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A NOTE ON GENERATING FUNCTIONS OF
CESÀRO POLYNOMIALS OF SEVERAL VARIABLES

Mohd Akhlaq Malik

Abstract. The present paper deals with certain generating functions of Cesàro polynomials
of several variables.

1. Introduction

Let the sequence of functions {Sn(x) | n = 0, 1, 2, . . . } be generated by Singal
and Srivastava [11]:

∞∑
n=0

Am,nSm+n(x)tn =
f(x, t)

[g(x, t)]m
Sm[h(x, t)] (1.1)

where m is a nonnegative integer, the Am,n are arbitrary constants and f, g, h are
suitable functions of x and t. The importance of a generating function of the form
(1.1) in obtaining the bilateral and trilateral generating relations for the functions
Sn(x) was realized by several authors.

In particular, the present work is based on the papers due to Agarwal and
Manocha [2], Chatterjea [6], Singal and Srivastava [11] and the book written by
Srivastava and Manocha [9].

The Pochhammer symbol (λ)n is defined by

(λ)n =
{

1, if n = 0
λ(λ + 1) · · · (λ + n− 1), if n = 1, 2, . . .

2. Cesàro polynomials

The Cesàro polynomials are denoted by g
(m)
n (x) and is defined as (Chihara

[15])

g(m)
n (x) =

(
m + n

n

)
2F1



−n, 1;

x
−m− n;


 (2.1)
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which can also be written as

g(m)
n (x) =

(m + n)!
m! n!

n∑
r=0

(−n)r (1)rx
r

r! (−m− n)r

Agarwal and Manocha [2] defined the polynomials gm
n (x) by the generating relation.

∞∑
n=0

g(m)
n (x)tn = (1− t)−m−1(1− xt)−1. (2.2)

which is easy to derive from (2.1).
Starting, as usual, from (2.2) one gets the following formula of the type (1.1)

for the polynomials gm
n (x):

∞∑
n=0

(
n + k

k

)
g
(m)
n+k(x)tn = (1− t)−m−1−k(1− xt)−1g

(m)
k

(
x(1− t)
1− xt

)

which provided them the basic tool to deduce the following theorem on trilateral
generating functions for the polynomials gm

n (x).

Theorem 1. Let

Yr,µ[x, y, t] =
∞∑

n=0

an,µg(m)
rn (x)gn+µ(y)tn

be a bilateral generating function. Then the following trilateral generating relation
holds:
∞∑

n=0

g(m)
n (x)Ωr,µ

n (y, z)tn = (1− t)−m−1(1− xt)−1Yr,µ

[
x(1− t)
1− xt

, y, z

(
t

1− t

)r]
.

where, as well as throughout this paper,

Ωr,µ
n (y, z) =

[n/r]∑

k=0

(
n

rk

)
ak,µgk+µ(y)zk.

3. Cesàro polynomials of two variables

We define the Cesàro polynomials of two variables g
(m)
n (x, y) as follows:

g(m)
n (x, y) =

(
m + n

n

)
F




−n : 1; 1;
x, y

−m− n : −;−;


 (3.1)

which can also be written as:

g(m)
n (x, y) =

(m + n)!
m!n!

n∑
r=0

n−r∑
s=0

(−n)r+s(1)r(1)s

(−m− n)r+sr!s!
xrys.
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The following generating relation holds for (3.1).

Theorem 2.
∞∑

n=0

g(m)
n (x, y)tn = (1− t)−1−m(1− xt)−1(1− yt)−1. (3.2)

Proof.

∞∑
n=0

g
(m)
n (x, y)tn =

∞∑
n=0

n∑
r=0

n−r∑
s=0

(m + n)!(−n)r+s(1)r(1)s

m!n!(−m− n)r+sr!s!
xrystn

=
∞∑

n=0

n∑
r=0

n−r∑
s=0

(m + n)!(−1)r+sn!r!s!
m!n!r!s!(−m− n)r+s(n− r − s)!

xrystn

=
∞∑

n=0

∞∑
r=0

∞∑
s=0

(m + n + r + s)!(−1)r+s

m!n!(−m− n− r − s)r+s
xrystn+r+s

=
∞∑

n=0

(m+n)!
m!n! tn

∞∑
r=0

(xt)r
∞∑

s=0
(yt)s

=
∞∑

n=0

m!(1+m)n

m!n! tn (1− xt)−1(1− yt)−1

= (1− t)−1−m(1− xt)−1(1− yt)−1.

Starting, as usual, from (3.2) we get the the following formula of the type (1.1)
for the polynomials gm

n (x, y).

Theorem 3.
∞∑

n=0

(
n + k

k

)
g
(m)
n+k(x, y)tn

= (1− t)−m−1−k(1− xt)−1(1− yt)−1g
(m)
k

(
x(1− t)
1− xt

,
y(1− t)
1− yt

)
(3.3)

Proof.

∞∑
k=0

∞∑
n=0

(
n + k

k

)
g
(m)
n+k(x, y)tnvk =

∞∑
k=0

∞∑
n=0

(n + k)!
n!k!

g
(m)
n+k(x, y)tnvk

=
∞∑

n=0

n∑
k=0

n!
(n− k)!k!

g
(m)
n (x, y)tn−kvk

=
∞∑

n=0
g
(m)
n (x, y)tn

n∑
k=0

(−n)k

k!

