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ON COUNTABLY NEARLY PARACOMPACT SPACES

M. N. Mukherjee and Dhananjoy Mandal

Abstract. The idea of countable near paracompactness of a topological space, as a natural
offshoot of the well known concept of near paracompactness, is introduced and investigated in this
article. In the process, the notion of semi nearly normal spaces is initiated. Apart from its char-
acterizations, semi near normality is used for the investigation of countably nearly paracompact
spaces.

1. Introduction

The idea of countable paracompactness is well known for a long time, which
was introduced independently by Dowker [2] and Katětov [4].

The concept of nearly paracompact spaces was introduced by Singal and
Arya [12], followed by its numerous investigations, see, e.g., [5,7,8,11]. Although it
is observed that near paracompactness of a topological space (X, τ) is nothing but
the paracompactness of the semiregularization space (X, τs) (where τs is the topol-
ogy on X given by the set of all regular open sets of X taken as an open base), near
paracompactness possesses interesting and meaningful entity and facets of its own.
In [10], near paracompactness is studied in terms of cushioned refinement, local
star properties, partition of unity and above all, by use of the theory of selection.

The purpose of this paper is to introduce and study the notion of countably
nearly paracompact spaces, as a natural offshoot of the idea of near paracompact-
ness. It is seen in Section 2, that countable near paracompactness is strictly weaker
than each of countable paracompactness and near paracompactness.

In Section 3, we introduce the concept of semi nearly normal space; it is shown
that the class of such spaces is situated strictly between the classes of normal spaces
and nearly normal spaces, the latter class of spaces being initiated and studied in
[8,9]. We examine certain characterizations of semi nearly normal spaces including
a parallel version of the famous Urysohn’s Lemma. The condition for a semi nearly
normal spaces to be countably nearly paracompact is also formulated and proved.
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In what follows, by a space X we shall mean a topological space (X, τ), and for
a subset A of X, cl A and intA will stand respectively for the closure and interior of
A in (X, τ). A set A in a space X is called regular open if A = int cl A, the comple-
ments of such sets are called regular closed sets. The set of all regular open sets in
a space (X, τ), denoted by RO(X), is known to form an open base for a topology,
say τs, on X, called the semiregularization topology on X [1], and the space (X, τs)
which is denoted by (X)s, is called the semiregularization space of (X, τ). The
members of τs are called δ-open sets [14], and their complements in X are called
δ-closed sets. We shall sometimes write A∗ for int cl A and C# = {A∗ : A ∈ C}, for
any open cover C of a space (X, τ). A space X is called nearly paracompact [12] if
every regular open cover of X has a locally finite open refinement.

2. Countably nearly paracompact spaces

As already proposed in the introduction, the intent of this section is to intro-
duce and investigate countably nearly paracompact spaces. It will be revealed in the
course of the future deliberation that the concept of near normality plays the same
role vis-a-vis countable near paracompactness, as does the normality with regard
to countable paracompactness. The definition of countable near paracompactness
goes as follows.

Definition 2.1. A topological space (X, τ) is called countably nearly para-
compact (CNP, for short) if every countable regular open cover of X (i.e., a cover
of X consisting of countably many regular open sets) has a locally finite open
refinement.

Remark 2.2. Obviously, every countably paracompact space is countably
nearly paracompact and every nearly paracompact space is CNP. We now give
examples to show that the converse is false in each of the cases.

Example 2.3. Let R be the set of all real numbers and τ the co-countable
topology on R. Let {xn : n ∈ N} be an enumeration of the set Q of all rationals.
For each n ∈ N, let Un = (R \ Q) ∪ {xn}. Then {Un : n ∈ N} is a countable
open cover of (R, τ), which fails to possess any locally finite open refinement and
hence (R, τ) is not countably paracompact. On the other hand, the space (R, τ) is
countably nearly paracompact, as R and ∅ are the only regular open sets in (R, τ).

