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COMMUTING PERTURBATION

O. Garćıa, C. Carpintero, E. Rosas and J. Sanabria

Abstract. The property (gR), introduced in [Aiena, P., Guillen, J. and Peña, P., Property
(gR) and perturbations, to appear in Acta Sci. Math. (Szeged), 2012], is an extension to the
context of B-Fredholm theory, of property (R), introduced in [Aiena, P., Guillen, J. and Peña, P.,
Property (R) for bounded linear operators, Mediterr. J. Math. 8 (4), 491-508, 2011]. In this paper
we continue the study of property (gR) and we consider its preservation under perturbations by
finite rank and nilpotent operators. We also prove that if T is left polaroid (resp. right polaroid)
and N is a nilpotent operator which commutes with T then T +N is also left polaroid (resp. right
polaroid).

1. Introduction and preliminaries

Throughout this paper L(X) denotes the algebra of all bounded linear opera-
tors acting on an infinite-dimensional complex Banach space X. For T ∈ L(X), we
denote by N(T ) the null space of T and by R(T ) = T (X) the range of T . We denote
by α(T ) := dim N(T ) the nullity of T and by β(T ) := codim R(T ) = dim X/R(T )
the defect of T . Other two classical quantities in operator theory are the ascent
p = p(T ) of an operator T , defined as the smallest non-negative integer p such
that N(T p) = N(T p+1) (if such an integer does not exist, we put p(T ) = ∞),
and the descent q = q(T ), defined as the smallest non-negative integer q such that
R(T q) = R(T q+1) (if such an integer does not exist, we put q(T ) = ∞). It is
well known that if p(T ) and q(T ) are both finite then p(T ) = q(T ). Furthermore,
0 < p(λI − T ) = q(λI − T ) < ∞ if and only if λ is a pole of the resolvent, see
[14, Prop. 50.2]. An operator T ∈ L(X) is said to be Fredholm (respectively, upper
semi-Fredholm, lower semi-Fredholm), if α(T ), β(T ) are both finite (respectively,
R(T ) closed and α(T ) < ∞, β(T ) < ∞). T ∈ L(X) is said to be semi-Fredholm
if T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T
is semi-Fredholm, the index of T is defined by ind T := α(T ) − β(T ). Other two
important classes of operators in Fredholm theory are the classes of semi-Browder
operators. These classes are defined as follows. T ∈ L(X) is said to be Browder
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(resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm (respectively,
upper semi-Fredholm, lower semi-Fredholm) and both p(T ), q(T ) are finite (re-
spectively, p(T ) < ∞, q(T ) < ∞). A bounded operator T ∈ L(X) is said to be
upper semi-Weyl (respectively, lower semi-Weyl) if T is upper Fredholm operator
(respectively, lower semi-Fredholm) and index indT ≤ 0 (respectively, ind T ≥ 0).
T ∈ L(X) is said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is a
Fredholm operator having index 0. The Fredholm spectrum, the Browder spectrum
and the Weyl spectrum are defined, respectively, by

σf(T ) : = {λ ∈ C : λI − T is not Fredholm},
σb(T ) : = {λ ∈ C : λI − T is not Browder},
σw(T ) : = {λ ∈ C : λI − T is not Weyl}.

Since every Browder operator is Weyl then σw(T ) ⊆ σb(T ). Analogously, the upper
semi-Browder spectrum and the upper semi-Weyl spectrum are defined by

σub(T ) : = {λ ∈ C : λI − T is not upper semi-Browder},
σuw(T ) : = {λ ∈ C : λI − T is not upper semi-Weyl}.

A bounded operator R ∈ L(X) is said to be Riesz if λI − T is a Fredholm
operator for all λ 6= 0, i.e. σf (T ) ⊆ {0}. The classical Riesz-Schauder theory of
compact operators shows that every compact operator is Riesz. Also quasi-nilpotent
operators (in particular nilpotent operators) are Riesz, since σf (Q) ⊆ σ(Q) = {0}
for any operator quasi-nilpotent Q ∈ L(X). Browder spectra and Weyl spectra are
invariant under commuting Riesz perturbations (see [15, 16]), i.e. if R is a Riesz
operator such that TR = RT ,

σub(T ) = σub(T + R) and σuw(T ) = σuw(T + R).

Recall that T ∈ L(X) is said to be bounded below if T is injective and has closed
range. Denote by σap(T ) the classical approximate point spectrum defined by

σap(T ) := {λ ∈ C : λI − T is not bounded below}.
Note that if σs(T ) denotes the surjectivity spectrum

σs(T ) := {λ ∈ C : λI − T is not onto}.
Obviously, σ(T ) = σap(T ) ∪ σs(T ). Furthermore σap(T ) = σs(T ∗) and σs(T ) =
σap(T ∗), where T ∗ is the dual of T .

