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COMMON FIXED POINTS OF TWO MULTIVALUED
NONEXPANSIVE MAPS BY A ONE-STEP IMPLICIT

ALGORITHM IN HYPERBOLIC SPACES

S. H. Khan, H. Fukhar-ud-din and A. Kalsoom

Abstract. In this paper, we construct an implicit algorithm for two multivalued nonexpan-
sive maps in a hyperbolic space and use it to approximate common fixed points of these maps
through 4-convergence and strong convergence.

1. Introduction and preliminaries

A subset K of a metric space X is proximinal if for each x ∈ X, there exists
an element k ∈ K such that

d(x, K) = inf{d (x, y) : y ∈ K} = d(x, k).

Let CB(K), C(K) and P (K) be the families of closed and bounded subsets, com-
pact subsets and proximinal bounded subsets of K, respectively. Let H be the
Hausdorff metric induced by the metric d of X, that is,

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for every A, B ∈ CB(X). A multivalued map T : K → CB(X) is nonexpansive if

H(Tx, Ty) ≤ d (x, y)

for all x, y ∈ K. A point x ∈ K is a fixed point of T if x ∈ Tx. Denote the set of
all fixed points of T by F (T ) and PT (x) = {y ∈ Tx : d (x, y) = d (x, Tx)}.

We consider the following definition of a hyperbolic space introduced by
Kohlenbach [8].

Definition 1. A metric space (X, d) is a hyperbolic space if there exists a
map W : X2 × [0, 1] → X satisfying
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(i) d(u,W (x, y, α)) ≤ αd(u, x) + (1− α) d(u, y),

(ii) d(W (x, y, α),W (x, y, β)) = |α− β| d(x, y),

(iii) W (x, y, α) = W (y, x, (1− α)),

(iv) d(W (x, z, α),W (y, w, α)) ≤ αd(x, y) + (1− α) d(z, w)

for all x, y, z, w ∈ X and α, β ∈ [0, 1].

An important example of a hyperbolic space is a CAT (0) space. It is nonlinear
in nature and its brief introduction is as under.

A metric space (X, d) is a length space if any two points of X are joined by a
rectifiable path (that is, a path of finite length) and the distance between any two
points of X is taken to be the infimum of the lengths of all rectifiable paths joining
them. In this case, d is known as a length metric (otherwise an inner metric or
intrinsic metric). In case that no rectifiable path joins two points of the space, the
distance between them is taken to be ∞.

A geodesic path joining x ∈ X to y ∈ X is a map c from a closed interval
[0, l] ⊂ R to X such that c (0) = x, c (l) = y, and d (c (t) , c (t′)) = |t− t′| for all
t, t′ ∈ [0, l]. In particular, c is an isometry and d (x, y) = l. The image α of c is
called a geodesic (or metric) segment joining x and yt. We say that X is: (i) a
geodesic space if any two points of X are joined by a geodesic path and (ii) uniquely
geodesic if there is exactly one geodesic path denoted by αx ⊕ (1 − α)y joining x
and y for each x, y ∈ X. The set {αx⊕ (1− α)y : α ∈ [0, 1]} will be denoted by
[x, y], called the segment joining x to y. A subset C of a geodesic space X is convex
if for any x, y ∈ C, we have [x, y] ⊂ C.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) is defined to
be a collection of three points in X (the vertices of ∆) and three geodesic segments
between each pair of vertices (the edges of ∆). A comparison triangle for geodesic
triangle ∆ (x1, x2, x3) in (X, d) is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in R2

such that dR2 (x̄i, x̄j) = d (xi, xj) for i, j ∈ {1, 2, 3} and such a triangle always
exists(see [1]).

A geodesic metric space is a CAT (0) space if all geodesic triangles ∆ in X
with a comparison triangle ∆ ⊂ R2 satisfy the CAT (0) inequality

d(x, y) ≤ d(x̄, ȳ)

for all x, y ∈ ∆ and for all comparison points x̄, ȳ ∈ ∆.

Let X be a CAT (0) space. Define W : X2 × [0, 1] → X by W (x, y, α) =
αx⊕ (1− α)y. Then W satisfies the four properties of a hyperbolic space. Also if
X is a Banach space and W (x, y, α) = αx+(1−α)y, then X is a hyperbolic space.
Therefore, our hyperbolic space represents a unified approach for both linear and
nonlinear structures simultaneously.

To elaborate that there are hyperbolic spaces which are not imbedded in any
Banach space, we give the following example.
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Example 1. Let B be the open unit ball in complex Hilbert space with respect
to the Poincare metric (also called “Poincare distance”)

dB (x, y) = arg tanh
∣∣∣∣

x− y

1− xy

∣∣∣∣ = arg tanh (1− σ(x, y))
1
2 ,

where

σ(x, y) =
(1− |x|2)(1− |y|2)

|1− xy|2 for all x, y ∈ B.