Example 2.4. The space ω1 of all countable ordinals is known to be countably
compact and hence countably nearly paracompact. Now, ω1 is regular but not
paracompact. As a regular, nearly paracompact space is paracompact [12], ω1

cannot be nearly paracompact.
The idea of near normality was initiated in [8] in the following way:

Definition 2.5. A topological space X is called nearly normal if for any pair
of nonempty disjoint sets A and B in X, of which one is δ-closed and the other
regular closed, there exist disjoint open sets U and V in X such that A ⊆ U and
B ⊆ V .
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We now give some necessary conditions for a nearly normal space X to be
countably nearly paracompact. Before that we need the following definition.

Definition 2.6. [15] An open cover B = {Bα : α ∈ Λ} of a space X is
called shrinkable if there exists an open cover A = {Aα : α ∈ Λ} of X such that
cl(Aα) ⊆ Bα, for all α ∈ Λ. In this case, we say that A is a shrinking of B.

In [9], it is proved that in a nearly normal space, every point-finite regular
open cover is shrinkable. We now prove the following implications:

Theorem 2.7. For a nearly normal space X, the following implications hold:
(a) X is countably nearly paracompact.
⇒ (b) Every countable regular open cover of X is shrinkable.
⇒ (c) For every sequence {Fn : n ∈ N} of regular closed sets with empty intersec-
tion, there is a sequence {Gn : n ∈ N} of open sets with Gn ⊇ Fn for each n ∈ N,
such that

⋂∞
n=1 Gn = ∅.

Proof. (a) ⇒ (b). Let B = {Bn : n ∈ N} be a countable regular open cover of
X. Since X is CNP, there exists a locally finite open cover C = {Aα : α ∈ Λ} of X
such that C refines B. For each n ∈ N, let

An =
⋃
{Aα ∈ C : Aα ⊆ Bn and Aα * Bm if m < n} and A = {An : n ∈ N}.

Obviously, A is a sequence of open sets in X such that An ⊆ Bn, for all n ∈ N. We
now show that A is locally finite and a cover of X. Let x be an arbitrary element
of X. Since C is a cover of X, there exists Aα ∈ C such that x ∈ Aα. As C refines
B, there exists some k ∈ N such that Aα ⊆ Bk. Let σ = {n ∈ N : Aα ⊆ Bn}.
Since k ∈ σ, we have σ 6= ∅. Let n0 be the least of such k’s. Then Aα ⊆ Bn0 , and
Aα * Bn if n < n0. This implies that Aα ⊆ An0 , i.e., x ∈ An0 , proving A to be a
cover of X.

We prove that A is locally finite. Let x ∈ X. Since C is locally finite, there is
an open neighbourhood U of x in X which intersects at most finitely many members
of C, i.e., there exist α1, α2, . . . , αk ∈ Λ such that U ∩ Aαi 6= ∅ (i = 1, 2, . . . , k)
and U ∩ Aα = ∅ if α 6= αi (i = 1, 2, . . . , k). Since C refines B, there exist n1, n2,
. . . , nk ∈ N such that Aαi ⊆ Bni (i = 1, 2, . . . , k). Let n0 = max (n1, n2, . . . , nk).
By definition, each An is the union of some Aα’s and if n > n0, none of these
Aα’s which constitute An can be equal to any of Aαi ’s (i = 1, 2, . . . , k). Thus,
U ∩An = ∅, for all n > n0. This shows that U can intersect at most finitely many
members of A. Thus, A is a locally finite open refinement of B. Since B ⊆ RO(X),
A# = {A∗n : n ∈ N} is also a locally finite open refinement of B, as can be checked.
Since every locally finite family is point finite, by near normality of X, there exists
an open cover D = {Dn : n ∈ N} of X which is a shrinking of A# (see [9]). Since
A# refines B, it follows that D is also a shrinking of B. This proves ‘(a) ⇒ (b)’.

(b) ⇒ (c). Let {Fn : n ∈ N} be a sequence of regular closed sets in X with⋂∞
n=1 Fn = ∅. Then {X \ Fn : n ∈ N} is a regular open cover of X and hence, by
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(b), it has a shrinking, i.e., there is an open cover {Vn : n ∈ N} of X such that
cl(Vn) ⊆ X \ Fn, for all n ∈ N. For each n ∈ N, let Gn = X \ cl(Vn). Then
{Gn : n ∈ N} is a sequence of open sets in X with Fn ⊆ Gn, for all n ∈ N and
also

⋂∞
n=1 Gn = X \ ⋃∞

n=1 cl(Vn) = ∅, as {Vn : n ∈ N} covers X. This proves
‘(b) ⇒ (c)’.

