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PROPERTY (gR) UNDER NILPOTENT
COMMUTING PERTURBATION

O. Garcia, C. Carpintero, E. Rosas and J. Sanabria

Abstract. The property (gR), introduced in [Aiena, P., Guillen, J. and Peifia, P., Property
(9R) and perturbations, to appear in Acta Sci. Math. (Szeged), 2012], is an extension to the
context of B-Fredholm theory, of property (R), introduced in [Aiena, P., Guillen, J. and Pena, P.,
Property (R) for bounded linear operators, Mediterr. J. Math. 8 (4), 491-508, 2011]. In this paper
we continue the study of property (gR) and we consider its preservation under perturbations by
finite rank and nilpotent operators. We also prove that if T is left polaroid (resp. right polaroid)
and N is a nilpotent operator which commutes with 7" then T+ N is also left polaroid (resp. right
polaroid).

1. Introduction and preliminaries

Throughout this paper L(X) denotes the algebra of all bounded linear opera-
tors acting on an infinite-dimensional complex Banach space X. For T € L(X), we
denote by N(T') the null space of T and by R(T") = T'(X) the range of T. We denote
by a(T') := dim N(T') the nullity of T" and by 3(T) := codim R(T) = dim X/R(T)
the defect of T. Other two classical quantities in operator theory are the ascent
p = p(T) of an operator T, defined as the smallest non-negative integer p such
that N(T?) = N(TP*!) (if such an integer does not exist, we put p(T) = o0),
and the descent ¢ = q(T'), defined as the smallest non-negative integer ¢ such that
R(T?) = R(T*1) (if such an integer does not exist, we put ¢(T) = oo). It is
well known that if p(T) and ¢(T') are both finite then p(T) = ¢(T). Furthermore,
0 <pAM=T) =qg(AM —T) < oo if and only if A is a pole of the resolvent, see
[14, Prop. 50.2]. An operator T' € L(X) is said to be Fredholm (respectively, upper
semi-Fredholm, lower semi-Fredholm), if a(T), B(T) are both finite (respectively,
R(T) closed and o(T') < o0, B(T) < 00). T € L(X) is said to be semi-Fredholm
if T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T
is semi-Fredholm, the indez of T is defined by ind T := «(T) — S(T). Other two
important classes of operators in Fredholm theory are the classes of semi-Browder
operators. These classes are defined as follows. T € L(X) is said to be Browder
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(resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm (respectively,
upper semi-Fredholm, lower semi-Fredholm) and both p(T'), ¢(T) are finite (re-
spectively, p(T) < oo, ¢(T) < 00). A bounded operator T' € L(X) is said to be
upper semi-Weyl (respectively, lower semi-Weyl) if T is upper Fredholm operator
(respectively, lower semi-Fredholm) and index ind 7" < 0 (respectively, ind T > 0).
T € L(X) is said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is a
Fredholm operator having index 0. The Fredholm spectrum, the Browder spectrum
and the Weyl spectrum are defined, respectively, by

o¢(T) : ={\ € C: AI — T is not Fredholm},
op(T) : ={A € C: Al — T is not Browder},
ow(T):={A e C: A —T is not Weyl}.
Since every Browder operator is Weyl then ow (1) C o, (7). Analogously, the upper
semi-Browder spectrum and the upper semi- Weyl spectrum are defined by
ouwp(T) : = {\ € C: AI — T is not upper semi-Browder},
ouw(T) : ={A € C: A\ — T is not upper semi-Weyl}.

A bounded operator R € L(X) is said to be Riesz if A\I — T is a Fredholm
operator for all A # 0, i.e. o7(T) C {0}. The classical Riesz-Schauder theory of
compact operators shows that every compact operator is Riesz. Also quasi-nilpotent
operators (in particular nilpotent operators) are Riesz, since 04(Q) C o(Q) = {0}
for any operator quasi-nilpotent @ € L(X). Browder spectra and Weyl spectra are
invariant under commuting Riesz perturbations (see [15, 16]), i.e. if R is a Riesz
operator such that TR = RT,

ouwp(T) =0w(T+ R) and 0uw(T) = 0uw(T + R).

Recall that T € L(X) is said to be bounded below if T is injective and has closed
range. Denote by oap(T) the classical approzimate point spectrum defined by

oap(T) :={A € C: Al — T is not bounded below}.
Note that if o5(T") denotes the surjectivity spectrum
os(T) :={A € C: A\ — T is not onto}.