Then B is a hyperbolic space which is not imbedded in any Banach space
A metric space (X, d) is called a convex metric space introduced by Taka-

hashi [28] if it satisfies only (i). A subset K of a hyperbolic space X is convex if
W (x, y, α) ∈ K for all x, y ∈ K and α ∈ [0, 1].

A hyperbolic space (X, d, W ) is uniformly convex [27] if for any u, x, y ∈ X,
r > 0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that d

(
W (x, y, 1

2 ), u
) ≤ (1− δ)r

whenever d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr. A map η : (0,∞)×(0, 2] → (0, 1]
which provides such a δ = η(r, ε) for given r > 0 and ε ∈ (0, 2], is known as modulus
of uniform convexity. We call η monotone if it decreases with r (for a fixed ε).

Different notions of hyperbolic space can be found in the literature (see [6,
8, 13, 22] to compare these). The hyperbolic space introduced by Kohlenbach [8]
is slightly restrictive than the space of hyperbolic type [4] but more general than
hyperbolic space of [22]. Moreover, this class of hyperbolic spaces also contains
Hadamard manifolds, Hilbert balls equipped with the hyperbolic metric [6], R-trees
and Cartesian products of Hilbert balls as special cases.

Markin [19] initiated the study of fixed points for multivalued nonexpansive
maps using Hausdorff metric (see also [9, 20]). The existence of fixed points for
multivalued nonexpansive maps in convex metric spaces has been proved by Shimizu
and Takahashi [27]. Actually, they obtained:

Theorem ST ([27]). Let (X, d) be a bounded, complete and uniformly convex
metric space. Then every multivalued map T : X → C(X) (the family of all
compact subsets of X) has a fixed point.

The existence of common fixed points of two multivalued mappings is elabo-
rated in the following example.

Example 2. Let K = [0, 1] be endowed with the Euclidean metric. Let
S, T : K → CB (K) be defined by Sx =

[
0, x

4

]
and Tx =

[
0, x

2

]
. It is easy to see

that for any x, y ∈ K,

H (Tx, Ty) = max
{∣∣∣x

2
− y

2

∣∣∣ , 0
}

=
∣∣∣x
2
− y

2

∣∣∣ ≤ |x− y| .
In a similar way, we obtain

H (Sx, Sy) = max
{∣∣∣x

4
− y

4

∣∣∣ , 0
}

=
∣∣∣x
4
− y

4

∣∣∣ ≤ |x− y| ,
showing that T and S are multivalued nonexpansive maps. Obviously, F (T ) ∩
F (S) = {0}.
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An interesting and rich fixed point theory for multivalued maps has been de-
veloped which has applications in control theory, convex optimization, differential
inclusion and economics (see [5] and references cited therein). Some authors have
published papers on the existence and convergence of fixed points for multivalued
nonexpansive maps in convex metric spaces (see [3, 27]).

The theory of multivalued nonexpansive maps is harder than the corresponding
theory of single valued nonexpansive maps. Different iterative algorithms have been
used to approximate the fixed points of multivalued nonexpansive maps. Sastry and
Babu [23] considered Mann and Ishikawa type iterative algorithms. The results of
Sastry and Babu [23] were later generalized by Panyanak [21].

Before we move further, we need to state the following useful lemma due to
Nadler [20].

Lemma 1. Let A,B ∈ CB(E) and a ∈ A. If η > 0, then there exists b ∈ B
such that d(a, b) ≤ H(A,B) + η.

Based on the above lemma, Song and Wang [25] modified the iterative al-
gorithm due to Panyanak [2] and improved the results presented therein. Their
algorithm is:

Let K be a nonempty and convex subset of a Banach space E. Choose x1 ∈
K, z1 ∈ Tx1 and define {xn} as

{
yn = (1− bn)xn + bnzn

xn+1 = (1− an)xn + anun
(1.1)

where zn ∈ Txn, un ∈ Tyn are such that ‖zn − un‖ ≤ H(Txn, T yn) + ηn and
‖zn+1 − un‖ ≤ H(Txn+1, T yn) + ηn hold, {an} and {bn} are in (0, 1) satisfying
limn→∞ bn = 0 and

∑
anbn = ∞, and ηn ∈ (0,∞) is such that limn→∞ ηn = 0.

