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COMPOSITIONS OF SAIGO FRACTIONAL INTEGRAL
OPERATORS WITH GENERALIZED VOIGT FUNCTION

Deepa H. Nair and M. A. Pathan

Abstract. The principal object of this paper is to provide the composition of Saigo fraction-
al integral operators with different forms of Voigt functions. An alternative explicit representation
of the generalized Voigt function in terms of Laplace integral transform is shown and the relations
between the left-sided and the right-sided Saigo fractional integral operators are established with
the 1 Fi-transform and the Whittaker transform, respectively. Many interesting results are de-
duced in terms of some relatively more familiar hypergeometric functions in one and two variables.

1. Introduction

This paper deals with the generalized Voigt function defined for p, y € R,
x € R, and R(u + v) > —1 by the integral

T [ PL 22t2
Qpapp(T,y) = 5/0 the V' =T Fy (a;ﬂ71+1/;—4> dt. (1)

Here 1 F5 (o; 8,7; ) is the the function defined as

r

15 (a; 8,73 @) :z_%(ﬁ()i“g;)r %’

where a, 8, y€ C,v# —p (p=0,1,2,...) and («), is the Pochhammer symbol
[1]. The function in (1) was introduced by Pathan and Shahwan [16]. The special
case of the function Q, o g, (z,y) in the form

00 t2
Viu(z,y) = \/g/o t* exp(—yt — Z)J,,(xt)dt, z,y R, Rlp+v)>-1, (2

with 2,y € R™ and R(u + ) > —1, known as generalized (unified) Voigt function,
was introduced and studied by Srivastava and Miller [22] and Srivastava and Chen
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[20]. J,(z) appeared in (2) is the Bessel function [17] of the first kind of order v
and is defined as
v+2n

_w_ (=D"(5)
Tu(z) = z% Tt )T +ngD) A <%

The functions defined in (1) and (2) are connected through the relation [16, p. 77]

2 174
QM,Q,(X,V(J"7y) = F(V + 1) (CU) V}J«—V,U(xvy)'

The function V), ,(z,y) is connected to the Voigt functions K(z,y) and L(z,y)
introduced by Voigt in 1899 through the following relations.

(z,y) = L(,y),

where the functions K (x,y) and L(z,y) are respectively defined as follows:

V%ﬁ%(;v,y):K(x,y) and Vi

11
272

o) 2
K(z,y) = %/0 exp(—yt — tz) cos(xt)dt

and
2

L(z,y) = % /OOO exp(—yt — tz) sin(zt)dt,

with € R, y € RT. The function K(z,y) + i L(z,y) is identical to the so called
plasma dispersion function, except for a numerical factor, which is tabulated by
Fried and Conte [5] and by Fettis et al. [4]. Further, (1) can be connected to the
Struve function H,(z) [2] through the relations

VT (N8 o Bl g2
Qp,l,%,ﬁ—l(z7y):7 (§> I'(B) ; th=Ptzevt 4H5_%(l’t)dt. (3)

More special cases, representations and multivariate analogues of (1) can be seen
in [14]. For a review of various mathematical properties and computational meth-
ods, see Haubold and John [6], Srivastava and Miller [22], Srivastava et al. [23],
Yang [24], Khan et al. [7], Pathan et al. [15] etc. These functions have found
applications in various fields like astrophysical spectroscopy, neutron physics, plas-
ma physics, statistical communication theory and some problems of mathematical
physics and engineering associated with multi-dimensional analysis of spectral har-
monics. A further generalization of the Voigt function has been carried out in
the literature starting from the fact that the original function is defined for physi-
cal reasons as the convolution between the Gaussian and Lorentz densities. Since
these densities are both Levy stable densities, a probabilistic generalization can
be done by convolution of two general Levy densities. Due to the strong relation
between Levy densities and fractional calculus this probabilistic generalization is
worth mentioning. The details may be seen from [12] and [13].

The present paper is devoted to the study of the composition of Saigo fraction-
al integral operators with different forms of the generalized Voigt function. The
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fractional operators given by Saigo [18] for v, 8, n € C, x € Ry and for R®(v) > 0,
denoted by Igf " and JYB:1, are defined as

z,00

xvh

Ig2" f(a) = W/ﬂ(iﬂ —1)" o (V+ﬁ7 —n;v; 1 — ;)f(t) . (4)

and

1

J;’:fom (z) = F(V)/z t—a) PR (VJrﬂ, —n;v;l— Z)f(t) dt, (5)

where o F}(a,b;c;x) is the Gauss hypergeometric series. Formula (4) is the left-

sided Saigo fractional integral operator and (5) is the right-sided Saigo fractional
integral operator. Moreover

