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N (k)-QUASI EINSTEIN MANIFOLDS SATISFYING
CERTAIN CURVATURE CONDITIONS

Uday Chand De and Sahanous Mallick

Abstract. The object of the present paper is to study N(k)-quasi Einstein manifolds.
Existence of N (k)-quasi Einstein manifolds are proved by two non-trivial examples. Also a physical
example of an N(k)-quasi-Einstein manifold is given. We study an N(k)-quasi-Einstein manifold
satisfying the curvature conditions Z(f, X)-S=0,P(, X)Z =0, Z({, X)-P=0, Z(E,X)~C’ =0
and P(§,X) - C = 0. Finally, we study Ricci-pseudosymmetric N (k)-quasi-Einstein manifolds.

1. Introduction

A Riemannian or a semi-Riemannian manifold (M™,g), n = dimM > 2, is
said to be an Einstein manifold if the following condition

T

holds on M, where S and r denote the Ricci tensor and the scalar curvature of
(M™, g) respectively. According to [4, p. 432], (1.1) is called the Einstein metric
condition. Einstein manifolds play an important role in Riemannian Geometry as
well as in general theory of relativity. Also Einstein manifolds form a natural sub-
class of various classes of Riemannian or semi-Riemannian manifolds by a curvature
condition imposed on their Ricci tensor [4, pp. 432-433]. For instance, every Ein-
stein manifold belongs to the class of Riemannian manifolds (M™, g) realizing the
following relation:

S(X,Y) = ag(X,Y) + bn(X)n(Y), (1.2)
where a, b are smooth functions and 7 is a non-zero 1-form such that
9(X,§) =n(X),  g(&& =mn() =1 (1.3)

for all vector fields X.

A non-flat Riemannian manifold (M™,g) (n > 2) is defined to be a quasi
Einstein manifold [7] if its Ricci tensor S of type (0,2) is not identically zero and
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satisfies the condition (1.2). We shall call n the associated 1-form and the unit
vector field £ is called the generator of the manifold.

Quasi Einstein manifolds arose during the study of exact solutions of the Ein-
stein field equations as well as during considerations of quasi-umbilical hypersur-
faces of semi-Euclidean spaces. Several authors have studied Einstein’s field equa-
tions. For example, in [15], Naschie turned the tables on the theory of elementary
particles and showed the expectation number of elementary particles of the standard
model using Einstein’s unified field equation. He also discussed possible connec-
tions between Godel’s classical solution of Einstein’s field equations and E-infinity
n [14]. Also quasi Einstein manifolds have some importance in the general theo-
ry of relativity. For instance, the Robertson-Walker spacetime are quasi Einstein
manifolds [13]. Further, quasi Einstein manifold can be taken as a model of the
perfect fluid spacetime in general relativity [9].

The study of quasi Einstein manifolds was continued by Chaki [5], Guha [16],
De and Ghosh [10, 11] and many others. The notion of quasi-Einstein manifolds
have been generalized in several ways by several authors. In recent papers Ozgﬁr
studied super quasi-Einstein manifolds [20] and generalized quasi-Einstein mani-
folds [18]. Also Nagaraja [17] studied N(k)-mixed quasi-Einstein manifolds.

Let R denote the Riemannian curvature tensor of a Riemannian manifold M.
The k-nullity distribution N (k) of a Riemannian manifold M [23] is defined by

N(k): p s Ny(k) = {Z € T,M : R(X,Y)Z = Klg(Y, 2)X — g(X, Z)Y]}.

k being some smooth function. In a quasi Einstein manifold M, if the generator
¢ belongs to some k-nullity distribution N (k), then M is said to be a N(k)-quasi
Einstein manifold [24]. In fact, k is not arbitrary as the following shows:

LEMMA 2.1. [22] In an n-dimensional N (k)-quasi Einstein manifold it follows
that
a+b

k:n—l

(1.4)

Now, it is immediate to note that in an n-dimensional N(k)-quasi-Einstein
manifold [22]

R(XV)E= “E2 )X —n(x)Y), (15)
which is equivalent to
R(X, Y = “E20(0)X — g(X, Y)¢ = —R(g, X)Y.
From (1.5) we get
R(&,X)e = S0 p(x)e - X].