Obviously, o(T) = cap(T) U 0s(T). Furthermore cap(T) = os(T*) and os(T) =
oap(T™), where T* is the dual of T'.

THEOREM 1.1. [1] If T € L(X) and Q is a quasi-nilpotent operator commuting
with T' then

(i) o(T) = o(T +Q),

(i) 0ap(T) = 00p(T' + Q),
(iii) o5(T) = 05(T + Q).
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2. Semi B-Browder spectra under nilpotent perturbations

Given n € N, we denote by T), the restriction of T' € L(X) on the subspace
R(T™) = T™(X). According to [10, 11], T is said to be semi B-Fredholm (respec-
tively, B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if for some
integer n > 0 the range R(T™) is closed and T, viewed as an operator from the
space R(T™) into itself, is a semi-Fredholm operator (respectively, Fredholm, upper
semi-Fredholm, lower semi-Fredholm). Analogously, T' € L(X) is said to be B-
Browder (respectively, upper semi B-Browder, lower semi B-Browder), if for some
integer n > 0 the range R(T™) is closed and T), is a Browder operator (respectively,
upper semi-Browder, lower semi-Browder). If T, is a semi-Fredholm operator, it
follows from [11, Proposition 2.1] that also T}, is semi-Fredholm for every m > n,
and indT,, = indT,,. This enables us to define the index of a semi B-Fredholm
operator T as the index of the semi-Fredholm operator T,,. Thus, a bounded op-
erator T' € L(X) is said to be a B-Weyl operator if T is a B-Fredholm operator
having index 0. T € L(X) is said to be upper semi B-Weyl if T is upper semi
B-Fredholm with index ind7T" < 0, and T is said to be lower semi B-Weyl if T is
lower semi B-Fredholm with ind 7" > 0. Note that if T' is B-Fredholm then also T*
is B-Fredholm with ind 7" = —ind T'.

The classes of operators defined above motivate the definitions of several spec-
tra. The upper semi B-Browder spectrum is defined by

oubb(T) :={A € C: AI — T is not upper semi B-Browder}.
The lower semi B-Browder spectrum is defined by
b (T) := {A € C: A\ — T is not lower semi B-Browder},
while the B-Browder spectrum is defined by
opp(T) = {A € C: A\ — T is not B-Browder}.
Clearly, op,,(T) = oupb(T) U opp(T). The B-Weyl spectrum is defined by
obw(T) :={A € C: A\ — T is not B-Weyl},

the upper semi B-Weyl spectrum and lower semi B-Weyl spectrum are defined,
respectively, by

oubw(T) :={A € C: A\I — T is not upper semi B-Weyl},

and
ow(T) :={X € C: A\l — T is not lower semi B-Weyl}.

DEFINITION 2.1. T € L(X) is said to be left (resp. right) Drazin invertible
if p=p(T) < oo (resp. ¢ = ¢(T) < o00) and TPTH(X) (resp. T9(X))is closed.
T € L(X) is said to be Drazin invertible if p(T) = ¢(T) < oco. If \I — T is left
(resp. right) Drazin invertible and X € 04, (T) (resp. A € 04(T)) then X is said to
be a left (resp. right) pole.

Clearly, T' € L(X) is both right and left Drazin invertible if and only if T" is
Drazin invertible. In fact, if 0 < p = p(T) = q(T) < oo, then TP(X) = TPT}(X) is
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the kernel of the spectral projection associated with the spectral set {0} [14, Prop.
50.2]. The left Drazin spectrum is then defined as

o1q(T) :={A € C: A\I — T is not left Drazin invertible},
the right Drazin spectrum is defined as

opd(T) :=={A € C: AI — T is not right Drazin invertible}
and Drazin spectrum is defined as

0q(T) :={X € C: A\I — T is not Drazin invertible}.
Obviously, oq(T') = 01q(T) U o,q(T). Furthermore o1q(T) = 0,q(T*) and oq(T') =
01q(T*), where T* is the dual of T', see Theorem 2.1 of [3].
THEOREM 2.2. [13] If T € L(X) then we have

(i) T is right Drazin invertible if and only if there exists a k € N such that T*(X)
is closed and Ty is onto. In this case T7(X) is closed and T; is onto for all
naturals j > k.

(ii) T is left Drazin invertible if and only if T is upper semi B-Browder.
(iii) T is right Drazin invertible if and only if T is lower semi B-Browder.

(iv) T is Drazin invertible if and only if T is B-Browder.

COROLLARY 2.3. If T € L(X) then we have
Uubb(T) = O’ld(T)7 Ulbb(T) = Urd(T) and G'bb(T) = Ud(T).