T'(c)T(c—a—1b)

2Fi(a, b 1) = T(c—a)l(c—b)

, Rlc—a—10) >0.
When § = —v in (4) and (5) we get respectively, the classical Riemann-Liouville
fractional integral and the Weyl integral [9, 10, 19] of order v as

oDV f(z) = ﬁ /Oz(x — 1)L (H)dt, R(v) >0

and
v _ 1 > v—1
W fe) = g5 [ =2 0 %) > 0
whereas if we set 8 = 0in (4) and (5), we obtain the Erdélyi-Kober (E-K) fractional
integration operators [9, 10, 19]

Eglf(x) = % /Ox(:c — )M f(t)dt, z € Ry
and .
K33 f(x) = F:EZ) / (t— )"V f()dt, x € Ry.

The paper is systemized into four sections. In the next section, we establish
an alternative representation of the generalized Voigt function, which provide an
extension for the result given by Pathan and Daman in 2010 (see reference [14]).
Section 3 is devoted to the study of the composition of the left-sided Saigo fractional
image of the generalized Voigt function and the results are expressed in closed
forms via Kampé de Fériet’s function. It is also shown that the image under Saigo
operator is related to 1 F} -transform. Many interesting results are deduced from so
established results. Finally, in the last section, the effects of the right-sided Saigo
operator on generalized Voigt functions and its relation with Whittaker transform
are described.
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2. An alternate representation of generalized Voigt function

The Laplace transform of the function f(¢) [2] having the transform parameter
p is defined as

£{f(u):p) = / e f(u)du, R(p) > 0. (6)

THEOREM 1. [14] If L{h(t);p} = g(p) then

e h(t):p 2f/ ~5 =4 g(t + p)dt, R(p) > 0, R(a) > 0

Now we will discuss about an alternative representation of the generalized
Voigt function with the aid of Theorem 1. By using the definition (6), we have

t
E{ebt th1 By (01;57 1+ V;a;> ;P}

_ I , L a N\

Replacing 3 by (%)2 and using Theorem 1, we find that

E{e_“\/zt”_l 1F (a;6,1+u;—$2t>7 } 2\/»/ i SG(t+b)dt

This can be simplified into the following form.

[e’e] 2t2
/ e—at bt? t2/¢ 11F2 (a 571 +u;— 1 )dt
0

e

On taking b = 4, uw = “+17 a = y, the expression on the L.H.S. of the above
equation represents the generalized Voigt function €, g, introduced by Pathan
and Shahwan [16]. If we assume that o = (3, this alternate representation will
coincides with the result established by Pathan and Daman [14].

.zs.‘m
by

3 $2
—5( F 3 R
t+b) 2 2(aa,uaﬁ7 +V7 4(t+b))dt7

R(pw) >0, b>0, >0, R(a) >0

[\

3. Composition of the left-sided Saigo fractional operator
with generalized Voigt function

This section deals with the composition formulae of left-sided Saigo operator
and Voigt functions.

THEOREM 2. Ifa*,0*n,A € C, peR, p>0,2 >0, R(a*) >0, R(p+v) >
—1, R(1—=X) > 0, then the left-sided Saigo fractional image of the generalized Voigt
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function in (1) is given by
- s *) NG
I{ip’ﬂ m[thQ oy Z 01 +)\5 3 )7" { ( 2 )
— (1-Atar) V2

V2pI(§ +1)(1 - N)
I-X+a*+7r)

o pliz ”—“-12*,2**;% 2 a2y
0:3;2 1 1— >\+a*+7‘ 27>\+2a*+r,ﬁ 14-v: P,

1251 | 541:252, 3520 2 2
X F03’2 3 2-Ada*4r 3-Afa*ir. T Db, - (7)
iy, 2t soM et gy,

—B3*_
Here C = Yz 2'p [F(O;J)g(l A2 ond FIPTZ’I:L denotes the generalized Kampé de

Fériet’s function [21].

Proof. Employing the definitions given in (1), (4) and on interchanging the
order of integrations which is permissible due to the uniform convergence, we have

B —a® oo , 5
a®, B8 M= /TP y 2 ) o Tu
10717 [t Qma,ﬁ,l/(xat)] = \/; I‘(a*) /O ute” T 1y (avﬁal +v— 4 )
p 3 ¢
X {/ (p—t)* e Mty (a* + 6%, —n; a1 — p)dt} du.
0

With the help of series representation of Gauss hypergeometric function and on
taking t = ps, further simplification yields