In [24], it was shown that an n-dimensional conformally flat quasi Einstein mani-

fold is an N (2+2)-quasi Einstein manifold and in particular a 3-dimensional quasi

Einstein manifold is an N (%H’)-quasi Einstein manifold. Also, in [19], Ozgiir cited
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some physical examples of N(k)-quasi Einstein manifolds. All these motivated us
to study such a manifold.

The conformal curvature tensor play an important role in differential geometry
and also in general theory of relativity. The Weyl conformal curvature tensor C' of
a Riemannian manifold (M™,g) (n > 3) is defined by

C(X.¥)Z = R(X.Y)Z ~ - [g(V, 2)QX ~ 4(X, Z)QY + (¥, 2)X

- S(X, 2)Y] + [9(Y, 2)X — g(X, Z)Y]

r
(n—1)(n-2)
where r is the scalar curvature and @ is the symmetric endomorphism of the tangent
space at each point corresponding to the Ricci tensor S, that is, g(QX,Y) =
S(X,Y). If the dimension n = 3, then the conformal curvature tensor vanishes
identically.

The projective curvature tensor P and the concircular curvature tensor Zina
Riemannian manifold (M™, g) are defined by [25]

P(X, Y)W = R(X, Y)W — — LIS, W)X — S(X, W)Y,

n—
~ r

Z(X, Y)W = R(X, Y)W — W[Q(Y, W)X —g(X, W)Y],

respectively.

In [24], the authors prove that conformally flat quasi-Einstein manifolds are
certain N (k)-quasi-Einstein manifolds. The derivation conditions R({,X)-R =10
and R(£, X)-S = 0 have been studied in [23], where R and S denote the curvature
tensor and Ricci tensor respectively. Ozgiir and Tripathi [22] continued the study of
the N (k)-quasi-Einstein manifold. In [22], the derivation conditions Z(¢, X)-R =0
and Z(¢,X) - Z = 0 on N(k)-quasi-Einstein manifold were studied, where Z is the
concircular curvature tensor. Moreover in [22], for an N (k)-quasi-Einstein manifold
it was proved that k = <&, Ozgiir [19] studied the condition R- P =0, P-S =0
and P-P = 0 for an N(k)-quasi-Einstein manifolds, where P denotes the projective
curvature tensor and some physical examples of N(k)-quasi-Einstein manifolds are
given. Again, in 2008, Ozgiir and Sular [21] studied N (k)-quasi-Einstein manifold
satisfying R-C' = 0 and R-C = 0, where C and C represent the conformal curvature
tensor and the quasi-conformal curvature tensor, respectively. This paper is a
continuation of previous studies.

The paper is organized as follows: After preliminaries in Section 3, we give two
examples of N (k)-quasi-Einstein manifolds. In the next Section we give a physical
example of an N (k)-quasi-Einstein manifold. In Section 5, we study N (k)-quasi-
Einstein manifold satisfying Z(&, X) - S = 0 and Section 6 deals with N (k)-quasi-
Einstein manifolds satisfying P(&, X) - Z = 0. In Section 7 and Section 8, we
study N (k)-quasi-Einstein manifolds satisfying Z(¢, X)-P = 0 and P(¢£,X)-C =0
respectively. In Section 9, we study N(k)-quasi-Einstein manifold satisfying the
condition Z (&,X) - C = 0. Finally, we study Ricci-pseudosymmetric N (k)-quasi-
Einstein manifolds.
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2. Preliminaries

From (1.2) and (1.3) it follows that

r=an+b and QX = (a+b)X,
S(X,€) = k(n —1)n(X),

where r is the scalar curvature and @ is the Ricci operator.

