morphism ϕ : F → M of A is called an F-precover of M if F ∈ F and
Hom(F ′, F ) → Hom(F ′, M) → 0 is exact for all F ′ ∈ F . ϕ is called an epic F-
precover of M if it is an F-precover and is an epimorphism. If every object admits
an (epic) F-precover, then we say F is an (epic) precovering class. An augmented
F-resolution of an object M is a complex

X+ = · · · −−−−→ Xn
dn−−−−→ · · · −−−−→ X1

d1−−−−→ X0
γ−−−−→ M −−−−→ 0
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with all Xi ∈ F such that Hom(F ′, X+) is exact for any F ′ ∈ F . Clearly, if F is
precovering, every object M has an augmented F-resolution. M is said to have a
special F-precover if there is an exact sequence

0 −−−−→ C −−−−→ F −−−−→ M −−−−→ 0

with F ∈ F and Ext1(F , C) = 0. It is clear that M has an epic F-precover if it
has a special F-precover.

Lemma 2.4. [3, Ex. 8.1.2, p. 169] Let F be a precovering. Consider the diagram

· · · −−−−→ F1 −−−−→ F0 −−−−→ M −−−−→ 0
yf

· · · −−−−→ F ′1 −−−−→ F ′0 −−−−→ M ′ −−−−→ 0

where the rows are F-resolutions of M and M ′ respectively. Then f : M → M ′

induces a chain map of complexes

· · · −−−−→ F1 −−−−→ F0 −−−−→ M −−−−→ 0
yf1

yf0

yf

· · · −−−−→ F ′1 −−−−→ F ′0 −−−−→ M ′ −−−−→ 0

which is unique up to homotopy.

Definition 2.5. Let F be a precovering class and N be any object of A. By
Lemma 2.4, one can well-define the nth derived functor of Hom(−, N) relative to
F . We write it by ExtnF (−, N).

Lemma 2.6. [3, Lemma 8.6.3] If F → M and G → M are F-precovers with
kernels K and L respectively, then K ⊕G ∼= L⊕ F .

Definition 2.7. Let K and K ′ be two objects in A. They are called F-
equivalent denoted K ≡F K ′, if there exist F, G ∈ F such that K ⊕G ∼= K ′ ⊕ F .
We use [K] to denote the F-equivalence class containing K. By Lemma 2.6, the
kernels of any F-precovers of M are F-equivalent. Let ϕ : F → M be any F-
precover of M . Then [Kerϕ] is a well-defined class depending only on M . So we
write SF (M) = [Kerϕ]. By the analogy of [3, Lemma 8.6.2], SF (M) only depends
on the F-equivalence class of M . So there induces well-defined map:

SF : A/ ≡F→ A/ ≡F .

We set S0
F = id and Sn

F the n-fold compositions of SF for any positive integer
n > 0.

Theorem 2.8. Let A be an abelian category, and let F be an epic precover-
ing class closed under direct summands. Then for any positive integer n ≥ 0 the
following are equivalent:
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(1) Extn+1
F (M, N) = 0 for any object N of A;

(2) there exists an augmented F-resolution of the form

0 → Fn → · · · → F0 → M → 0;

(3) Sn
F ([M ]) = [0].

Proof. (2) ⇒ (1) : Clear.
(1) ⇒ (2) : If n = 0, Ext1F (M, N) = 0 for any object N in A. We claim that

M is in F . Since F is an epic precovering class, there is a short exact sequence,

† : 0 −−−−→ K = Ker ϕ
µ−−−−→ F0

ϕ−−−−→ M −−−−→ 0,

which is Hom(F , −)-exact. By the long exact sequence of relative Ext groups, cf.
[3,Theorem 8.2.3],

HomF (F0, K) → HomF (K, K) → Ext1F (M, K) = 0,

there is a morphism ν ∈ HomF (F0, K) such that νµ = 1K . Therefore, † is split,
and K ⊕M ∼= F0. Since F is closed under direct summands, M ∈ F . Hence, M
has an F-resolution,

0 −−−−→ M
1M−−−−→ M −−−−→ 0.

If n > 0, Extn+1
F (M, N) = 0 for any object N in A. Since F is an epic

precovering class, there is a short exact sequence,

[ : 0 −−−−→ K = Ker ϕ
µ−−−−→ F0

ϕ−−−−→ M −−−−→ 0,

which is HomF (F , −)-exact with F0 ∈ F . By the dimensional shifting Theorem,
cf. [3, Corollary 8.2.4], Ext

(n−1)+1
F (K, N) = Extn+1

F (M, N) = 0. So by inductive
hypothesis, K admits an an F-resolution,

\ : 0 −−−−→ Fn −−−−→ · · · −−−−→ F1 −−−−→ K −−−−→ 0.

