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UNIVALENCE CONDITIONS OF GENERAL INTEGRAL OPERATOR

B. A. Frasin and D. Breaz

Abstract. In this paper, we obtain new univalence conditions for the integral operator

I
αi,βi
ξ

(f1, . . . , fn)(z) =

[
ξ
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(
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)α1
(
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t

)β1
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(
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)αn
(
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t

)βn

dt

] 1
ξ

of analytic functions defined in the open unit disc.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk

which are analytic in the open unit disc U = {z : |z| < 1}. Further, by S we shall
denote the class of all functions in A which are univalent in U .

Very recently, Frasin [13] introduced and studied the following general integral
operator

Definition 1.1. Let αi, βi ∈ C for all i = 1, . . . , n, n ∈ N. We let Iαi,βi

ξ :
An → A to be the integral operator defined by

Iαi,βi

ξ (f1, . . . , fn)(z) =

[
ξ

∫ z

0

tξ−1 (f ′1(t))
α1

(
f1(t)

t

)β1

· · · (f ′n(t))αn

(
fn(t)

t

)βn

dt

] 1
ξ

,

(1.1)
where ξ ∈ C\{0} and fi ∈ A for all i = 1, . . . , n.

Here and throughout in the sequel every many-valued function is taken with
the principal branch.
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Remark 1.2. Note that the integral operator Iαi,βi

ξ (f1, . . . , fn)(z) generalizes
the following operators introduced and studied by several authors:

(1) For ξ = 1, we obtain the integral operator

Iαi,βi(f1, . . . , fn)(z) =
∫ z

0

(f ′1(t))
α1

(
f1(t)

t

)β1

· · · (f ′n(t))αn

(
fn(t)

t

)βn

dt

introduced and studied by Frasin [14].
(2) For ξ = 1 and αi = 0 for all i = 1, . . . , n, we obtain the integral operator

Fn(z) =
∫ z

0

(
f1(t)

t

)β1

. . .

(
fn(t)

t

)βn

dt

introduced and studied by Breaz and Breaz [3].
(3) For ξ = 1 and βi = 0 for all i = 1, . . . , n, we obtain the integral operator

Fα1,... ,αn(z) =
∫ z

0

(f ′1(t))
α1 · · · (f ′n(t))αn dt

introduced and studied by Breaz et al. [6].
(4) For ξ = 1, n = 1, α1 = α, β1 = β and f1 = f , we obtain the integral

operator

Fα,β(z) =
∫ z

0

(f ′(t))α
(

f(t)
t

)β

dt (α, β ∈ R)

studied in [9] (see also [10]).
(5) For ξ = 1, n = 1, α1 = 0, β1 = β and f1 = f , we obtain the integral

operator

Fβ(z) =
∫ z

0

(
f(t)

t

)β

dt

studied in [7]. In particular, for β = 1, we obtain Alexander integral operator
introduced in [1]

I(z) =
∫ z

0

f(t)
t

dt

(6) For ξ = 1, n = 1, β1 = 0, α1 = α and f1 = f , we obtain the integral
operator

Gα(z) =
∫ z

0

(f ′(t))α
dt

studied in [21] (see also [25]).
Many authors studied the problem of integral operators which preserve the

class S (see, for example, [2, 4, 5, 7, 8, 12, 19, 22, 23, 24, 27]).
In particular, Pfaltzgraff [25] and Kim and Merkes [16], have obtained the

following univalence conditions for the functions
∫ z

0
(f ′(t))α

dt and
∫ z

0

(
f(t)

t

)α

dt,
respectively.
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Theorem 1.3. [25] If f ∈ A and α ∈ C with |α| ≤ 1/4, then the function∫ z

0
(f ′(t))α

dt is in the class S.

Theorem 1.4. [16] If f ∈ A and α ∈ C with |α| ≤ 1/4, then the function∫ z

0

(
f(t)

t

)α

dt is in the class S.

