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Abstract. T. G. Bhaskar and V. Lakshmikantham [Fixed point theorems in partially or-
dered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393], V. Lakshmikantham
and Lj. B. Ciri¢ [Coupled fixed point theorems for nonlinear contractions in partially ordered met-
ric spaces, Nonlinear Anal. 70 (2009) 4341-4349] introduced the concept of a coupled coincidence
point of a mapping F' from X X X into X and a mapping ¢ from X into X. In this paper we prove
a coupled coincidence fixed point theorem in the setting of a generalized b-metric space. Three
examples are presented to verify the effectiveness and applicability of our main result.

1. Introduction

Mustafa and Sims [25] introduced a new notion of generalized metric space
called a G-metric space. Mustafa, Sims and others studied fixed point theorems
for mappings satisfying different contractive conditions [1, 2, 6, 10, 11, 19, 22, 23,
25, 27, 28, 32, 35, 36, 39]. Abbas and Rhoades [1] obtained some common fixed
point theorems for non-commuting maps without continuity satisfying different
contractive conditions in the setting of generalized metric spaces. Lakshmikantham
et al. in [7, 21] introduced the concept of a coupled coincidence point for a mapping
F from X x X into X and a mapping g from X into X, and studied coupled fixed
point theorems in partially ordered metric spaces. In [33], Sedghi et al. proved
a coupled fixed point theorem for contractive mappings in complete fuzzy metric
spaces. On the other hand, the concept of b-metric space was introduced by Czerwik
in [13]. After that, several interesting results for the existence of fixed point for
single-valued and multivalued operators in b-metric spaces have been obtained [3,
5, 8,9, 12, 14, 15, 16, 18, 20, 30, 31, 34, 37, 38]. Pacurar [29] proved some results
on sequences of almost contractions and fixed points in b-metric spaces. Recently,
Hussain and Shah [17] obtained results on KKM mappings in cone b-metric spaces.

Aghajani et al., in a submitted paper [4], extended the notion of G-metric space
to the concept of Gp-metric space. Very recently, Mustafa et al. [24] have obtained
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some coupled coincidence point theorems for nonlinear (v, ¢)-weakly contractive
mappings in partially ordered Gp-metric spaces.

In this paper, we prove a coupled coincidence fixed point theorem in the setting
of a generalized b-metric space. First, we present some basic properties of G-metric
spaces.

Following is the definition of generalized b-metric spaces or Gp-metric spaces.

DEFINITION 1.1. [24] Let X be a nonempty set and s > 1 be a given real
number. Suppose that a mapping G : X x X x X — RT satisfies:
(Gpl) G(z,y,2) =0ifx =y =2,
(Gp2) 0 < G(x,z,y) for all z,y € X with x # y,
(Gp3) G(z,z,y) < G(x,y,2) for all x,y,z € X with y # z,
(Gpd) G(z,y,2) = G(p{z,y, z}), where p is a permutation of z,y, z (symmetry),
(Gp5) G(z,y,2) < s(G(x,a,a)+G(a,y,2)) for all ,y, z,a € X (rectangle inequal-
ity).
Then G is called a generalized b-metric and the pair (X, G) is called a generalized
b-metric space or Gp-metric space.

It should be noted that the class of Gp-metric spaces is effectively larger than
that of G-metric spaces given in [25]. Indeed, each G-metric space is a Gp-metric
space with s = 1. The following example shows that a Gp-metric on X need not
be a G-metric on X.

ExaMPLE 1.1. [24] Let (X,G) be a G-metric space, and G.(z,y,2z) =
GP(z,y,z), where p > 1 is a real number. Note that G, is a Gp-metric with
s =2P~1 In [24], it is proved that (X, G.) is not necessarily a G-metric space.

EXAMPLE 1.2. [24] Let X = R and d(z,y) = |« — y|>. We know that (X, d) is
a b-metric space with s = 2. Let G(z,y,2) = d(x,y) +d(y, z) + d(z, x), then (X, G)
is not a Gp-metric space.

However, G(z,y,z) = max{d(x,y),d(y, z),d(z,2)} is a Gp-metric on R with
s = 2. Similarly, if d(z,y) = |z —y|” is selected with p > 1, then G(x,y,z) =
max{d(z,y),d(y, z),d(z,z)} is a Gy-metric on R with s = 2P~1,

Now we present some definitions and propositions in Gyp-metric spaces.

DEFINITION 1.2. [24] A Gp-metric G is said to be symmetric if G(z,y,y) =
G(y,z,z) for all z,y € X.