It has been observed in [9], that the B-Browder spectrum is invariant under
commuting finite dimensional perturbation. In the next propositions we prove that
all Drazin spectra are invariant under nilpotent commuting perturbations.

THEOREM 2.4. Let T € L(X) and N be a nilpotent operator which commutes
with T'. Then O'rd(T + N) = Ulbb(T + N) = Jlbb(T) = O'Td(T).

Proof. Suppose that A ¢ oy (T). By part (iii) of Theorem 2.2, A\I — T is right
Drazin invertible and hence, ¢ = ¢(AI — T) < oo and (A — T)7(X) is closed. Let
n € N be such that N™ = 0 and set m; = max{q,n}. We claim that

[M = T) + NJ**(X) € (M = T)4(X) for all k > mj. (1)

To show this, let y € [(AM — T') + N]?*(X) be arbitrary, so that there exists z € X
for which [(A — T) + N]?!(z) = y. Then

v= 5 paV(( — ()

=0
= VO =T + 9 N~ TP o)
= 3 e (T = TP )

7

— (M -~ T)* : i N (A — T)k—i(x))} .
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Therefore y € (A — T)*¥(X). Hence, since k > ¢,
[(AL = T) + N*"(X) € (M = T)*(X) = (M - T)¥(X). (2)
To prove the opposite inclusion, observe, by using (2), that it also follows that
(M - T)1(X) = (N —-T)*(X) =[(\] - T) + N — N**(X)
C [(A = T) + NJ**(X),
from which the equality (1) follows. Consequently, [(AI —T)]?*(X) is closed for all k
sufficiently large. Now, from part (i) of Theorem 2.2, we can choose k such that the
restriction (A — Ty of (A —T) to M = (M —T)**(X) = [\ = T) + N]?*(X) is
onto. If Noj denotes the restriction of N to M, then (A —T)ax + Noi, = [(A[—T) +
Nz, is onto, so, by Theorem 2.2, part (i), (Al —T) + N is right Drazin invertible,

or equivalently, lower semi B-Browder. This shows that o;p,(T") C o3p(T + N) and
by symmetry the opposite inclusion holds, so the equality o;p,(T + N) = opp(T). m

By duality we have

COROLLARY 2.5. Let T € L(X) and N be a nilpotent operator which commutes
with T. Then 01q(T + N) = ouwp(T + N) = oupp(T) = 014(T) and 04(T + N) =
ow(T' + N) = ow(T) = 0a(T).

REMARK 2.6. Theorem 2.4 and Corollary 2.5 answer positively to a question
from [6], in particular it improves Theorem 4.3, where the invariance of the spec-
trum oyp,(7"), under commuting nilpotent perturbations, was proved assuming that
T has SVEP, while the invariance of o,,(T) was proved assuming that 7 has
SVEP.

3. Property (gR) under nilpotent perturbations

For an operator T' € L(X) define
E(T)={ €isoo(T):0< a(A-T)},
EYT)={r€is0 0qp(T) : 0 < (M - T)},
Hoo(T) = o(T) \ ows(T),
5o (T) = 0ap(T) \ Turn(T)-
DEFINITION 3.1. A bounded T € L(X) is said to satisfy:
(i) property (gR) if oop(T) \ ourn(T) = E(T);
(ii) property (gR?) if 0ap(T) \ ouns(T) = E*(T);
(iii) property (gw) if 0(T)ap \ Cwrw(T) = E(T');
(iv) generalized a-Weyl’s theorem if 04y (T') \ oupw () = E*(T).
Also a-Browder’s theorem admits a generalized version, the generalized a-
Browder’s theorem, which means that T satisfies oypw(T) = ouw(T). However,

a-Browder’s theorem and generalized a-Browder’s theorem are equivalent, for a
proof see [4].
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THEOREM 3.2. [7] If T € L(X), then we have

(i) T satisfies property (gw) if and only if a-Browder’s theorem and property (gR)
holds for T’;

(ii) T satisfies generalized a-Weyl’s theorem if and only if a-Browder’s theorem
and property (gR®) holds for T.

THEOREM 3.3. Let T € L(X) and N be a nilpotent operator which commutes
with T. Then E(T) = E(T + N) and E*(T) = E“(T + N).
Proof. Suppose that N™ = 0. It is easily seen that
N(M —T) € N(\ — T + N)™. (3)

Indeed, if x € N(AI —T') then for some suitable binomial coefficients p,, ;, we have
n .
M =T+ N)"z =3 ppn;(M—=T)IN" g =0,
i=1

hence x € N(AI —T + N)".