In the present paper, we obtain univalence conditions for the integral operator
Iαi, βi

ξ (f1, . . . , fn)(z) defined by (1.1).
In order to derive our main results, we have to recall here the following lemmas.

Lemma 1.5. [18] If f ∈ A satisfies∣∣∣∣1 +
zf ′′(z)
f ′(z)

∣∣∣∣ <
5
4

∣∣∣∣
zf ′(z)
f(z)

∣∣∣∣ (z ∈ U), (1.2)

then f is univalent and starlike in U .

Lemma 1.6. [15, 26] If f ∈ A satisfies∣∣∣∣1 +
zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

∣∣∣∣ <
1
2

(z ∈ U), (1.3)

then
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ < 1 (z ∈ U).

Lemma 1.7. [11] If f ∈ S then∣∣∣∣
zf ′(z)
f(z)

∣∣∣∣ <
1 + |z|
1− |z| (z ∈ U). (1.4)

Lemma 1.8. [20] Let δ ∈ C with Re(δ) > 0. If f ∈ A satisfies

1− |z|2 Re(δ)

Re(δ)

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U , then, for any complex number ξ, with Re(ξ) ≥ Re(δ), the integral
operator

Fξ(z) =
{

ξ

∫ z

0

tξ−1f ′(t) dt

} 1
ξ

is in the class S.

2. Main results

We begin by proving the following theorem.

Theorem 2.1. Let αi, βi ∈ C for all i = 1, . . . , n and each fi ∈ A satisfies
the condition (1.2). If

n∑
i=1

(29 |αi|+ 16 |βi|) ≤
{

4Re δ, if Re δ ∈ (0, 1)
4, if Re δ ∈ [1,∞),

(2.1)

then, for any complex number ξ, with Re(ξ) ≥ Re(δ) > 0, the integral operator
Iαi, βi

ξ (f1, . . . , fn)(z) defined by (1.1) is in the class S.
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Proof. Define a regular function h(z) by

h(z) =
∫ z

0

n∏

i=1

(f ′i(t))
αi

(
fi(t)

t

)βi

dt.

Then it is easy to see that

h′(z) =
n∏

i=1

(f ′i(z))αi

(
fi(z)

z

)βi

(2.2)

and h(0) = h′(0) − 1 = 0. Differentiating both sides of (2.2) logarithmically, we
obtain

zh′′(z)
h′(z)

=
n∑

i=1

αi

(
zf ′′i (z)
f ′i(z)

)
+

n∑
i=1

βi

(
zf ′i(z)
fi(z)

− 1
)

and so

zh′′(z)
h′(z)

=
n∑

i=1

αi

(
zf ′′i (z)
f ′i(z)

+ 1
)
−

n∑
i=1

αi +
n∑

i=1

βi

(
zf ′i(z)
fi(z)

− 1
)

.

From Lemma 1.5, it follows that
∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣ ≤
5
4

n∑
i=1

|αi|
∣∣∣∣
zf ′i(z)
fi(z)

∣∣∣∣ +
n∑

i=1

|βi|
∣∣∣∣
zf ′i(z)
fi(z)

− 1
∣∣∣∣ +

n∑
i=1

|αi|

≤ 5
4

n∑
i=1

|αi|
[∣∣∣∣

zf ′i(z)
fi(z)

− 1
∣∣∣∣ + 1

]
+

n∑
i=1

|βi|
∣∣∣∣
zf ′i(z)
fi(z)

− 1
∣∣∣∣ +

n∑
i=1

|αi|

≤
n∑

i=1

[(
5
4
|αi|+ |βi|

) ∣∣∣∣
zf ′i(z)
fi(z)

− 1
∣∣∣∣
]

+
9
4

n∑
i=1

|αi|

≤
n∑

i=1

[(
5
4
|αi|+ |βi|

)(∣∣∣∣
zf ′i(z)
fi(z)

∣∣∣∣ + 1
)]