DEFINITION 1.3. [24] Let (X, G) be a Gp-metric space. Then, for 2o € X,
r > 0, the Gp-ball with center zg and radius r is

BG(anT) = {y €X | G(’Jfo,y’y) < 7'}.

DEFINITION 1.4. [24] Let X be a Gp-metric space and let dg(x,y) =
G(z,y,y) + G(z,z,y). Then dg defines a b-metric on X, which is called the b-
metric associated with G.



192 Sh. Sedghi, N. Shobkolaei, J. R. Roshan, W. Shatanawi

PROPOSITION 1.2. [24] Let X be a Gy-metric space. For any xo € X and
r >0, ify € Bg(xo,r) then there exists a § > 0 such that Bg(y,d) C Ba(zo, 7).

From the above proposition the family of all Gy-balls
A={Bg(z,r) |z € X, r>0}
is a base of a topology 7(G) on X, which is called the Gp-metric topology.

DEFINITION 1.5. [24] Let X be a Gp-metric space. A sequence (x,) in X is

said to be:

(1) Gp-Cauchy sequence if, for each £ > 0, there exists a positive integer ngy such
that, for all m,n,l > ng, G(xyn, Tm, ;) < €

(2) Gp-convergent to a point x € X if, for each € > 0, there exists a positive integer
ng such that, for all m,n > ng, G(zy, Tm,x) < €.

Using the above definitions, one can easily prove the following proposition.

PROPOSITION 1.4. [24] Let X be a Gp-metric space and (x,) be a sequence
in X. Then the following are equivalent:
(1) the sequence (xy,) is Gp-Cauchy;
(2) for any € > 0, there exists ng € N such that G(xp, Tm,Tm) < €, for all
m,n > ng.

DEFINITION 1.6. [24] A Gjp-metric space X is called complete if every G-
Cauchy sequence is Gp-convergent in X.

Mustafa and Sims proved that each G-metric function G(z,y, z) is jointly con-
tinuous in all three of its variables (see [26, Proposition 8]). But in general a
Gp-metric function G(z,y, z) for s > 1 is not jointly continuous in all three of its
variables. Now we recall an example of a discontinuous Gp-metric.

ExAMPLE 1.3. [24] Let X = NU{oo} and let D : X x X — R™ be defined by

0, if m =n,
’% — %| , if one of m,n is even and the other is even or oo,
D(m,n) =< 5, if one of m,n is odd and the other is odd (and m # n)
or 0o,
2, otherwise.

Then it is easy to see that for all m,n,p € X, we have
5

Thus, (X, D) is a b-metric space with s = g (see [16, Example 2]). Let G(z,y, 2) =
max{D(z,y), D(y, z), D(z,z)}. It is easy to see that G is a Gy-metric with s = 3.

In [24], it is proved that G(z,y, z) is not a continuous function.
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DEFINITION 1.7. Let (X,G) and (X’,G’) be Gp-metric spaces, and let f :
X — X' be a mapping. Then f is said to be continuous at a point a € X if
and only if for every € > 0, there is § > 0 such that z,y € X and G(a,z,y) < ¢
implies G'(f(a), f(x), f(y)) < e. A function f is continuous at X if and only if it
is continuous at all a € X.

DEFINITION 1.8. [7] Let X be a nonempty set. An element (z,y) € X x X
is called a coupled fixed point of a mapping F : X x X — X if F(z,y) = z and

F(y,l‘) =Y.

DEFINITION 1.9. [21] Let X be a nonempty set. An element (z,y) € X x X
is called a coupled coincidence point of mappings F': X x X —- X and g: X — X
if F(z,y) = gz and F(y,z) = gy.

DEFINITION 1.10. [21] Let X be a nonempty set. Then we say that the
mappings F': X x X — X and g : X — X are commutative if gF'(z,y) = F(gx, gy).

2. Common fixed point results

Let ® denote the class of all functions ¢ : [0,00) — [0,00) such that ¢ is
increasing, continuous, ¢(t) < % for all t > 0 and ¢(0) = 0. It is easy to see that
for every ¢ € ® we can choose a 0 < k < % such that ¢(t) < kt.

We start our work by proving the following two crucial lemmas.