Theorem 1.1. [1] If T ∈ L(X) and Q is a quasi-nilpotent operator commuting
with T then

(i) σ(T ) = σ(T + Q),

(ii) σap(T ) = σap(T + Q),

(iii) σs(T ) = σs(T + Q).
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2. Semi B-Browder spectra under nilpotent perturbations

Given n ∈ N, we denote by Tn the restriction of T ∈ L(X) on the subspace
R(Tn) = Tn(X). According to [10, 11], T is said to be semi B-Fredholm (respec-
tively, B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if for some
integer n ≥ 0 the range R(Tn) is closed and Tn, viewed as an operator from the
space R(Tn) into itself, is a semi-Fredholm operator (respectively, Fredholm, upper
semi-Fredholm, lower semi-Fredholm). Analogously, T ∈ L(X) is said to be B-
Browder (respectively, upper semi B-Browder, lower semi B-Browder), if for some
integer n ≥ 0 the range R(Tn) is closed and Tn is a Browder operator (respectively,
upper semi-Browder, lower semi-Browder). If Tn is a semi-Fredholm operator, it
follows from [11, Proposition 2.1] that also Tm is semi-Fredholm for every m ≥ n,
and indTm = ind Tn. This enables us to define the index of a semi B-Fredholm
operator T as the index of the semi-Fredholm operator Tn. Thus, a bounded op-
erator T ∈ L(X) is said to be a B-Weyl operator if T is a B-Fredholm operator
having index 0. T ∈ L(X) is said to be upper semi B-Weyl if T is upper semi
B-Fredholm with index ind T ≤ 0, and T is said to be lower semi B-Weyl if T is
lower semi B-Fredholm with ind T ≥ 0. Note that if T is B-Fredholm then also T ∗

is B-Fredholm with ind T ∗ = −indT .
The classes of operators defined above motivate the definitions of several spec-

tra. The upper semi B-Browder spectrum is defined by

σubb(T ) := {λ ∈ C : λI − T is not upper semi B-Browder}.
The lower semi B-Browder spectrum is defined by

σlbb(T ) := {λ ∈ C : λI − T is not lower semi B-Browder},
while the B-Browder spectrum is defined by

σbb(T ) = {λ ∈ C : λI − T is not B-Browder}.
Clearly, σbb(T ) = σubb(T ) ∪ σlbb(T ). The B-Weyl spectrum is defined by

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl},
the upper semi B-Weyl spectrum and lower semi B-Weyl spectrum are defined,
respectively, by

σubw(T ) := {λ ∈ C : λI − T is not upper semi B-Weyl},
and

σlbw(T ) := {λ ∈ C : λI − T is not lower semi B-Weyl}.
Definition 2.1. T ∈ L(X) is said to be left (resp. right) Drazin invertible

if p = p(T ) < ∞ (resp. q = q(T ) < ∞) and T p+1(X) (resp. T q(X))is closed.
T ∈ L(X) is said to be Drazin invertible if p(T ) = q(T ) < ∞. If λI − T is left
(resp. right) Drazin invertible and λ ∈ σap(T ) (resp. λ ∈ σs(T )) then λ is said to
be a left (resp. right) pole.

Clearly, T ∈ L(X) is both right and left Drazin invertible if and only if T is
Drazin invertible. In fact, if 0 < p = p(T ) = q(T ) < ∞, then T p(X) = T p+1(X) is
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the kernel of the spectral projection associated with the spectral set {0} [14, Prop.
50.2]. The left Drazin spectrum is then defined as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible},
the right Drazin spectrum is defined as

σrd(T ) := {λ ∈ C : λI − T is not right Drazin invertible}
and Drazin spectrum is defined as

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible}.
Obviously, σd(T ) = σld(T ) ∪ σrd(T ). Furthermore σld(T ) = σrd(T ∗) and σrd(T ) =
σld(T ∗), where T ∗ is the dual of T , see Theorem 2.1 of [3].

Theorem 2.2. [13] If T ∈ L(X) then we have
(i) T is right Drazin invertible if and only if there exists a k ∈ N such that T k(X)

is closed and Tk is onto. In this case T j(X) is closed and Tj is onto for all
naturals j ≥ k.

(ii) T is left Drazin invertible if and only if T is upper semi B-Browder.
(iii) T is right Drazin invertible if and only if T is lower semi B-Browder.
(iv) T is Drazin invertible if and only if T is B-Browder.

Corollary 2.3. If T ∈ L(X) then we have

σubb(T ) = σld(T ), σlbb(T ) = σrd(T ) and σbb(T ) = σd(T ).

It has been observed in [9], that the B-Browder spectrum is invariant under
commuting finite dimensional perturbation. In the next propositions we prove that
all Drazin spectra are invariant under nilpotent commuting perturbations.