In an n-dimensional N (k)-quasi-Einstein manifold M, the projective curvature
tensor P, the concircular curvature tensor Z and the conformal curvature tensor C
satisfy the following relations:

P(X,Y)E =0,
PEX)Y = 2 [g(X, Y)E ~ n(X)n(Y)e] (21)
WP Y)Z) = oY, Z(X) ~ 6(X, Z)n(Y )], (2:2)
2(X.Y)Z =k~ mngm Z)X — g(X, 2)Y), (2.3)
26)7 = k= ol Y. 2)6 = n(2)Y), (2.4)
CXY)Z = [+ o (Y. )X — g(X. 2)Y] = —5[(2a+ Dg(¥. 2)X
~ 20+ b)g(X, 2)Y + bV n(Z)X — n(X)n(Z)Y), (2.5
n(C(X,Y)2) =0,
CEY)Z = SV )(2)E ~ n(2)Y), (27)

for all vector fields X, Y, Z on M.

3. Examples of N(k)-quasi Einstein manifolds

ExXAMPLE 3.1. A special para-Sasakian manifold with vanishing D-concircular
curvature tensor V' is an N (k)-quasi Einstein manifold.

Let M™ be a Riemannian manifold admitting a unit concircular vector field &
such that Vx& = (=X + n(X)¢), n(X) = g(X,€&), e = £1, then M™ is called a
special para-Sasakian manifold [1-3]. Recently Chuman [8] introduced the notion
of a D-concircular curvature tensor V. V is given by the following equation

V(X,Y,Z,W) = R(X,Y,Z,W) + m

- R X 20 () = (Y. 23O n()

+g(Y, Wn(Z)n(X) — g(X, W)n(Y)n(Z)], (3.1)

[9(X, Z)g(Y, W) — g(Y, Z)g(X, W)]
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where R(X,Y,Z,W) = g(R(X,Y)Z,W)) for R(X,Y)Z the curvature tensor of
type (1,3). T V(X,Y,Z, W) = 0, then from (3.1) it follows that
~ r+2(n—1)

S (X 20 V) — Y. 2 (W)

+ (Y, Wn(Z)n(X) = (X, W)n(Y)n(Z)]. (3.2)
Putting X = W = ¢; in (3.2) where {e;} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, 1 < i < n, we
get

S, 2) = ag(Y, Z) + bn(Y)n(Z),

where a = T::‘Il and b = —%. Therefore, Z—le{
para-Sasakian manifold with vanishing D-concircular curvature tensor is an N(—1)-
quasi-Einstein manifold.

= —1. Hence a special

ExXAMPLE 3.2. Let (R?%, g) be a 4-dimensional Lorentzian space endowed with
the Lorentzian metric g given by

ds® = gijdacidxj =1+ 2q)[(da:1)2 + (dz*)? 4 (dz®)? — (da:4)2],

zl
where ¢ = 9 and k is a non-zero constant, (i,j = 1,2,3,4). Then (R%, g) is an

(34+69—8¢°)
N(*3rrag

Let us consider a Lorentzian metric g on R* by
ds? = gyjda’da’ = (1+2q)[(da")? + (da?)? + (da®)? — (da)?),

)-quasi-Einstein manifold.

21
where ¢ = & and k is a non-zero constant, (i,j = 1,2,3,4). Here the signature of
g is (+,+,+, —) which is Lorentzian. Then the only non-vanishing components of
the Christoffel symbols and the curvature tensors are:

q q
Fh = le14 = F%z = P?:s = 1—“114 = 1+9 +2q’ 1—%2 = Fég = —71 +2q’
q q
R e R = — R = ——,
1221 1331 = 750 fun sy
Raz3y = 7612 , Rossp = R3aaz = — @
1+2 1+2g

and the components obtained by the symmetry properties. The non-vanishing
components of the Ricci tensors and their covariant derivatives are:

3¢ q q
Ri1=-———, Rio=R33=——, Ryuy=——"""—,
T T 292 T T Iy M 14y
3q(1 —2q) q q
Riy1=——, Rpp1=R331=——, Ry1=—-———.
11,1 (1+29)° 22,1 33,1 1427 44,1 TETE
It can be easily shown that the scalar curvature r of the resulting space (R, g)
isr = E’fﬁjﬁﬁ, which is non-vanishing and non-constant. Now we shall show that

(R*, g) is an N (k)-quasi-Einstein manifold.
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To show that the manifold under consideration is an N (k)-quasi-Einstein man-
ifold, let us choose the scalar functions a, b and the 1-form 7 as follows:

q

a:m7 b=2q(1-q), (3.3)
L fori=1
_ 1+2q
i(T) = 3.4
(@) { 0 otherwise, (34)

at any point z € R*. Now the equation (1.2) reduces to the equations
Ry = agiy + by, (
R = agaz + bnane (
Rg3 = agss + bnsns, (
Ry4 = agas + bnana, (
since, for the other cases (1.2) holds trivially. By (3.3) and (3.4) we get
R.H.S. of (3.5) = ag11 + bnm

q 1
=—(1+2 2q(1 —q)———
(1+2q)2( ) + 2q( q)(1+2q)2
3q
= = R
(1+2¢)2 ”
=L.H.S. of (3.5).

By similar argument it can be shown that (3.6)—(3.8) are also true. So, (R%,g) is

an N( 4(3+69—84°)

3(1129)2 )-quasi-Einstein manifold.

4. A physical example of an N (k)-quasi-Einstein manifold

ExaMPLE 4.1. This example is concerned with example of an N(k)-quasi-
Einstein manifold in general relativity by the coordinate free method of differential
geometry. In this method of study the spacetime of general relativity is regarded as
a connected four-dimensional semi-Riemannian manifold (M*, g) with Lorentzian
metric g with signature (—,+,4,+). The geometry of the Lorentzian manifold
begins with the study of causal character of vectors of the manifold. It is due to
this causality that the Lorentzian manifold becomes a convenient choice for the
study of general relativity.

Here we consider a perfect fluid (PRS)4 spacetime of non-zero scalar curvature
and having the basic vector field U as the timelike vector field of the fluid, that is,
g(U,U) = —1. An n-dimensional semi-Riemannian manifold is said to be pseudo
Ricci-symmetric [6] if the Ricci tensor S satisfies the condition

(VxS)(Y, Z) = 2A(X)S(Y, Z) + A(Y)S(X, Z) + A(Z)S(Y, X).
Such a manifold is denoted by (PRS),.

For the perfect fluid spacetime, we have the Einstein equation without cosmo-

logical constant as

S(X,Y) — %Tg(X, Y) = kT(X,Y), (4.1)
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where x is the gravitational constant, T is the energy-momentum tensor of type
(0,2) given by
T(X,Y) = (o +p)B(X)B(Y) +pg(X,Y), (4.2)
with ¢ and p as the energy density and isotropic pressure of the fluid respectively.
Using (4.2) in (4.1) we get

S(X,Y) - %TQ(X, Y) = (0 +p)B(X)B(Y) + pg(X,Y)]. (4.3)
Taking a frame field and contracting (4.3) over X and Y we have
r = k(o — 3p). (4.4)
Using (4.4) in (4.3) yields
S(X,Y)=k[(c +p)B(X)B(Y) + (U%p)g(X, Y. (4.5)
Putting Y = U in (4.5) and since g(U,U) = —1, we get
S(X,U) = —g[a + 3p| B(X). (4.6)

Again for (PRS), spacetime [6], S(X,U) = 0. This condition will be satisfied by
the equation (4.6) if

c4+3p=0 as k#0 and A(X) #0. (4.7)
Using (4.4) and (4.7) in (4.5) we see that

r

S(X,Y) =7

[B(X)B(Y) + g(X,Y)].