LEMMA 2.1. Let (X,G) be a Gy-metric space with s > 1, and suppose that
(xn) is Gp-convergent to x. Then we have

1
;G(x,y,y) <liminf G(xp,y,y) <limsup G(z,,y,y) < sG(x,y,y).

n—oo
In particular, if x =y, then we have lim,_,o G(zn,y,y) = 0.
Proof. Using the rectangle inequality in (X, G), it is easy to see that
G(xn,y,y) < G, z,2) + sG(,y,y),
and i
SG@,y,y) < G(@, 20, 20) + G(20,,9).

Taking the upper limit as n — oo in the first inequality and the lower limit as
n — oo in the second inequality we obtain the desired result. m

LEMMA 2.2. Let (X,G) be a Gy-metric space and let F': X x X — X and
g: X — X be two mappings such that

G(F(z,y), F(u,v), F(z,w)) < $(G(gz, gu, 9z) + G(gy, gv, gw)) (1)

for some ¢ € ® and for all x,y,z,w,u,v € X. Assume that (x,y) is a coupled
coincidence point of the mappings F' and g. Then

F(z,y) = gr = gy = F(y,z).
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Proof. Since (z,y) is a coupled coincidence point of the mappings F' and g, we
have gx = F(z,y) and gy = F(y,z). Assume gz # gy. Then by (1), we get

G(gz, 9y, 9y) = G(F(z,y), F(y,x), F(y,x)) < ¢(G(9z, 9y, 9y) + G(gy, gz, gx)).

Also by (1), we have

G(gy, 97, 97) = G(F(y, ), F(z,y), F(z,y)) < ¢(G(gy, 9x, gx) + G (97, gy, gy))-

Therefore

G(9z, gy, 9y) + G(gy, 9z, gx) < 26(G(gx, gy, 9y) + G(gy, g, g)).

Since ¢(t) < %, we get

G(gz, gy, gy) + G(gy, 9z, 9x) < G(gz, gy, gy) + G(gy, gz, gz),

which is a contradiction. So gx = gy, and hence F(x,y) = gr = gy = F(y,x). m

The following is the main result of this section.

THEOREM 2.1. Let (X, G) be a complete Gy-metric space. Let F: X x X — X
and g : X — X be two mappings such that

G(F(2,9), F(u,0), F(z,w)) < 0(Glow, gu.g2) + Gloy, gv,0w))  (2)

for some ¢ € ® and all z,y,z,w,u,v € X. Assume that F' and g satisfy the
following conditions:

1. F(X x X) € g(X),

2. g(X) is complete, and

3. g is continuous and commutes with F.
Then there is a unique x in X such that gx = F(z,x) = x.

Proof. Let xg,y0 € X. Since FI(X x X) C ¢g(X), we can choose z1,y1 € X
such that gz, = F(zo,y0) and gy1 = F(yo, o). Again since F(X x X) C g(X), we
can choose x9,y2 € X such that gza = F(x1,y1) and gy2 = F(y1,21). Continuing
this process, we can construct two sequences (x,) and (y,,) in X such that gz,+1 =
F(zpn,yn) and gynt+1 = F(yn,xn). For n € NU {0}, by (2) we have

G(92Tn-1,9%n, 9Tn) = G(F(Tp—2,Yn—2), F(Tn—1,Yn—1), F(¥n-1,Yn-1))
< sizaﬁ(G(gxn—z, 9Tn—1,9%n—1) + G(9Yn—2, 9Yn—1, gYn—1))-
Similarly, by (2) we have
G(9Yn—1,9Yn> 9yn) = G(F(yn-2,Zn—2), F(Yn—1,2n-1), F(Yn—1,2n_1))

L

< 5 0(G(gYn—2, 9Yn—1,9Yn—1) + G(gTn—2,9Tn—1,9Tn_1)).

VAl
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Hence, we have that

Ay 1= G(gxn,l,gxn,gxn) + G(gynflvgynagyn)

2
< 87¢(G(g:cn_2,ga:n_1,gxn_1) + G(9Yn—259Yn—1,9Yn—1))

2
= 8*2¢((1n71)

holds for all n € N. Thus, we get a k, 0 < k < % such that

for g = Q—Sk Hence we have
2k 2k
ap < —ap_1 <o < (—)"ao.
S s
Let m,n € N with m > n. By Axiom G5 of definition of Gj-metric spaces, we
have
G(92n—1,9%m; gTm) + G(9Yn—1, 9Ym> 9Ym)
< s(G(grn—1,9%n, gn) + G(9Tn, 9Tm, gTm))
+ 5(G(9Yn—1, 9Yn> 9Yn) + G(9Yn, 9Ym: 9Ym))
= 5(G(92Zn-1,9%n, 92n) + G(9Yn—1,9Yn, 9Yn))