Theorem 2.4. Let T ∈ L(X) and N be a nilpotent operator which commutes
with T . Then σrd(T + N) = σlbb(T + N) = σlbb(T ) = σrd(T ).

Proof. Suppose that λ /∈ σlbb(T ). By part (iii) of Theorem 2.2, λI − T is right
Drazin invertible and hence, q = q(λI − T ) < ∞ and (λI − T )q(X) is closed. Let
n ∈ N be such that Nn = 0 and set m1 = max{q, n}. We claim that

[(λI − T ) + N ]2k(X) ⊆ (λI − T )q(X) for all k ≥ m1. (1)

To show this, let y ∈ [(λI − T ) + N ]2k(X) be arbitrary, so that there exists x ∈ X
for which [(λI − T ) + N ]2k(x) = y. Then

y =
2k∑
i=0

µi,kN i((λI − T )2k−i(x))

=
k∑

i=0

µi,kN i((λI − T )2k−i(x)) +
2k∑

i=k+1

µi,kN i((λI − T )2k−i(x))

=
k∑

i=0

µi,kN i((λI − T )2k−i(x))

= (λI − T )k
[ k∑

i=0

µi,kN i((λI − T )k−i(x))
]
.
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Therefore y ∈ (λI − T )k(X). Hence, since k ≥ q,

[(λI − T ) + N ]2k(X) ⊆ (λI − T )k(X) = (λI − T )q(X). (2)

To prove the opposite inclusion, observe, by using (2), that it also follows that

(λI − T )q(X) = (λI − T )4k(X) = [(λI − T ) + N −N ]4k(X)

⊆ [(λI − T ) + N ]2k(X),

from which the equality (1) follows. Consequently, [(λI−T )]2k(X) is closed for all k
sufficiently large. Now, from part (i) of Theorem 2.2, we can choose k such that the
restriction (λI −T )2k of (λI −T ) to M = (λI −T )2k(X) = [(λI −T ) + N ]2k(X) is
onto. If N2k denotes the restriction of N to M , then (λI−T )2k +N2k = [(λI−T )+
N ]2k is onto, so, by Theorem 2.2, part (i), (λI − T ) + N is right Drazin invertible,
or equivalently, lower semi B-Browder. This shows that σlbb(T ) ⊆ σlbb(T + N) and
by symmetry the opposite inclusion holds, so the equality σlbb(T + N) = σlbb(T ).

By duality we have

Corollary 2.5. Let T ∈ L(X) and N be a nilpotent operator which commutes
with T . Then σld(T + N) = σubb(T + N) = σubb(T ) = σld(T ) and σd(T + N) =
σbb(T + N) = σbb(T ) = σd(T ).

Remark 2.6. Theorem 2.4 and Corollary 2.5 answer positively to a question
from [6], in particular it improves Theorem 4.3, where the invariance of the spec-
trum σlbb(T ), under commuting nilpotent perturbations, was proved assuming that
T has SVEP, while the invariance of σubb(T ) was proved assuming that T ∗ has
SVEP.

3. Property (gR) under nilpotent perturbations

For an operator T ∈ L(X) define

E(T ) = {λ ∈ iso σ(T ) : 0 < α(λI − T )},
Ea(T ) = {λ ∈ iso σap(T ) : 0 < α(λI − T )},
Π00(T ) = σ(T ) \ σbb(T ),

Πa
00(T ) = σap(T ) \ σubb(T ).

Definition 3.1. A bounded T ∈ L(X) is said to satisfy:
(i) property (gR) if σap(T ) \ σubb(T ) = E(T );
(ii) property (gRa) if σap(T ) \ σubb(T ) = Ea(T );
(iii) property (gw) if σ(T )ap \ σubw(T ) = E(T );
(iv) generalized a-Weyl’s theorem if σap(T ) \ σubw(T ) = Ea(T ).

Also a-Browder’s theorem admits a generalized version, the generalized a-
Browder’s theorem, which means that T satisfies σubw(T ) = σubb(T ). However,
a-Browder’s theorem and generalized a-Browder’s theorem are equivalent, for a
proof see [4].
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Theorem 3.2. [7] If T ∈ L(X), then we have
(i) T satisfies property (gw) if and only if a-Browder’s theorem and property (gR)

holds for T ;
(ii) T satisfies generalized a-Weyl’s theorem if and only if a-Browder’s theorem

and property (gRa) holds for T .

Theorem 3.3. Let T ∈ L(X) and N be a nilpotent operator which commutes
with T . Then E(T ) = E(T + N) and Ea(T ) = Ea(T + N).