Thus we can state the following:

2r

A perfect fluid pseudo Ricci-symmetric spacetime is an N (% )-quasi-Einstein

manifold.

5. N(k)-quasi Einstein manifold satisfying Z(¢, X)-S =0

In this section we consider an n-dimensional N (k)-quasi-Einstein manifold M
satisfying the condition 3
(Z(&,X) - 5)(Y,2) = 0.

Putting Z = £ we get

S(Z(&,X)Y,€) + S(Y, Z(§, X)€) = 0. (5.1)
Using (1.2), (2.3) and (2.4) in (5.1) we get
S(Z(&X)Y.6) = b= )+ DX Y) = (00 )], (52)

and

S(Y, Z(¢, X)) = [k — J[(a + b)n(X)n(Y) = S(X,Y)]. (5-3)

n(n—1)
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Using (5.2) and (5.3) in (5.1), we obtain

r
k— —— bg(X,Y)—-S(X,Y) =0.

=~ s+ g Y) = S(X.Y)

Therefore, either the scalar curvature of M is kn(n—1) or, S = (a+b)g which implies
that M is an Einstein manifold. But this contradicts the definition of quasi-Einstein
manifold. The converse is trivial.

Thus we can state the following:

THEOREM 5.1. An n-dimensional N(k)-quasi-Einstein manifold M satisfies
the condition Z(£,X) - S = 0 if and only if the scalar curvature is kn(n — 1).

6. N(k)-quasi-Einstein manifold satisfying P(¢,X)-Z =0

In this section we consider an n-dimensional N (k)-quasi-Einstein manifold M
satisfying the condition
(P(&,X)- 2)(Y, Z)W =0.

Then we have

P(&,X)Z(Y,Z)W — Z(P(&, X)Y, Z)W — (Y, P(¢, X) Z)W — Z(Y, Z)P(¢, X)W ( 0)
6.1
Using (2.1) in (6.1), we have

L [g(X, Z(Y, Z)W)E — n(Xm(Z(Y, ZYW)E — Z(g(X, V)&~ n(X)n(Y )&, Z2)W
— Z2(Y,9(X, 2)§ = n(X)n(Z2)OW — Z(Y, Z)(9(X, W)§ = n(X)n(W)§)] = 0,
which implies either b = 0, or
9(X, Z(Y, Z)W)e = n(X)n(Z(Y, Z)W)é — g(X,Y)Z(&, Z)W
+ (X)) Z(& Z)W — g(X, Z)Z(Y, W + n(X)n(Z) Z(Y, )W
— 9(X, W) Z(Y, Z)§ + n(X)n(W)Z(Y, Z)§ =0, (6.2)

holds on M. Since b # 0, hence (6.2) holds.
Taking the inner product of both sides of (6.2) with £ we have

9(X, Z(Y, Z)W) = n(X)n(Z(Y, Z)W) = g(X, Y )n(Z (&, Z)W)
+0(X)n(Y)n(Z(& Z)W) — (X, 2)n(Z(Y.OW) +n(X)n(Z)n(Z(Y, )W)
— g(X,W)n(Z(Y, Z)€) +n(X)n(W)n(Z(Y, Z)§) = 0. (6.3)
Using (2.3) in (6.3) we obtain

(k— n(nr_ D& 20 )n(W) = g(X,Y)n(Z)n(W)] = 0,

which gives r = kn(n — 1).

(
)Z

Thus we can state the following:

THEOREM 6.1. In an n;dimensional N (k)-quasi-FEinstein manifold M satisfy-
ing the condition P(&,X) - Z =0, the scalar curvature is kn(n — 1).
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7. N(k)-quasi-Einstein manifold satisfying Z(¢, X)- P =0

In this section we consider an n-dimensional N (k)-quasi-Einstein manifold M

satisfying the condition :

(Z(6,X) - P)(Y. Z)W =0.
Then we have

2(& X)P(Y, 2)W = P(Z(&, X)Y, Z)W = P(Y, Z(&, X) Z)W = P(Y, ) Z(§, X)W =0,
(7.1)