+ 5(G(9%n, 9Tm> 9Zm) + G(gYn> 9Ym> 9Ym))

AN

Sy + 8%np1 + SPanio + o+ 8" A1 + 5™ ",
sq"ao +s%¢" ag + -+ 5™ "™ ag + 45" ag
sq"ao(1 + sq + s2¢> +---)

5q"ag

IN A

IN

0,
1—sq —
since sq = 2k < 1. Thus (gz,) and (gyn,) are Gp-Cauchy in g(X). Since g(X) is
complete, we get (gz,) and (gy,) are Gp-convergent to some z € X and y € X
respectively. Since g is continuous, we have that (ggz,) is Gp-convergent to gz and
(99yn) is Gp-convergent to gy. Also, since g and F' commute, we have

99Tn+1 = 9(F(Tn,yn)) = F(92n, gyn),
and

99Yn+1 = §(F(Yn, n)) = F(gYn, gn).
Thus

G(997n+1, F(2,y), F(2,y)) = G(F(92n, gyn), F(z,y), F(x,y))
1
< ;245((?(99%, gz, 9x) + G(99yn, 9, 9Y))-
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Letting n — oo, and using Lemma 2.1, we get that

LGlgw, F(w,y), Flar,y) < limsup G(F (g, y0). F (), Fi(r,9)

n—oo

_ 1
< lim sup Sjé(G(gg:ﬂm 9z, 9x) + G(99Yn, 9Y, 9Y))

1
< 87¢(S(G(gx,gz,gx) +G(9y,9y,9y)) = 0.

Hence, gx = F(z,y). Similarly, we may show that gy = F(y,z). By Lemma 2.2,
(z,y) is a coupled fixed point of the mappings F' and g, i.e.,

gr = F(x,y) = F(y,r) = gy.

Thus, using Lemma 2.1 we have

1
S Gl@, gz, gz) < limsup Glgwnt1, g2, g2)
= limsup G(F(xn, yn), F(z,y), F(z,y))

n—oo

_ 1
< limsup ;2¢(G(9xm 9z, 9z) + G(9Yn, 9y, 9y))

n— oo

1
< 29(s(Gla, gz, 92) + Gy, 9y, 9y))).
Hence, we get
1
Gz, gz, 92) < ~d(s(G(z, gz, 92) + G(y, 9y, 9y)))-
Similarly, we may show that

G(y,9y,9y) < éaﬁ(S(G(x,ngﬂ:) +G(y, 9y, 9Y)))-

Thus,
2
Gz, gz, 9x) + Gy, 9y, 9y) < o (s(G(w, gz, gx) + G(y, 9y, 9y)))
< 2kG(x, gz, gx) + G(y, 9y, 9y)-
Since 2k < 1, the last inequality happens only if G(z,gx,gx) = 0 and

G(y,9y,9y) = 0. Hence z = gz and y = gy. Thus we get
gr = F(z,2) = .

To prove the uniqueness, let z € X with z # x such that
z=gz=F(z2).

Then

G(z,2,2) = G(F(2,2), F(2,2), F(2,2)) < 502G (g2, 92 2))

< S%QkG(x,z,z) < 2kG(z, z,2).
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Since 2k < 1, we get G(z, z,2) < G(z, z, z), which is a contradiction. Thus, F' and
g have a unique common fixed point. m

COROLLARY 2.1. Let (X,G) be a Gy-metric space. Let F: X x X — X and
g: X — X be two mappings such that

G(F(z,y), F(u,v), F(u,v)) < ffz(G(nggu, gu) + G(gy, gv, gv)) (3)

for all x,y,u,v € X. Assume F and g satisfy the following conditions:
1. F(X x X) C g(X),
2. g(X) is complete, and
3. g is continuous and commutes with F'.

Ifk € (0,3%), then there is a unique x in X such that g = F(z,z) = x.
Proof. Follows from Theorem 2.1 by taking z =u , v = w and ¢(¢t) = kt. m

COROLLARY 2.2. Let (X, G) be a complete Gy-metric space. Let F: X x X —
X be a mapping such that

G(F(z,y), F(u,v), F(u,v)) < = (G(z,u,u) + G(y,v,v))

for all x,y,u,v € X. Ifk € [0,%), then there is a unique x in X such that
F(z,xz) =x.

REMARK 2.1. Since every Gp-metric is a G-metric when s = 1, so our results
can be viewed as generalizations and extensions of corresponding results in [35] and
several other comparable results.