3. Semi near normality and CNP spaces

In this section, we shall introduce and study, an intermediate version of near
normality, termed semi near normality. We also obtain a few sufficient conditions
for countably near paracompactness. We begin by defining as follows.

Definition 3.1. A topological space (X, τ) is called semi nearly normal, if
for every pair of nonempty disjoint sets A and B in X, of which one is δ-closed and
the other closed, there exist disjoint open sets U and V in X such that A ⊆ U and
B ⊆ V .

Remark 3.2. We immediately have the following implications for any space X:

X is normal ⇒ X is semi nearly normal ⇒ X is nearly normal.

In the following two examples we show that the above implications are not re-
versible, in general.

Example 3.3. Let R be the set of all real numbers and τ the co-countable
topology on R. Then (R, τ) is not normal, but it is semi nearly normal (as R and
∅ are the only δ-closed sets in (R, τ)).

Example 3.4. Suppose R is the set of all real numbers. Let τ1 and τ2 be
respectively the Euclidean topology and co-countable topology on R. Let τ be
the smallest topology on R generated by τ1 ∪ τ2. Then a set U is open in (R, τ)
iff U = O \ A, where O is an open set in (R, τ1) and A is a countable subset of
R. Also, a set in (R, τ) is regular closed (δ-closed) iff it is regular closed (resp.
δ-closed) in (R, τ1) (see page 85 of [13]). Thus, if A is a regular closed set and B
a δ-closed set in (R, τ) with A ∩ B = ∅, then A and B are basically two disjoint
closed sets in (R, τ1). Since (R, τ1) is normal, there exist disjoint open sets U and
V in (R, τ1) such that A ⊆ U and B ⊆ V . Since U and V are open in (R, τ) as
well, the near normality of (R, τ) is established. Now we show that (R, τ) is not
semi nearly normal. For that, let A = {√2} and B = Q, the set of all rational
numbers. Then A is δ-closed and B is closed in (R, τ). We suppose that there
exist disjoint open sets U and V in (R, τ) such that

√
2 ∈ U and Q ⊆ V . Since

U and V are open in (R, τ), there exist open sets O1 and O2 in (R, τ1) and two
countable subsets C and D of R such that U = O1 \ C and V = O2 \ D. Now,
U ∩ V = ∅ ⇒ O1 ∩ O2 \ C ∪ D = ∅ ⇒ O1 ∩ O2 ⊆ C ∪ D ⇒ O1 ∩ O2 = ∅ (since
C ∪D is countable and O1 ∩O2 is open in (R, τ1)). This shows that

√
2 ∈ O1 and

Q ⊆ O2 ⊆ R \O1 which, in turn, implies that O1 is a nonempty open set in (R, τ1)
such that O1 ∩Q = ∅. That is a contradiction. Hence (R, τ) fails to be semi nearly
normal.
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The following characterization of semi near normality will be useful for our
discussion in the sequel.

Theorem 3.5. A space X is semi nearly normal iff for any δ-closed set A in
X and for any open set U in X with A ⊆ U , there exists a regular open set V in
X such that A ⊆ V ⊆ cl(V ) ⊆ U .

Proof. Let A be δ-closed and U an open set in X such that A ⊆ U . Then
(X \ U) is closed in X and A ∩ (X \ U) = ∅. Then, by semi near normality of X,
there exist open sets G and H in X such that A ⊆ G, X \ U ⊆ H and G ∩H = ∅,
i.e., cl(G) ⊆ X \H. Thus we have, A ⊆ G ⊆ cl(G) ⊆ X \H ⊆ U . Since G is open
in X, G ⊆ G∗ and cl(G) = cl(G∗). Therefore, A ⊆ G ⊆ G∗ ⊆ cl(G∗) ⊆ U , i.e.,
A ⊆ V ⊆ cl(V ) ⊆ U , where V = G∗. Since V is regular open, the necessity follows.