Using (2.4) in (7.1) we obtain

T

(k= n(n—1)
+n(Y)P(X, )W — g(X, Z)P(Y, )W +n(Z) P(Y, X)W — g(X, W) P(Y, Z)¢
+n(W)P(Y, 2)X] =0,

Ng(X, P(Y, Z)W)E = n(P(Y, Z)W)X — g(X,Y)P(§, Z)W

which implies that r = kn

(n—1) or
9(X, P(Y, Z)W)§ = n(P(Y, Z)W)X — g(X,Y)P(&, Z)W +n(Y)P(X, Z)W
—9(X, 2)P(Y, )W +n(2)P(Y, X)W — g(X, W) P(Y, Z)€ + n(W)P( 7Z)X(: 0)-
7.2
Taking inner product with £ and using (2.1) and (2.2) in (7.2) we get

9(X, PV, )W) = L [g(X,V)g(Z, W) — (X, Z)g(V,W)). (1)

Now using the definition of the projective curvature tensor in (7.3) and then con-
tracting we get b = 0, which contradicts the definition of an N (k)-quasi-Einstein
manifold.

Hence we can state as follows:

THEOREM 7.1. In an n-dimensional N (k)-quasi-Finstein manifold M, the
relation Z(&,X) - P =0 does not hold.

8. N(k)-quasi-Einstein manifold satisfying P({, X)-C =0

In this section we consider an n-dimensional N (k)-quasi-Einstein manifold sat-
isfying the condition
(P(£,X) - C)(Y, Z)W =0.
Then we have
P, X)C(Y, 2)W-C(P(§, X)Y, Z)W-C(Y, P(§, X) Z)W—-C(Y, Z) P(§, X)W = 0.
(8.1)
Using (2.1) in (8.1) we obtain

L [9(X, CY, )W )E ~ n(X)n(C(Y, Z)W)E ~ Clg(X, ¥ )~ n(X)n(¥ ), Z)W
— C(Y, g(X,Y)§ = n(X)n(Z2)O)W — C(Y, Z)(9(X, W) — n(X)n(W)E)] = 0,
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which implies either b = 0, or
9(X, CY, Z)W)E = n(X)n(C(Y, Z)W)E — g(X,Y)C(E, Z)W
+n(X)nY)C(E )W — g(X, 2)CY, OW +n(X)n(2)C(Y,
—9(X, W)C(Y, Z2)§ + n(X)n(W)C(Y, Z)
holds on M. Since b # 0, hence (8.2) holds.
Taking inner product with £ and using (2.5)—(2.7) in (8.2) we obtain
9(X,C(Y, Z)W) = 0.

Thus we can state the following:

144

§
£=0, (82)

THEOREM 8.1. An n-dimensional N(k)-quasi-Finstein manifold M satisfies
the condition P(£,X) - C =0 if and only if the manifold is conformally flat.

9. N(k)-quasi-Einstein manifold satisfying Z(¢, X)-C =0

In this section we consider an n-dimensional N (k)-quasi-Einstein manifold sat-
isfying the condition 3
(Z(6,X)-O)(Y, )W =0.
Then we have
2(6,X)C(Y, Z)W = C(Z(&, X)Y, D)W = C(Y, Z(&, X) D)W = C(Y, Z)(€, X)W = 0.
(9.1)
Using (2.4) in (9.1) we obtain
r
(k= gy ) WX CO W€ — OV 20X — (X, Y)C(E 2)W

+n(Y)C(X, Z2)W — g(X, 2)C(Y, )W +n(Z)C(Y, X)W
— (X, W)C(Y, Z)& + n(W)C(Y, 2)X] =0, (9.2)
which gives either r = kn(n — 1) or
9(X, C(Y, Z)W)E = n(C(Y, Z)W)X — g(X,Y)C(E, Z)W +n(Y)C(X, 2)W
—9(X, Z2)CY, W +1(Z)C(Y, X)W — g(X, W)C(Y, Z)¢ +n(W)C(Y, Z)X] = 0.
Taking inner product with £ and using (2.5)—(2.7) in (9.2) we obtain
9(X,C(Y,Z)W) =0.