Proof. Suppose that Nn = 0. It is easily seen that

N(λI − T ) ⊆ N(λI − T + N)n. (3)

Indeed, if x ∈ N(λI −T ) then for some suitable binomial coefficients µn,j , we have

(λI − T + N)nx =
n∑

j=1

µn,j(λI − T )jNn−jx = 0,

hence x ∈ N(λI − T + N)n.
Now, let λ ∈ E(T ). Then λ ∈ iso σ(T ) = iso σ(T + N) and α(λI − T ) > 0.

Suppose that α(λI − T + N) = 0. Then α(λI − T + N)k = 0 for all k ∈ N.
From the inclusion (3), we have α(λI − T ) = 0 and this is impossible. Therefore
α(λI − T + N) > 0. Consequently, E(T ) ⊆ E(T + N) and, again by symmetry,
the opposite inclusion holds. Therefore, E(T ) = E(T +N). Similarly we can prove
that Ea(T ) = Ea(T + N).

Theorem 3.4. Let T ∈ L(X) and N be a nilpotent operator which commutes
with T . Then T satisfies the property (gR) if only if T + N satisfies the property
(gR).

Proof. By Theorem 3.3 and Theorem 2.4, it follows that

E(T + N) = E(T ) = σap(T ) \ σubb(T ) = σap(T + N) \ σubb(T + N),

hence T + N satisfies property (gR). By symmetry the reciprocal holds.

Theorem 3.5. Let T ∈ L(X) and N be a nilpotent operator which commutes
with T . Then T satisfies the property (gRa) if only if T + N satisfies the property
(gRa).

Proof. By Theorem 3.3 and Theorem 2.4, it follows that

Ea(T + N) = Ea(T ) = σap(T ) \ σubb(T ) = σap(T + N) \ σubb(T + N),

hence T + N satisfies property (gRa). By symmetry the reciprocal holds.

Definition 3.6. T ∈ L(X) is said to be left (resp. right) polaroid if σap(T )
is empty or every isolated point of σap(T ) is a left pole (resp. σs(T ) is empty or
every isolated point of σs(T ) is a right pole).

Theorem 3.7. If T ∈ L(X) is a left polaroid and N is a nilpotent operator
commuting with T , then T is a left polaroid if only if T + N is a left polaroid.
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Proof. Obviously, by Corollary 2.3, we have iso σap(T ) = σap(T ) \ σubb(T ).
Therefore,

iso σap(T + N) = iso σap(T )

= σap(T ) \ σubb(T )

= σap(T + N) \ σubb(T + N).
Thus T + N is left polaroid. By symmetry the reciprocal holds.

Remark 3.8. The result of Theorem 3.9 improves Corollary 2.12 of [2], where
it was proved that T + N is a left polaroid assuming that T is a left polaroid and
T ∗ has SVEP at the points λ /∈ σuw(T ).

Theorem 3.9. If T ∈ L(X) is a right polaroid and N is a nilpotent operator
commuting with T , then T is a right polaroid if only if T + N is a right polaroid.

Proof. Obviously, by Corollary 2.3, we have iso σs(T ) = σs(T )\σlbb(T ). There-
fore,

iso σs(T + N) = iso σs(T )

= σs(T ) \ σlbb(T )

= σs(T + N) \ σlbb(T + N).
Thus T + N is a right polaroid. By symmetry the reciprocal holds.

Remark 3.10. The result of Theorem 3.9 improves Corollary 2.12 of [2], where
it was proved that T + N is a right polaroid assuming that T is a right polaroid
and T has SVEP at the points λ /∈ σuw(T ).

As in the above theorems, for the (gw) property introduced in [8], we have the
following result.

Theorem 3.11. Let T ∈ L(X) and N be a nilpotent operator which commutes
with T . Then T satisfies the property (gw) if only if T + N satisfies the property
(gw).

Proof. Suppose that T satisfies property (gw). Then T satisfies generalized
a-Browder’s theorem, or equivalently a-Browder’s theorem, i.e. σub(T ) = σuw(T ).
Since these spectra are invariant under N , we have that T +N satisfies a-Browder’s
theorem. Then, from Theorems 3.4 and 3.2, it follows that T +N satisfies property
(gw). By symmetry the reciprocal holds.

As in the above theorems, for the generalized a-Weyl theorem introduced in
[12], we have the following result.

Theorem 3.12. Let T ∈ L(X) and N be a nilpotent operator which commutes
with T . Then T satisfies the generalized a-Weyl Theorem if only if T + N satisfies
the generalized a-Weyl Theorem.

Proof. Suppose that T satisfies generalized a-Weyl’s theorem. Then since
a-Browder’s theorem and property (gR) are invariant under N , it follows from
Theorem 3.2, that T + N satisfies the generalized a-Weyl’s theorem. By symmetry
the reciprocal holds.
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