Now, let A € E(T'). Then X € iso 0(T) = iso o(T + N) and a(A —T) > 0.
Suppose that a(A — T + N) = 0. Then a(AM — T + N)¥ = 0 for all k € N.
From the inclusion (3), we have (Al —T') = 0 and this is impossible. Therefore
a(Al =T + N) > 0. Consequently, E(T) C E(T + N) and, again by symmetry,
the opposite inclusion holds. Therefore, E(T) = E(T + N). Similarly we can prove
that E(T) = E*(T + N). m

THEOREM 3.4. Let T € L(X) and N be a nilpotent operator which commutes
with T. Then T satisfies the property (gR) if only if T + N satisfies the property

(9R).
Proof. By Theorem 3.3 and Theorem 2.4, it follows that
E(T+ N) = E(T) = 0ap(T) \ ourn(T') = 0ap(T' + N) \ oupn(T' + N),
hence T + N satisfies property (gR). By symmetry the reciprocal holds. m
THEOREM 3.5. Let T € L(X) and N be a nilpotent operator which commutes
with T. Then T satisfies the property (gR*) if only if T + N satisfies the property
(gR*).
Proof. By Theorem 3.3 and Theorem 2.4, it follows that
EY T+ N) = EYT) = 04p(T) \ 0us(T) = 0ap(T + N) \ ourn(T + N),
hence T + N satisfies property (gR®). By symmetry the reciprocal holds. m
DEFINITION 3.6. T € L(X) is said to be left (resp. right) polaroid if o4, (T")

is empty or every isolated point of ¢4, (T) is a left pole (resp. o5(T) is empty or
every isolated point of o4(T) is a right pole).

THEOREM 3.7. If T € L(X) is a left polaroid and N is a nilpotent operator
commuting with T, then T is a left polaroid if only if T + N is a left polaroid.
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Proof. Obviously, by Corollary 2.3, we have is0 04,(T) = 04p(T) \ owrs(T).
Therefore,

i80 04p(T + N) =150 04p(T)
= 0ap(T) \ ounn(T)
= 04p(T + N) \ oun(T + N).
Thus T+ N is left polaroid. By symmetry the reciprocal holds. m
REMARK 3.8. The result of Theorem 3.9 improves Corollary 2.12 of [2], where

it was proved that T+ N is a left polaroid assuming that T is a left polaroid and
T* has SVEP at the points A € 04, (T).

THEOREM 3.9. If T € L(X) is a right polaroid and N is a nilpotent operator
commuting with T, then T is a right polaroid if only if T + N is a right polaroid.

Proof. Obviously, by Corollary 2.3, we have iso 05(T) = o5(T)\ows(T). There-
fore,

iso o5(T 4+ N) =iso o4(T)
=0(T) \ ou(T)
= 03(T+ N) \ O'lbb(T+N)~
Thus T + N is a right polaroid. By symmetry the reciprocal holds. m

REMARK 3.10. The result of Theorem 3.9 improves Corollary 2.12 of [2], where
it was proved that T'+ N is a right polaroid assuming that 7" is a right polaroid
and T has SVEP at the points A ¢ 0,,(T).

As in the above theorems, for the (gw) property introduced in [8], we have the
following result.

THEOREM 3.11. Let T € L(X) and N be a nilpotent operator which commutes
with T'. Then T satisfies the property (qw) if only if T + N salisfies the property

(gw).

Proof. Suppose that T satisfies property (gw). Then T satisfies generalized
a-Browder’s theorem, or equivalently a-Browder’s theorem, i.e. 0yu,(T) = 04w (T).
Since these spectra are invariant under IV, we have that 7'+ N satisfies a-Browder’s
theorem. Then, from Theorems 3.4 and 3.2, it follows that T'+ N satisfies property
(gw). By symmetry the reciprocal holds. m

As in the above theorems, for the generalized a-Weyl theorem introduced in
[12], we have the following result.

THEOREM 3.12. Let T € L(X) and N be a nilpotent operator which commutes
with T. Then T satisfies the generalized a-Weyl Theorem if only if T + N satisfies
the generalized a-Weyl Theorem.

Proof. Suppose that T satisfies generalized a-Weyl’s theorem. Then since
a-Browder’s theorem and property (¢gR) are invariant under N, it follows from
Theorem 3.2, that T'+ N satisfies the generalized a-Weyl’s theorem. By symmetry
the reciprocal holds. m
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