It is to be noted that Song and Wang [25] needed the condition Tp = {p} in
order to prove their main theorem. Actually, Panyanak [2] proved some results using
Ishikawa type iteration process without this condition. Song and Wang [25] showed
that without this condition his process was not well-defined. They reconstructed
the process using the condition Tp = {p} which made it well-defined.

Recently, Shahzad and Zegeye [26] showed their concerns on the work of Song
and Wang [25]. In particular, they pointed out that the assumption Tp = {p}
for any p ∈ F (T ) in [25] is quite strong. In order to get rid of the condition
Tp = {p} for any p ∈ F (T ), they used PT (x) := {y ∈ Tx : ‖x− y‖ = d(x, Tx)}
for a multivalued map T : K → P (K) and proved some strong convergence results
using Mann and Ishikawa type iterative algorithms. Song and Cho [24] improved
the results of [26] where as Khan and Yildirim [12] used an iterative algorithm
independent but faster than Ishikawa algorithm to further generalize the results
of [24].

Recently, Khan et al. [11] considered the following implicit iterative algorithm
for single-valued maps:

xn = αnxn−1 + βnSxn + γnTxn, n ∈ N (1.2)
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where 0 ≤ αn, βn, γn ≤ 1 with αn + βn + γn = 1.

In this paper, we first give a multivalued version of the algorithm (1.2) in hy-
perbolic spaces and use PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)} instead of Tp = {p}
for any p ∈ F (T ) to approximate common fixed points of two multivalued nonex-
pansive maps. We confirm some simple but useful properties of PT in hyperbolic
spaces basically proved in Banach spaces by Song and Cho [24]. Moreover, we use
the method of direct construction of Cauchy sequence as indicated by Song and
Cho [24] (and opposed to [26]) but also used by many other authors including [9,
10–12]. The algorithm we use in this paper is as under.

Let K be a nonempty convex subset of a hyperbolic space X. Let S, T :
K → C (K) be two multivalued maps and PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)}.
Choose x0 ∈ K. Define {xn} as

xn = W

(
zn,W

(
xn−1, yn,

βn

1− αn

)
, αn

)
(1.3)

where yn ∈ PS (xn) , zn ∈ PT (xn), and αn, βn ∈ (0, 1) such that αn + βn < 1.

In order to verify that the algorithm (1.3) is well-defined, define f : K → K by
f(x) = W

(
z,W

(
x0, y, β1

1−α1

)
, α1

)
for some y ∈ PS (x) and for some z ∈ PT (x).

For a given x0 ∈ K, the existence of x1 is guaranteed if f has a fixed point. Now,
for any u, v ∈ K, let y ∈ PS (u) , y′ ∈ PS (v), z ∈ PT (u), z′ ∈ PT (v). On using (iv)
of Definition 1, we have

d(f (u) , f (v))

≤ (1− α1) d

(
W

(
x0, y,

β1

1− α1

)
,W

(
x0, y

′,
β1

1− α1

))
+ α1d(z, z′)

≤ α1d(z, z′) + β1d(y, y′)

≤ α1d(z, PT (v)) + β1d(y, PS (v))

≤ α1H(PT (u) , PT (v)) + β1H(PS (u) , PS (v))

≤ α1d(u, v) + β1d(u, v)

≤ (α1 + β1) d(u, v).

Since α1+β1 ∈ (0, 1), therefore f is a contraction. By Banach contraction principle,
f has a unique fixed point. Thus the existence of x1 is established. Continuing in
this way, the existence of x2, x3, . . . is guaranteed. Hence the above algorithm is
well-defined.

In 1976, Lim [18] introduced the concept 4-convergence in metric spaces. In
2008, Kirk and Panyanak [14] specialized Lim’s concept to CAT (0) spaces and
proved a number of results involving weak convergence in Banach spaces. Since
then the notion of 4-convergence has been widely studied and a number of articles
have appeared (e.g., [2, 3, 14–16]). To reach the definition of 4-convergence, we
first recall the notions of asymptotic radius and asymptotic center as under.
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Let {xn} be a bounded sequence in a metric space X. For x ∈ X, define a
continuous functional r(x, {xn}) by:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

Then:
(i) rK({xn}) = inf{r (x, {xn}) : x ∈ K} of {xn} is called the asymptotic radius

of {xn} with respect to K ⊂ X;
(ii) for any y ∈ K, the set AK({xn}) = {x ∈ X : r(x, {xn} ≤ r(y, {xn})} is

called the asymptotic center of {xn} with respect to K ⊂ X.
If the asymptotic radius and the asymptotic center are taken with respect to

X, then these are simply denoted by r({xn}) and A({xn}), respectively. In general,
A({xn}) may be empty or may even contain infinitely many points. It is known
that a complete uniformly convex hyperbolic space with monotone modulus of uni-
form convexity enjoys the property that bounded sequences have unique asymptotic
center with respect to closed convex subsets [17].