Now, we introduce some examples for Theorem 2.1.

Example 2.1. Let X = [0,1]. Define G: X x X x X — R" by
Gla,y,2) = (Jz =yl + & — 2| + [y — 2|)*

forall z,y,z € X. Then (X, G) is a complete Gp-metric space with s = 2, according

to Example 1.1. Defineamap F': X x X — X by F(z,y) = %8—5-% forz,y € X.

t
Also, define g : X — X by g(z) = % for z € X and ¢(t) = 1 for t € R*. We have
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that
G(F(z,y), F(u,v), F(z,w))
= (|F(z,y) = F(u,v)| + |F(u,v) = F(z,w)| + |F(2,w) = F(z,y)|)?

S T R
128 7 256 128 256 ' 128 ' 256 128 256
+|i+ﬂ_i_i|)2
128 7256 128 256
(e |2 — ] + oo Jy — o] + = [ — 2] + === [0 — 0] + = | — ]
—|r - — |y — —|u— —v—w+-—=z—z
=128 256 Y 128 " 71T 956 128
1 2
+%|w—y|)
_ z z T 1 |1y v 9
_(32‘4 4‘+’4 4+4 il 4(‘4 1 ’“L‘ ))
2 |y v w o Ylig
<=5 -~ - ol iy g A e - _Z
—322’4 4’+‘4 4’ 2(‘4 1 4’*‘ 1)

2
ﬁG(gy, gv, gw)

= QG(gagu,gZ) +t5

32

2
1G(gz, gu, gz) + G(gy, gv, gw)
4 4

IN

IN

1
5 0(G(9z, gu, gz) + G(gy, gv, gw))
2

holds for all z,y,u,v,z,w € X. It is easy to see that F' and g satisfy all the
hypothesis of Theorem 2.1. Thus F' and g have a unique common fixed point. Here
F(0,0)=¢(0)=0.m
ExXaMPLE 2.2. Let X and G be as in Example 2.1. Define a map
F:XxX—X by Flx,y = ix +iy !
16 16 8

for z,y € X. Then F(X x X) = [%, 1]. Also,
G(F(z,y), F(u,v), F(u,v))

1
= (@IF () — F(u,0)])? = =(12* = u® + 37 = v?))?
1 1 2 22 2 212
s64<|x | g e ])? S (0 - P g o)
1
< 5z —uf + 4y o) = £ (Gle,ww) + Gly,v,0)

1

§22

(G(z,u,u) + G(y,v,v))

Then by Corollary 2.2, F' has a unique fixed point. Here x = 4 — /15 is the unique
fixed point of F, that is, F(z,z) =z. =
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Now we present an example for the main result in an asymmetric Gp-metric
space.

EXAMPLE 2.3. Let X = {0,1,2} and let
A =1{(2,0,0),(0,2,0),(0,0,2)}, B =1{(2,2,0),(2,0,2),(0,2,2)}
and C={(z,z,2):2€ X}.
Define G : X® — Rt by

if (x,y,2) € A
if (z,y,2) € B
if (z,9,2) € X2 - (AUBUCQC)

ife=y==z

G(x,y,2) =

o:&w»—

It is easy to see that (X, G) is an asymmetric Gp-metric space with coeflicient s = %

Also, (X, G) is complete. Indeed, for each (x,) in X such that G(z,, Zm, Tm) — 0,
then there is a k € N such that for each n > k, z,, = z,, = x for an z € X, so
G(xp, xn, ) — 0.

Define mappings F' and g by
P (0,0) (0,1) (1,0) (1,1) (1,2) (2,1) (2,2) (2,0) (0,2)
_< 0 2 0 0 0 0 0 0 2 )’
01 2
9= (0 2 2)'

We see that F(X x X) C gX, ¢ is continuous and commutes with F', and g(X) is
complete.

Define ¢ : [0, 00) — [0,00) by ¢(t) = 2L In(ZL + 1). Since
(F(z,y), F(u,v), F(z,w)), (92, gu, 92), (9y, gv, gw) € AU B,
we have
G(F(z,y), F(u,v), F(z,w)),G(gz, gu, gz), G(gy, gv, gw) € {0,1,3}.

Hence, one can easily check that the contractive condition (2) is satisfied for every
z,y, 2z, u,v,w € X.

Thus, all the conditions of Theorem 2.1 are fulfilled and F' and g have a unique
common fixed point. Here F(0,0) = g(0) =0.m
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