+
9
4

n∑
i=1

|αi| . (2.3)

Multiplying both sides of (2.3) by 1−|z|2Re δ

Re δ , from (1.4), we get

1− |z|2Re δ

Re δ

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣

≤ 1− |z|2Re δ

Re δ

n∑
i=1

(
5
4
|αi|+ |βi|

) (
2

1− |z|
)

+
9(1− |z|2Re δ)

∑n
i=1 |αi|

4Re δ
. (2.4)

Suppose that Re δ ∈ (0, 1). Define a function Φ : (0, 1) → R by

Φ(x) = 1− a2x (0 < a < 1).

Then Φ is an increasing function and consequently for |z| = a; z ∈ U , we obtain

1− |z|2Re δ
< 1− |z|2 (2.5)

for all z ∈ U .
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We thus find from (2.4) and (2.5) that

1− |z|2Re δ

Re δ

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣ ≤

n∑
i=1

(5 |αi|+ 4 |βi|)
Re δ

+
9

n∑
i=1

|αi|
4Re δ

=

n∑
i=1

(29 |αi|+ 16 |βi|)
4Re δ

for all z ∈ U .
Using the hypothesis (2.1) for Re δ ∈ (0, 1), we readily get

1− |z|2Re δ

Re δ

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣ ≤ 1.

Now if Re δ ∈ [1,∞), we define a function Ψ : [1,∞) → R by

Ψ(x) =
1− a2x

x
(0 < a < 1).

We observe that the function Ψ is decreasing and consequently for |z| = a; z ∈ U ,
we have

1− |z|2Re δ

Re δ
≤ 1− |z|2 (2.6)

for all z ∈ U . It follows from (2.4) and (2.6) that

1− |z|2Re δ

Re δ

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣ ≤
n∑

i=1

(
29
4
|αi|+ 4 |βi|).

Using once again the hypothesis (2.1) when Re δ ∈ [1,∞), we easily get

1− |z|2Re δ

Re δ

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣ ≤ 1.

Finally by applying Lemma 1.8, we conclude that the integral operator
Iαi, βi

ξ (f1, . . . , fn)(z) defined by (1.2) is in the class S.
Letting n = 1, α1 = α, β1 = β and f1 = f in Theorem 2.1, we have

Corollary 2.2. Let α, β ∈ C and f ∈ A satisfy the condition (1.2). If

29 |α|+ 16 |β| ≤
{

4Re δ, if Re δ ∈ (0, 1)
4, if Re δ ∈ [1,∞),

then, for any complex number ξ, with Re(ξ) ≥ Re(δ) > 0, the integral operator

Iα,β
ξ (z) =

[
ξ

∫ z

0

tξ−β−1 (f ′(t))α (f(t))β
dt

] 1
ξ

is in the class S.
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Letting β = 0 in Corollary 2.2, we have

Corollary 2.3. Let α ∈ C and f ∈ A satisfy the condition (1.2). If

|α| ≤
{ 4Re δ

29 , if Re δ ∈ (0, 1)
4
29 , if Re δ ∈ [1,∞),

then, for any complex number ξ, with Re(ξ) ≥ Re(δ) > 0, the integral operator

Iα
ξ (z) =

[
ξ

∫ z

0

tξ−1 (f ′(t))α
dt

] 1
ξ

is in the class S.

Letting α = 0 in Corollary 2.2, we have

Corollary 2.4. Let β ∈ C and f ∈ A satisfy the condition (1.2). If

|β| ≤
{ Re δ

4 , if Re δ ∈ (0, 1)
1
4 , if Re δ ∈ [1,∞),

then, for any complex number ξ, with Re(ξ) ≥ Re(δ) > 0, the integral operator

Iβ
ξ (z) =

[
ξ

∫ z

0

tξ−1

(
f(t)

t

)β

dt

] 1
ξ

is in the class S.