Pasting the sequences [ and \, we get the desired F-resolution of M .
(2) ⇒ (3) : We begin with the base case n = 0. There is an F-resolution of M ,

0 −−−−→ F0
∂0−−−−→ M −−−−→ 0.

So
0 −−−−→ HomF (F , F0)

(∂0)∗−−−−→ HomF (F , M) −−−−→ 0
is exact. Then we claim that ∂0 is monic. Noting that F is an epic precovering
class, then ∂0 is epic. Consider the exact sequence

0 −−−−→ D = Ker ∂0 −−−−→ F0
∂0−−−−→ M −−−−→ 0.

So the sequence

0 −−−−→ HomF (F , D) −−−−→ HomF (F , F0)
(∂0)∗−−−−→ HomF (F , M) −−−−→ 0
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is exact. Thus HomF (F , Ker∂0) = 0. It follows that 0 → Ker∂0 is a precovering
of Ker∂0, which is an isomorphism because F is epic. Thus M ∈ F and then
S0
F ([M ]) = [0].

Now we assume that n > 0. Let

0 −−−−→ Fn −−−−→ · · · −−−−→ F0
∂0−−−−→ M −−−−→ 0

be an F-resolution of M . Splice it into two complexes,

] : 0 −−−−→ Fn −−−−→ · · · −−−−→ F1 −−−−→ Ker ∂0 −−−−→ 0,

and
0 −−−−→ Ker ∂0 −−−−→ F0

∂0−−−−→ M −−−−→ 0.

Then ] is an augmented F-resolution of Ker∂0. By induction, Sn
F ([M ]) =

Sn−1
F (SF ([M ])) = Sn−1

F ([Ker ∂0]) = [0].
(3) ⇒ (2) : If S0

F ([M ]) = [0], M ⊕ F ′ ∼= 0 ⊕ F ∼= F for some F ′, F ∈ F , and
M ∈ F . Therefore, there is an exact sequence

0 −−−−→ M
1M−−−−→ M −−−−→ 0,

which is an augmented F-resolution of M . Now we assume that Sn
F ([M ]) = [0],

n > 0. Let
F0

∂0−−−−→ M

be an F-precover of M . So Sn−1
F ([Ker∂0]) = Sn

F ([M ]) = [0]. By the induction
hypothesis, there exists an F-resolution of Ker∂0,

0 −−−−→ Fn −−−−→ · · · −−−−→ F1 −−−−→ Ker ∂0 −−−−→ 0.

Therefore, M has an F-resolution of M ,

0 −−−−→ Fn −−−−→ · · · −−−−→ F0 −−−−→ M −−−−→ 0.

Now we give some classes of modules which have the hypotheses of Theorem
2.8.

Example 2.9. (1) By [5, Corollary 3.4.4], the class of all modules of projective
dimension less than or equal to a fixed natural number s is an epic precovering class,
and it is closed under direct summands.

(2) If R is an m-Gorenstein ring, by [3, Theorem 11.5.1] and [6, Theorem 2.5],
the class of all Gorenstein projective R-modules is an epic precovering class, and is
closed under direct summands.

(3) If R is an m-Gorenstein and coherent ring, by [3, Theorem 11.7.3] and [6,
Theorem 3.7], the class of all Gorenstein flat R-modules [2] is an epic precovering
class, and is closed under direct summands.

(4) Let R be a commutative ring with a semidualizing module C and any
R-module has finite GC-projective dimension; for more details cf. [10]. By [10,
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Theorem 3.6 and Theorem 2.8], the class of all GC-projective R-modules is an epic
precovering class, and is closed under direct summands.

(5) Let R be a commutative coherent ring with a semidualizing module C and
any R-module has finite GC-flat dimension. the class of all GC-flat R-modules is an
epic precovering class, and is closed under direct summands.

Let F and C be classes of A. If every object of C admits an (epic) F-precover,
we say F is an (epic) precovering class of C.

Theorem 2.10. Let F be an epic precovering class of C closed under direct
summands. If any exact sequence 0 → K → F → M → 0 with F ∈ F and M ∈ C
implies that K ∈ C, then for any object M ∈ C and any positive integer n ≥ 0 the
following are equivalent:
(1) Extn+1

F (M, N) = 0 for any object N of A;
(2) there exists an augmented F-resolution of the form

0 → Fn → · · · → F0 → M → 0;

(3) Sn
F ([M ]) = [0].