Thus we can state the following:

THEOREM 9.1. An n-dimensional N (k)-quasi-Einstein manifold M satisfies
the condition Z(£,X) - C =0 if and only if the manifold is conformally flat.

10. Ricci-pseudosymmetric N(k)-quasi-Einstein manifolds

An n-dimensional Riemannian manifold (M™,g) is called Ricci-pseudosym-
metric [12] if the tensors R - S and Q(g,S) are linearly dependent, where
(10.1)
Q(ga S)(Zv Wi X, Y) = _S((X A Y)Z7 W) - S(Zv (X A Y)W)v
(10.2)
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and
(XAY)Z =9g(Y,2)X — g(X, 2)Y, (10.3)
for vector fields X,Y, Z, W on M™.
The condition of Ricci-pseudosymmetry is equivalent to
(R(X,Y)-S)(Z, W) = L;Q(g,5)(Z,W; X,Y),
holding on the set
Us:{xEM:S;«é%g at x},

where L is some function on U,. If R-S = 0 then M™ is called Ricci-semisymmetric.
Every Ricci-semisymmetric manifold is Ricci-pseudosymmetric but the converse is
not true [12].

Let us assume that the manifold under consideration is Ricci-pseudosymmetric.
Then with the help of (10.1)—(10.3) we can write

S(RX,Y)Z, W)+ S(Z,R(X,Y)W)=L{g(Y,Z)S(X, W) — g(X, Z2)S(Y,W)
+9(Y,W)S(X, Z) — (X, W)S(Y, Z)}.  (10.4)
Using (1.2) and (1.4) in (10.4) we obtain
[b(a +0)

n—1

- bLs} (0¥, Z ()W) — (X, W)n(¥)n(Z2)
+9(Y,Win(X)n(Z) — g(X, Z)n(Y)n(W)} =0. (10.5)
Putting Y = Z = ¢ in (10.5) we have

n —

{b(a + 1b> _ bLS} (X)n(W) — g(X, W] = 0. (10.6)

Again putting X = W = ¢; in (10.6), where {¢;}, (¢ = 1,2,...,n) is an orthonormal
basis of the tangent space at any point of the manifold and then taking the sum
for 1 < i < n, we obtain

[b(a+1b) bLs] (1—n) =0,

n —

which implies that Ly = Zf? Thus we can state the following:
THEOREM 10.1. A Ricci-pseudosymmetric N(k)-quasi-Einstein manifold is a
Ricci-semisymmetric manifold if and only if a +b = 0.

11. Conclusions

Quasi-Einstein manifolds arose during the study of exact solutions of the Ein-
stein field equations as well as during considerations of quasi-umbilical hypersur-
faces of semi-Euclidean spaces. The importance of an N (k)-quasi-Einstein is pre-
sented in the introduction. In this paper we prove that a special para-Sasakian
manifold with vanishing D-concircular curvature tensor V' is an N (k)-quasi-Einstein



44 U.C. De, S. Mallick

manifold. Then we find a metric of a four-dimensional N (k)-quasi-Einstein mani-
fold. Also we give a physical example of N (k)-quasi-Einstein manifolds. Moreover,
we have considered N (k)-quasi-Einstein manifolds satisfying the curvature condi-
tions Z(£,X)-S =0, P(,X)-Z =0, Z(,X)-P =0, P(§,X)-C = 0 and
Z (&,X)-C = 0, where P, Z, C, S are projective curvature tensor, concircular
curvature tensor, conformal curvature tensor and Ricci tensor respectively. Fi-
nally we prove that a Ricci-pseudosymmetric N (k)- quasi-Einstein manifold is a
Ricci-semisymmetric manifold under certain condition.
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