_ﬁ*_,\ o0 2 2,2
B T W2 r“u
I() p,ﬁ ’"[t )\QH a,,@,y(x,t)] _ \/; pF( *) /0 ute 4 1F2 (OZ;B7 1+ v — 4 )

o 1
X Z M [/ (1-— s)a*ﬂ_le_“pssﬂdé‘} du. (8)
r=0 0

By using the definition of type-1 beta function and series expansion for the expo-
nential function, we get
+ 5 (= )

e ﬁ*’\Bl—)\ =

o B — p o

37 sl 0] = |5 PRI
r=0 k=0 T

(1= A (—p)* /Oo k- x%u?
Fy(a;8,140;— du.
Ao+, &y ¢ Tifz{@f v jdu

Mg

:r
I

I5y” Mt e (@, 1)
o0

B :E2"pf8’)‘Bl—)\a > (a* + B%), )T
Vi e zz e
F(L’““)(l—/\) ptk+1
1+wv;—2?).
e L ,5,+u,x) )
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Now breaking the k-series into odd and even terms and using the formula (a)s, =
227(%),,(%+L),, and the definition of generalized Kampé de Fériet’s function

9] k
Friaik [(a,,): (bg)s (ex)s ,y} Z H§:1(aj)r+s H?:1(bj)r ITj=i(ci)s a7 o

tmin |(an): (Bm)i(vn) D Y] =

520 a0 I (0 TTa () 1

)

the result in (7) follows. m

COROLLARY 2.1. A relation also can be established among left-sided Saigo
operator, Voigt function and 1F1-transform by evaluating (4) by using the series
expansion of exponential function and definition of type-1 beta function as

<y F g @), (),
7 sl 0] =[5 e S
r=0 ’

" 2,2
X [1F1“ {6_41F2 (Oé§ﬁ, 1+ —xf) ;pH )

where 1F1k(.) denotes an integral transform known as generalized 1F1-transform
[8], firstly considered by Erdélyi [3] and is defined as

L(a) % & s
F(c)/O (@t)*1 F1(a; ¢ —at) f(t)dt,

(1F1*)(x) =

with a,c € C,R(a) > 0 and k € R containing the confluent hypergeometric or
Kummer function 1F1(a;c; ) in the kernel.

Some special cases of the above theorem are explained in following corollaries.

COROLLARY 2.2. When o = 3, (9) reduces to left-sided Saigo image of the
function V,, , given as

oo

* B* mr— a* + %) (=n),
I9P Ay N =C E (@ + 5%)r(=n)r
1
y F(Lﬂzﬂr )F1;2;o ptpdl 122 2-A. _ 2 _g?
7\/5 0:3;1 | .1 1-aba”ir 2-Mtat4r. jy,,. p,
\/ipr(u;v +1)(1 - )\)F1:2;0 gty 4,222 32 2 2
(]_ — A+ a*+ 7’) 0:3;1 _:%72—)\4—20/*-%—7‘73—)\+2rx*+r;1+u; —p,—x R

zvte 21p= P =AB(1 — A, a¥)
(v + DHI'(a*)
COROLLARY 2.3. Leta =0, p= % Forv = —%, we have the left-sided Saigo
image of the function K (x,t) and for v = %, the result for L(x,t) can be obtained.

C =

COROLLARY 2.4. By using the relation (3), we can deduce a relation involving

Struve function and Saigo operator by taking a =1, 8 = %7 v=p—1. Similarly

for B=a+1, v=70—1, result involving Lommel function [2] can be obtained.
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COROLLARY 2.5. Taking a =0, due to the relation [14]

7 2
Quopo(z,t)=vr 22 T(u+ 1)et4 D—(u+1)(\/§t)a

where D, (.) is the parabolic cylindrical function [2], we can establish a relation
between the Saigo operator and the parabolic cylindrical function from (7) as follows:

ot B mr,— 2 - 4 B7)r (—n)r
I, PN e T D (V20)] = Cy Z o+ 5)r (=)

’ r=0 (1_/\+a*)r 7!
X 3F3 , , i 7 p

V2 2 2 2 2 2 B
V2pI'(4 +1)(1 - ))
(1_)\+Oé*+r)

Fsl=+1 .9 o
X 3 3<2+ ) D) ) 2 727 D) s 5 ;=D ,
_ 25p P A B-AaY)
where Cy = )

COROLLARY 2.6. Further, on taking 8* = 0, the results for Erdélyi-Kober
operator can be deduced from above results.

COROLLARY 2.7. Instead of 8* = 0, if we take 8* = —a* the corresponding
results for Riemann-Liouville operator can be obtained.

4. Right-sided Saigo fractional operator and generalized Voigt function

The function Q, 3, (z,y) can also be written as

2 2,2
psntond = 3 e (wn - 22) i) o

where £ { f(u); s} represents the Laplace transform of the function f with the trans-
form parameter s, see [2].