Letting ξ = δ = 1 in Corollary 2.3, we have

Corollary 2.5. If f ∈ A and α ∈ C with |α| ≤ 4/29 ≈ 0.137, then the
function

∫ z

0
(f ′(t))α

dt is in the class S.

Remark 2.6. If we let ξ = δ = 1 in Corollary 2.4, then we have Theorem 1.4.
Next, we obtain the following univalence condition for the integral operator

Iαi, βi

ξ (f1, . . . , fn)(z) defined by (1.1) when βi = 1− αi for all i = 1, . . . , n.

Theorem 2.7. Let αi, βi ∈ C for all i = 1, . . . , n and each fi ∈ A satisfy the
condition (1.3). If Re δ ≥ n, n ∈ N, δ ∈ C with

n∑
i=1

|αi| ≤ 2Re δ − 2n (2.7)

then, for any complex number ξ, with Re(ξ) ≥ Re(δ) > 0, the integral operator

Iαi

ξ (f1, . . . , fn)(z) =

[
ξ

∫ z

0

tξ−1
n∏

i=1

(
t
f ′i(t)
fi(t)

)αi
(

fi(t)
t

)
dt

] 1
ξ

(2.8)

is in the class S.
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Proof. Define a regular function G(z) by

G(z) =
∫ z

0

n∏

i=1

(f ′i(t))
αi

(
fi(t)

t

)1−αi

dt. (2.9)

. Then it follows from (2.9) that

zG′′(z)
G′(z)

=
n∑

i=1

αi

(
1 +

zf ′′i (z)
f ′i(z)

− zf ′i(z)
fi(z)

)
+

n∑
i=1

(
zf ′i(z)
fi(z)

− 1
)

. (2.10)

Using Lemma 1.6, from (2.10), we have
∣∣∣∣
zG′′(z)
G′(z)

∣∣∣∣ ≤
1
2

n∑
i=1

|αi|+ n (2.11)

Multiply both sides of (2.11) by 1−|z|2Re δ

Re δ , we obtain

1− |z|2Re δ

Re δ

∣∣∣∣
zG′′(z)
G′(z)

∣∣∣∣ ≤
1− |z|2Re δ

Re δ

(
1
2

n∑
i=1

|αi|+ n

)

≤ 1
2Re δ

(
n∑

i=1

|αi|+ 2n

)
,

which, in the light of the hypothesis (2.7) yields

1− |z|2Re δ

Re δ

∣∣∣∣
zG′′(z)
G′(z)

∣∣∣∣ ≤ 1.

Finally by applying Lemma 1.8, we conclude that the integral operator
Iαi

ξ (f1, . . . , fn)(z) defined by (2.8) is in the class S.
Letting n = 1, α1 = α and f1 = f in Theorem 2.7, we have

Corollary 2.8. Let f ∈ A satisfies the condition (1.3), α, δ ∈ C and Re δ ≥
1. If

|α| ≤ 2Re δ − 2

then, for any complex number ξ, with Re(ξ) ≥ Re(δ), the integral operator

Iα
ξ (z) =

[
ξ

∫ z

0

tξ+α−2 (f ′(t))α (f(t))1−α
dt

] 1
ξ

is in the class S.

Letting α = 0 in Corollary 2.8, we have

Corollary 2.9. Let f ∈ A satisfies the condition (1.3). If δ ∈ C, Re δ ≥ 1
then, for any complex number ξ, with Re(ξ) ≥ Re(δ), the integral operator

Iξ(z) =
[
ξ

∫ z

0

tξ−2f(t) dt

] 1
ξ

is in the class S.



Univalence conditions of general integral operator 401

Letting α = 1 in Corollary 2.8, we have

Corollary 2.10. Let f ∈ A satisfies the condition (1.3). If δ ∈ C, Re δ ≥ 3/2
then, for any complex number ξ, with Re(ξ) ≥ Re(δ), the integral operator

Fξ(z) =
[
ξ

∫ z

0

tξ−1f ′(t) dt

] 1
ξ

is in the class S.
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