Proof. A slight modification of the proof of Theorem 2.8 gives this result.
Now we assume that R is a local Cohen-Mocaulay ring of Krull dimension d

admits a dualizing module Ω. We use J0(R) to denote the class of R-modules M
such that Tori(Ω, M) = Exti(Ω, Hom(Ω, M)) = 0 for all i ≥ 1 and such that the
natural map Ω ⊗ Hom(Ω, M) → N is an isomorphism. Let W denote the class
of R-modules W such that W ∼= Ω ⊗ P for some projective R-module P . Clearly,
W ⊆ J0(R). One can refer to Takahashi and White’s paper [8] for the case with
respect to semidualizing module.

Example 2.11. (1) By [4, Theorem 3.11], W is an epic precovering class of
J0(R), and it is closed under direct summands by the analogy of [7, Proposition
5.5]. Any exact sequence 0 → K → F → M → 0 with F ∈ W and M ∈ J0(R)
implies that K ∈ J0(R), since J0(R) is closed under the kernels of epimorphism.

(2) We use G to denote the class of Ω-Gorenstein projective R-modules. By [4,
Theorem 3.5], G ⊆ J0(R). By [4, Theorem 3.11], every R-module M ∈ J0(R) has
an epic G-precover. From [4, Corollary 3.9], G is closed under direct summands.
Any exact sequence 0 → K → F → M → 0 with F ∈ G and M ∈ J0(R) implies
that K ∈ J0(R), since J0(R) is closed under the kernels of epimorphism.

The next result gives conditions on a class G guaranteeing that the hypotheses
of Theorem 2.8 are satisfied.

Theorem 2.12. Let F be an epic precovering class, and G be the subcategory
of F such that Ext1(G, F) = 0 and each object F in F has a special G-precover.
If G is closed under direct summands, then G is an epic precovering class.

Proof. We just claim that M has a special G-precover for any M ∈ A. Since
F is an epic precovering class, there is a HomA(F , −)-exact exact sequence,

ı : 0 −−−−→ M ′ −−−−→ F −−−−→ M −−−−→ 0
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with F ∈ F . By the hypothesis, F has a special G-precover, that is, there is a short
exact sequence

 : 0 −−−−→ F ′ −−−−→ G −−−−→ F −−−−→ 0

with Ext1(G, F ′) = 0 and G ∈ G. Consider the pull-back whose lower row is ı and
middle column is ,

0 0
y

y
F ′ F ′
y

y
0 −−−−→ U −−−−→ G −−−−→ M −−−−→ 0

y
y

∥∥∥
0 −−−−→ M ′ −−−−→ F −−−−→ M −−−−→ 0

y
y

0 0

Since G ⊆ F , ı is also HomA(G, −)-exact. By the hypothesis that Ext1(G, F) = 0,
Ext1(G, F ) = 0. According to the long exact sequence for ı,

· · · → Hom(G, F ) → Hom(G, M) → Ext1(G, M ′) → Ext1(G, F ) = 0,

Ext1(G, M ′) = 0. Since Ext1(G, F ′) = 0, by the long exact sequence again for
the left column of the pull-back above,

0 = Ext1(G, F ′) → Ext1(G, U) → Ext1(G, M ′) = 0,

Ext1(G, U) = 0.

The next result gives conditions on a class ⊥G guaranteeing that the hypotheses
of Theorem 2.8 are satisfied.

Theorem 2.13. Let F be a monic precovering class, and G be a subcategory
of F such that Exti≥1(F , G) = 0. If for each object F in F there is a short exact
sequence,

0 −−−−→ F ′ −−−−→ G −−−−→ F −−−−→ 0

with F ′ ∈ (⊥G)⊥ and G ∈ G, and if G is closed under direct summands, for any
M ∈ A such that Exti≥1(M, G) = 0, then ⊥G is an epic precovering class.

Proof. We just need to prove that M has a special G-precover by Theorem 2.8.
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Consider the pull-back, where the lower row is Hom(−, F)-exact,

0 0
y

y
F ′ F ′
y

y
0 −−−−→ U −−−−→ G −−−−→ M ′ −−−−→ 0

y
y

∥∥∥
0 −−−−→ M −−−−→ F −−−−→ M ′ −−−−→ 0

y
y

0 0

Since G ⊆ F , he lower row of the pull-back above is Hom(−, G)-exact. By the
hypothesis that Exti≥1(M, G) = 0 and Exti≥1(F, G) = 0. According to the long
exact sequence for lower row of the pull-back above, Exti≥1(M ′, G) = 0. Again
using the long exact sequence for middle row of the pull-back above,

0 = Ext1(G, G) → Ext1(U, G) → Ext2(M ′, G) = 0,

Ext1(U, G) = 0. Thus

0 −−−−→ F ′ −−−−→ U −−−−→ M −−−−→ 0

is a special ⊥G-precover of M .
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