By using the above representation, we will next discuss about the compositions
of right-sided Saigo operator with Voigt functions and hence some of their special
cases are discussed.

THEOREM 3. Ifa*,0*,n,A€C, p e R, p>0,2 >0, R(a*) >0, R(p+v) >
—1, then the Saigo fractional image of the the generalized Voigt function is given
by

00
a*,B3* — (Oé* +ﬂ*)7 (_77)7'
Jp,o’oﬁ Mt AQu,a”@’,V(xvt)] = Z

= r!
2m > 1 s
p*"T(—=2m) (3+m—k)s p
79 v ’
X {1—‘(% —m—k) E @m+1), s pts,0,8.0(2, D)

r@m) (b —m—k)y p
Z 2(1 — 2m)q . an+q—2m,a,5,u(I,p) s (11)
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where | 9ar 9 - “
p=—— _QT_ﬂ — ;m:—LQ+ ). (12)

Proof. Consider the right-sided Saigo fractional integral operator. By using
(5) and (10), we have

Tos M Q. (2, 1))

1 o * g
= —)/ (t=p)* R (o + 57 a1 = D)
p

I(a*
2,2
X {\/g ﬁ{u“e_uleg <a;ﬂ,l —&-1/;—334u> ;t}} dt.

On taking ¢ —p = y and interchanging the order of integration, due to the uniform
convergence of the integral,

o B, x 1 o ul x%u?
Jp,oéﬁ m[t AQM,O@@V(l‘vt)] = \/;F(Oz*)/o ute T Iy <O‘;ﬂa1+’/§_ 1 )

% |:£ {ya*_l(p+y)—a*—ﬂ*_A 2F]_ (a* +5*,—77706*, y) ,’U,}:| dt.
p+y

On simplification by using Gauss hypergeometric series, the Laplace integral on the
right-side can be written as

E{y“*l(erz,/)"‘*’@*A oF) (a* + B, —m; o y> ;U}
p+y

oo

Z—a i )Tﬁ{y“*+"_1(p+y) ot A U}

Employing the formula [2]

Nt —k+ .
c {tm_k_%(t + a)”LJrk‘%;p} _ Mg —k+m) — m)pm‘%e%’Wk,m(apL
az2
|argal < m, R(3 — k +m) > 0, where Wy, ,,,(.) denotes the Whittaker function [2,
12] defined as

1, T(—2m)z2tm 1
Wim(2) =e72 mﬂﬁ §+m—k;2m—|—1;z
r(2m)zz—m 1
_%2%1}7’1 *—m—k;l—Qm;z , (13)

and on further simplification, we get

a* B* _ (pm_loo O‘*+5*r—77r
Jp,oévﬂ m[t kQ,u,oz,B,u(l',t)] = \/;p 2 Z ( ) ( )

2,2

oo pu u2
></ uh e F TR, <0‘5/3a1+’/5 4u )Wk,m(P“)d“' (14)
0

By using (14) and rewriting the result using (1), we get the Theorem. m
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COROLLARY 3.1. We also have a relation between (11) and generalized Whit-
taker transform [8] as follows:

a*,B* — T m— - (O[* +6*)T (_7])7‘
Jp,oéﬁ Q0,80 (2, 1)) = \/gpz #Z 7!
r=0

2 2,2
X Wim" {641F2 <a;5,1 +V;*$4u );p}7

where ngm() denotes the generalized Whittaker transform given by

W L0} = | e (o) A Wi () (1),

Wim(.) is the function defined in (13). It is known that the Meijer transform and
Varma transform are particular case of generalized Whittaker transform.

It is interesting to note that if we take a* = —3*, the relation (14) reduces to
the one established by Pathan and Daman [14] for the Weyl fractional operator.

COROLLATY 3.2. When a = 3, we have the following result:
To s M Ve (2, )]

> O{*+ *7‘_ r 2mr_2m > l+m_k3 ®
_ ( 6 ) ( 77) p T ( ) (2 ) &VN—V+S,V(x)p)
=0 ! PGG-m—k) iz (@Em+1) s

I'(2m) i (3 —m—k)g p?

7V—u — v ) )
T +m—k) A= 2m), q rvrameme(® p)}

q=0
where m and k are the same given in (12).

COROLLARY 3.3. Under the same restrictions of parameters given for Corol-
laries 2.8, 2.4 and 2.5, the corresponding results for the right-sided Saigo operator
and the functions K(x,y), L(x,y), Struve function, Parabolic cylindrical function
can be obtained from (11).

COROLLARY 3.4. Further, for 5* = 0, the images of Voigt functions can be
obtained from above results under the right-sided Erdélyi-Kober fractional operator.
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