Conversely, let A be δ-closed and B a closed set in X with A∩B = ∅. Then by
hypothesis, there exists a regular open set V in X such that A ⊆ V ⊆ cl(V ) ⊆ X\B.
Let U = X \ cl(V ). Then U and V are open sets in X satisfying A ⊆ V , B ⊆ U
and U ∩ V = ∅ which proves the semi near normality of X.

We are now going to prove an analogous version (with a similar line of proof)
of the celebrated Urysohn’s lemma, for semi nearly normal spaces.

Theorem 3.6. A space X is semi nearly normal if and only if for any pair
of disjoint sets A and B in X, of which one is δ-closed and the other closed in
X, there exists a continuous function f : X → [0, 1] such that f(A) = {0} and
f(B) = {1}.

Proof. Let A be a δ-closed set and B a closed set in a semi nearly normal space
X with A ∩B = ∅, i.e., A ⊆ X \B. We shall first define, for each p ∈ Q, a regular
open set Up in X such that cl(Up) ⊆ Uq, whenever p, q ∈ Q with p < q. To do this,
let P = Q ∩ [0, 1] and let {tk : k ∈ N} be an enumeration of P with t1 = 1 and
t2 = 0. Let U1 = X \ B. Then U1 is an open set in X with A ⊆ U1. By Theorem
3.5, there exists a regular open set U0 in X such that A ⊆ U0 ⊆ cl(U0) ⊆ U1. Let
Pn(n ≥ 2) be the set of first n rational numbers in the sequence {tk : k ∈ N} and
let, for each p ∈ Pn, a regular open set Up have been defined satisfying cl(Up) ⊆ Uq,
whenever p, q ∈ Pn with p < q. Let r be the (n + 1)-th rational number in the
sequence {tk : k ∈ N}. We now consider the set Pn+1 = Pn ∪ {r}. Since r ∈ Pn+1,
r 6= 0, 1 and Pn+1 is a finite set, r has an immediate predecessor p and an immediate
successor q (with respect to the usual ordering of real numbers) in Pn+1. Since
p < r < q, it follows that p, q ∈ Pn and hence, by induction hypothesis, regular
open sets Up and Uq have already been defined satisfying cl(Up) ⊆ Uq. Since Up is
regular open in X, cl(Up) is δ-closed (in fact, regular closed) in X. By Theorem
3.5, there exists a regular open set Ur in X such that cl(Up) ⊆ Ur ⊆ cl(Ur) ⊆ Uq.
We now show that cl(Ua) ⊆ Ub, whenever a, b ∈ Pn+1 with a < b. If both a and
b belong to Pn, then the requirement is satisfied by the induction hypothesis. If
any one of them is r and the other is a member of Pn ( say, s), then either s ≤ p
which implies cl(Us) ⊆ cl(Up) ⊆ Ur; or s ≥ q for which cl(Ur) ⊆ Uq ⊆ Us. Thus
for all a, b ∈ Pn+1, cl(Ua) ⊆ Ub, whenever a < b. Hence by induction, we have
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defined a regular open set Up, for each p ∈ P , satisfying cl(Up) ⊆ Uq, whenever
p, q ∈ P with p < q. If p ∈ Q is such that p < 0, then we define Up = ∅; we also
define Up = X, whenever p ∈ Q and p > 1. Thus for each r ∈ Q, a regular open
set Ur has been defined such that cl(Up) ⊆ Uq, whenever p, q ∈ Q with p < q.
For each x ∈ X, let A(x) = {p ∈ Q : x ∈ Up}. Then for any p ∈ Q with p < 0,
p /∈ A(x) and for any p ∈ Q with p > 1, p ∈ A(x). Thus, for each x ∈ X, the set
A(x) is bounded below and has its infimum in [0, 1]. We define f : X → [0, 1] by
f(x) = inf A(x), for each x ∈ X. We now show that f is the desired function. Let
x be an arbitrary element of A. Then x ∈ Up, for all p ≥ 0 (since A ⊆ U0 and
cl(Up) ⊆ Uq, whenever p < q). Thus, A(x) is the set of all non-negative rational
numbers and hence inf A(x) = 0, i.e., f(x) = 0. Therefore, f(A) = {0}. Let x
be an arbitrary element of B. Then x /∈ Up, for all p ≤ 1 (since U1 = X \ B and
cl(Up) ⊆ Uq, whenever p < q). Thus A(x) is the set of all rational numbers which
are greater than 1 and hence inf A(x) = 1, i.e., f(x) = 1. Therefore, f(B) = {1}.
It is easy to see that for any r ∈ Q, the following implications hold:

(i) x ∈ cl(Ur) ⇒ A(x) ⊇ {s ∈ Q : s > r} ⇒ f(x) ≤ r and

(ii) x /∈ Ur ⇒ A(x) ⊆ {s ∈ Q : s > r} ⇒ f(x) ≥ r.

To show that f : X → [0, 1] is continuous, let x0 ∈ X be arbitrary and
(f(x0)− ε, f(x0)+ ε) an ε-neighbourhood of f(x0) in R, where ε > 0. Let us choose
p, q ∈ Q satisfying f(x0) − ε < p < f(x0) < q < f(x0) + ε. Let U = Uq \ cl(Up).
Then U is an open set in X and also x0 ∈ U , because x0 /∈ Uq ⇒ f(x0) ≥ q, and
x0 ∈ cl(Up) ⇒ f(x0) ≤ p, which is a contradiction in each case. Also, x ∈ U ⇒ x ∈
Uq and x /∈ cl(Up) ⇒ f(x) ≤ q and f(x) ≥ p ⇒ f(x) ∈ [p, q] ⊆ (f(x0)−ε, f(x0)+ε).
Thus U is an open set in X containing x0 satisfying f(U) ⊆ (f(x0)− ε, f(x0) + ε).
Therefore, f is continuous.

Conversely, let A be a δ-closed and B a closed set in X. Then by hypothesis,
there exists a continuous function f : X → [0, 1] such that f(A) = {0} and f(B) =
{1}. Then the open sets U = f−1[0, 1

2 ) and V = f−1( 1
2 , 1] are disjoint and contain

A and B respectively. Hence X is semi nearly normal.

The following is a sufficient condition for a semi nearly normal space X to be
countably nearly paracompact.

Theorem 3.7. If a space X is semi nearly normal and for every decreasing
sequence {Fn : n ∈ N} of δ-closed sets in X with empty intersection, there is a
sequence {Gn : n ∈ N} of open sets in X satisfying Gn ⊇ Fn, for all n ∈ N and⋂∞

n=1 Gn = ∅, then X is countably nearly paracompact.

Proof. Let U = {Un : n ∈ N} be a regular open cover of X. For each n ∈ N,
let Fn = X \ ⋃n

k=1 Uk. Then {Fn : n ∈ N} is a decreasing sequence of δ-closed
sets in X satisfying

⋂∞
n=1 Fn = ∅. Then by hypothesis, there exists a sequence

{Gn : n ∈ N} of open sets in X such that Gn ⊇ Fn, for all n ∈ N and
⋂∞

n=1 Gn = ∅.
Now, X \ G1 and F1 are two disjoint sets in X, where X \ G1 is closed and F1

is δ-closed in X. By semi near normality of X, there exists an open set W1 in
X such that X \ G1 ⊆ W1 and cl(W1) ∩ F1 = ∅. Also, (X \ G2) ∩ F2 = ∅ and
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cl(W1) ∩ F1 = ∅ ⇒ [(X \ G2) ∪ cl(W1)] ∩ F2 = ∅ (since F1 ⊇ F2). Thus, F2

and (X \ G2) ∪ cl(W1) are two disjoint closed sets in X with F2 a δ-closed set.
Again by semi near normality of X, there exists an open set W2 in X such that
cl(W2) ∩ F2 = ∅ and (X \ G2) ∪ cl(W1) ⊆ W2. Continuing this process we get
inductively a sequence {Wn : n ∈ N} of open sets in X satisfying the following
conditions:

(i) cl(Wn) ⊆ Wn+1,
(ii) X \Gn ⊆ Wn and
(iii) cl(Wn) ∩ Fn = ∅, for all n ∈ N.
Since

⋂∞
n=1 Gn = ∅, {X \ Gn : n ∈ N} covers X. Therefore, by (ii) above,

{Wn : n ∈ N} is an open cover of X. Let S1 = W1, S2 = W2 and Sn = Wn \
cl(Wn−2), for n > 2. Then {Sn : n ∈ N} is a sequence of open sets in X. We
first show that {Sn : n ∈ N} covers X. For that, let x be an arbitrary element of
X. Since {Wn : n ∈ N} covers X, there exists an n ∈ N such that x ∈ Wn. Let
σ = {k ∈ N : x ∈ Wk}. Since n ∈ σ, σ 6= ∅ and hence, σ has a least element, say n0.

If n0 = 1, then x ∈ W1 = S1.
If n0 > 1, then x ∈ Wn0 and x /∈ Wn, for n < n0. Since n0 > 1, there exists

some p ∈ N such that n0 = p + 1. If p = 1, then x ∈ W2 = S2. If p > 1, then
x ∈ Wp+1 and x /∈ Wp ⇒ x ∈ Wp+1 and x /∈ cl(Wp−1) (since by (i), cl(Wp−1) ⊆ Wp)
⇒ x ∈ Wp+1 \ cl(Wp−1) = Sp+1. Thus {Sn : n ∈ N} is an open cover of X.

For each k ∈ N, letAk = {Sk∩Uj : j = 1, 2, . . . , k}. ThenAk consists of finitely
many open subsets of X, for each k ∈ N. Let A =

⋃∞
k=1Ak. Then A is a family

of open sets in X which refines U (note that Ak refines U , for each k ∈ N). We
first show that

⋃Ak = Sk, for each k ∈ N. So, fix an arbitrary k ∈ N. Obviously,
Sk ⊆ Wk (by definition of Sk’s). Also, Wk ∩ Fk = ∅ (see (iii)) ⇒ Wk ⊆ X \ Fk =⋃k

j=1 Uj ⇒ Sk ⊆
⋃k

j=1 Uj ⇒ Sk = Sk ∩ (
⋃k

j=1 Uj) =
⋃k

j=1(Sk ∩ Uj) =
⋃Ak.

We now show that A is a cover of X. Consider any x ∈ X. Since {Sn : n ∈ N}
is a cover of X, there is some k ∈ N such that x ∈ Sk =

⋃Ak. Thus there is some
V ∈ Ak ⊆ A such that x ∈ V . Hence A covers X.

So it remains to show that A is locally finite. For this, we first show that
|k − j| > 1 ⇒ Sk ∩ Sj = ∅.

Let k−j > 1. For j = 1 or 2, Sk∩Sj = (Wk∩Wj)\(cl(Wk−2)∩Wj) = Wj\Wj =
∅. Again, for j > 2, we have Sk∩Sj ⊆ Wk∩Wj \cl(Wk−2∪Wj−2) = Wj \cl(Wk−2)
(since Wj ⊆ Wk and Wj−2 ⊆ Wk−2) ⊆ Wk−2\cl(Wk−2) (since k−j > 1⇒ j ≤ k−2
⇒ Wj ⊆ Wk−2) = ∅.

Similarly, j − k > 1 ⇒ Sj ∩ Sk = ∅. Thus, for every k ∈ N, the members
of A which may intersect a member of Ak are the members of Ak−1, or Ak, or
Ak+1. Let x ∈ X. Since A (=

⋃∞
k=1Ak) covers X, there exists a k ∈ N and a

V ∈ Ak such that x ∈ V . Then V is an open neighbourhood of x in X and V can
meet no member of A other than the members of Ak−1, Ak and Ak+1. This shows
that V meets at most finitely many members of A. Thus A is a locally finite open
refinement of U and hence X is CNP.
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Finally we prove another sufficient condition for countably near paracompact-
ness.