(−v

t

)k

=
∞∑

n=0
g
(m)
n (x, y)tn(1 +

v

t
)n

=
∞∑

n=0
g
(m)
n (x, y)(t + v)n
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= (1− (t + v))−1−m(1− x(t + v))−1(1− y(t + v))−1

= (1− t)−1−m(1− xt)−1(1− yt)−1(1− v

1− t
)−1−m(1− xv

1− xt
)−1

× (1− yv

1− yt
)−1

= (1− t)−1−m(1− xt)−1(1− yt)−1(1− v

1− t
)−1−m(1− xv(1− t)

(1− xt)(1− t)
)−1

× (1− yv(1− t)
(1− yt)(1− t)

)−1

= (1− t)−1−m(1− xt)−1(1− yt)−1
∞∑

n=0
g
(m)
k

(
x(1− t)
1− xt

,
y(1− t)
1− yt

)
vk

(1− t)k
.

Equating the coefficient of vk we get (3.3), which provides us with the basic tool
to deduce the following theorem on mixed trilateral generating functions for the
polynomials g

(m)
n (x, y).

Theorem 4. Let

Yr,µ[x1, x2, y, t] =
∞∑

n=0
an,µg

(m)
rn (x1, x2)gn+r(y)tn

be a mixed bilateral generating function involving Cesàro polynomials of two vari-
ables and another one variable polynomials gn+µ(y). Then the following mixed
trilateral generating relation holds:

∞∑
n=0

g
(m)
n (x1, x2)Ωr,µ

n (y, z)tn

= (1− t)−m−1(1− x1t)−1(1− x2t)−1Yr,µ

[
x1(1− t)
1− x1t

,
x2(1− t)
1− x2t

, y, z

(
t

1− t

)r]
.

(3.4)

Proof.
∞∑

n=0
g(m)

n (x1, x2)Ωr,µ
n (y, z)tn

=
∞∑

n=0
g
(m)
n (x1, x2)

(
[n/r]∑
k=0

(
n

rk

)
ak,µgk+µ(y)zk

)
tn

=
∞∑

n=0

[n/r]∑
k=0

g
(m)
n (x1, x2)

(n)!
(n− rk)! (rk)!

ak,µgk+µ(y)zktn

=
∞∑

n=0

∞∑
k=0

g
(m)
n+rk(x1, x2)

(n + rk)!
(rk)! (n)!

ak,µgk+µ(y)zktn+rk

=
∞∑

k=0

ak,µgk+µ(y)zktrk
∞∑

n=0

(
n + rk

rk

)
g
(m)
n+rk(x1, x2)tn
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=
∞∑

k=0

ak,µgk+µ(y)zktrk(1− t)−m−1−rk(1− x1t)−1(1− x2t)−1

× g
(m)
rk

(
x1(1− t)
1− x1t

,
x2(1− t)
1− x2t

)

= (1− t)−m−1(1− x1t)−1(1− x2t)−1

∞∑
k=0

ak,µg
(m)
rk

(
x1(1− t)
1− x1t

,
x2(1− t)
1− x2t

)
gk+µ(y)[z(

t

1− t
)r]k

= (1− t)−m−1(1− x1t)−1(1− x2t)−1Yr,µ

[
x1(1− t)
1− x1t

,
x2(1− t)
1− x2t

, y, z

(
t

1− t

)r]

which proves (3.4).

4. Cesàro polynomials of three variables

We define the Cesàro polynomials of three variables g
(m)
n (x, y, z) as follows:

g(m)
n (x, y, z) =

(
m + n

n

)
F




−n :: −;−;− : 1; 1; 1;
x, y, z

−m− n :: −;−;− : −;−;−;


 (4.1)

which can also be written as

g(m)
n (x, y, z) =

(m + n)!
m!n!

n∑
r=0

n−r∑
s=0

n−r−s∑

k=0

(−n)r+s+k(1)r(1)s(1)k

(−m− n)r+s+kr!s!k!
xryszk.

The following generating relation holds for (4.1)

∞∑
n=0

g
(m)
n (x, y, z)tn = (1− t)−1−m(1− xt)−1(1− yt)−1(1− zt)−1. (4.2)

Starting, as usual, from (4.2) we get the following formula of the type (1.1) for the
polynomials g

(m)
n (x, y, z):

∞∑
n=0

(
n + k

k

)
g
(m)
n+k(x, y, z)tn = (1− t)−m−1−k(1− xt)−1(1− yt)−1

× (1− zt)−1g
(m)
k

(
x(1− t)
1− xt

,
y(1− t)
1− yt

,
z(1− t)
1− zt

)
(4.3)

which provides us with the basic tool to deduce the following theorem on mixed
trilateral generating functions for the polynomials g

(m)
n (x, y, z).

Theorem 5. Let

Yr,µ[x1, x2, y, t] =
∞∑

n=0

an,µg(m)
rn (x1, x2)gn+r(y)tn
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be a mixed bilateral generating function involving Cesàro polynomials of three vari-
ables and another one variable polynomials gn+µ(y). Then the following mixed
trilateral generating relation holds:

∞∑
n=0

g(m)
n (x1, x2, x3)Ωr,µ

n (y, z)tn = (1− t)−m−1(1− x1t)−1(1− x2t)−1

× (1− x3t)−1Yr,µ

[
x1(1− t)
1− x1t

,
x2(1− t)
1− x2t

,
x3(1− t)
1− x3t

, y, z

(
t

1− t

)r]
. (4.4)

The proof of (4.2), (4.3) and (4.4) are similar to those (3.2), (3.3) and (3.4)
respectively.

Concluding remark. Cesàro polynomials can be extended up to n-variables
and analogous results of this paper can be obtained.
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