Theorem 3.8. A space X is countably nearly paracompact if X× [0, 1] is semi
nearly normal.

Proof. We first show that X is semi nearly normal. Let A be a δ-closed set
and B a closed set in X such that A∩B = ∅. Then A× [0, 1] and B× [0, 1] are two
disjoint closed sets in X× [0, 1], where A× [0, 1] is δ-closed (note that for two spaces
X and Y , (X×Y )s = Xs×Ys [3]). Since X×[0, 1] is semi nearly normal, there exist
disjoint open sets G and H in X× [0, 1] such that A× [0, 1] ⊆ G and B× [0, 1] ⊆ H.
Then U = {x ∈ X : (x, 0) ∈ G} and V = {x ∈ X : (x, 0) ∈ H} are open sets in
X; and also U and V satisfy A ⊆ U , B ⊆ V and U ∩ V = ∅, which proves that X
is semi nearly normal. Now, let {Fn : n ∈ N} be a decreasing sequence of δ-closed
sets in X such that

⋂∞
n=1 Fn = ∅. Let Wn = X \ Fn, for each n ∈ N. Note that

Wn × [0, 1
n ) is δ-open in X × [0, 1], for each n ∈ N. Then

⋃∞
n=1 Wn × [0, 1

n ) is also
δ-open in X × [0, 1]. Let C = X × [0, 1] \⋃∞

n=1 Wn × [0, 1
n ). Then C is δ-closed in

X × [0, 1] and D = X × {0} is closed in X × [0, 1]. Also, t ∈ D ⇒ t = (x, 0), for
some x ∈ X. Since

⋂∞
n=1 Fn = ∅, {Wn : n ∈ N} covers X and hence there is some

n ∈ N such that x ∈ Wn ⇒ (x, 0) ∈ Wn × [0, 1
n ) ⇒ t /∈ C. Thus C ∩D = ∅. By

semi near normality of X × [0, 1], there is an open set O in X × [0, 1] such that
C ⊆ O and cl(O) ∩ D = ∅. For each n ∈ N, we define fn : X → X × [0, 1] by
fn(x) = (x, 1

n ), for all x ∈ X. Let Gn = f−1
n (O), for each n ∈ N. Then Gn is open

in X (since fn is continuous) and Gn = {x ∈ X : (x, 1
n ) ∈ O}, for each n ∈ N. We

now show that Gn ⊇ Fn, for all n ∈ N. Let x ∈ Fn. Then x ∈ Fm for all m ≤ n
(since {Fn : n ∈ N} is decreasing) ⇒ x /∈ Wm for all m ≤ n. Also, 1

n /∈ [0, 1
m ),

for all m > n. Thus (x, 1
n ) /∈ ⋃∞

m=1 Wm × [0, 1
m ) ⇒ (x, 1

n ) ∈ C ⊆ O ⇒ x ∈ Gn.
Therefore, Gn ⊇ Fn, for all n ∈ N. We suppose that

⋂∞
n=1 Gn 6= ∅. Then there

exists some x ∈ X such that x ∈ Gn, for all n ∈ N ⇒ (x, 1
n ) ∈ O for all n ∈ N, ⇒

(x, 0) is a limit point of O ⇒ (x, 0) ∈ cl(O), which is contradictory to the fact that
cl(O) ∩D = ∅. Therefore,

⋂∞
n=1 Gn = ∅ and hence, by Theorem 3.7, X is CNP.

Note 3.9. In fact, the above theorem follows from a result of J. Mack (The-
orem 1 of [6]) which states that a space X is countably paracompact iff X × [0, 1]
is δ-normal. However, we have retained the proof as it provides an alternative and
direct proof of the result of Mack in our particular setting.
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[14] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. Ser. 2, 78 (1968), 103–
118.

[15] S. Willard, General Topology, Addison-Wesley, Reading, Mass., 1970.

(received 19.10.2012; in revised form 26.08.2013; available online 15.10.2013)

Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata–
700019, INDIA

E-mail : mukherjeemn@yahoo.co.in, dmandal.cu@gmail.com