A sequence {xn} in X is said to 4-converge to x ∈ X if x is the unique
asymptotic center of {xni} for every subsequence {xni} of {xn}. In this case, we
call x as 4-limit of {xn} and write 4-limn xn = x.

For the development of our main results, some key results are listed in the
form of lemmas:

Lemma 1.1 [7]. Let K be a nonempty closed convex subset of a uniformly
convex hyperbolic space and {xn} a bounded sequence in K such that A({xn}) =
{y}. If {ym} is another sequence in K such that limm→∞ r(ym, {xn}) = r (y, {xn}),
then limm→∞ ym = y.

Lemma 1.2 [7]. Let (X, d, W ) be a uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence
in [b, c] for some b, c ∈ (0, 1). If {xn} and {yn} are sequences in X such that
lim supn→∞ d(xn, x) ≤ r, lim supn→∞ d(yn, x) ≤ r and limn→∞ d(W (xn, yn, αn), x)
= r for some r ≥ 0, then limn→∞ d(xn, yn) = 0.

2. Main results

Song and Cho [24] proved that the sets of fixed points of multivalued maps T
and PT are equal in Banach spaces. We confirm the same in hyperbolic spaces in
the following lemma. Note that the first lemma remains true even in metric spaces.

Lemma 2.1. Let K be a nonempty subset of a metric space X and T : K →
C(K) be a multivalued map. Then the followings are equivalent:

(i) x ∈ F (T ), that is, x ∈ Tx;
(ii) PT (x) = {x}, that is, x = y for each y ∈ PT (x);
(iii) x ∈ F (PT ), that is, x ∈ PT (x).

Moreover, F (T ) = F (PT ).
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Proof. (i) implies (ii). Since x ∈ Tx, then d (x, Tx) = 0. Therefore, for any
y ∈ PT (x), d (x, y) = 0. That is x = y. This proves that PT (x) = {x}.

Clearly, (iii) is an immediate consequence of (ii).
(iii) implies (i). Since x ∈ PT (x) , d (x, Tx) = d (x, x) = 0 and so x ∈ Tx by

the closedness of Tx.
In the sequel, F = F (S) ∩ F (T ) is the set of all common fixed points of the

multivalued maps S and T .

Lemma 2.2. Let K be a nonempty closed convex subset of a hyperbolic space
X and let S, T : K → C (K) be two multivalued maps such that PT and PS are non-
expansive maps and F 6= ∅. Then for the sequence {xn} in (1.3), limn→∞ d(xn, p)
exists for each p ∈ F .

Proof. Let p ∈ F . Then p ∈ PT (p) = {p} and p ∈ PS (p) = {p} . Using (1.3),
we have

d (xn, p) = d

(
W

(
zn,W

(
xn−1, yn,

βn

1− αn

)
, αn

)
, p

)

≤ αnd (zn, p) + (1− αn)d
(

W

(
xn−1, yn,

βn

1− αn

)
, p

)

≤ αnd (zn, p) + βnd(xn−1, p) + (1− αn − βn)d(yn, p)

= αnd (zn, PT (p)) + βnd(xn−1, p) + (1− αn − βn)d (yn, PS (p))

≤ αnH (PT (xn) , PT (p)) + βnd(xn−1, p) + (1− αn − βn)H(PS (xn) , PS (p))

≤ αnd (xn, p) + βnd(xn−1, p) + (1− αn − βn)d(xn, p).

This implies βnd(xn, p) ≤ βnd(xn−1, p) so that

d(xn, p) ≤ d(xn−1, p).

This means that {d(xn, p)} is decreasing and bounded below. Therefore lim
n→∞

d(xn, p)
exists.

Lemma 2.3. Let K be a nonempty closed convex subset of a uniformly convex
hyperbolic space X and let S, T : K → C (K) be two multivalued maps such that PT

and PS are nonexpansive and F 6= ∅. Let {αn} and {βn} satisfy 0 < a ≤ αn, βn ≤
b < 1. Then for the sequence {xn} in (1.3) we have limn→∞ d (xn, PS (xn)) = 0 =
limn→∞ d (xn, PT (xn)).

Proof. It follows from Lemma 2.2 that limn→∞ d(xn, p) exists for each p ∈ F .
Assume that limn→∞ d(xn, p) = c for some c ≥ 0. For c = 0, the result is trivial.
Let us proceed for c > 0.

An equivalent form of limn→∞ d(xn, p) = c is

lim
n→∞

d

(
W

(
zn,W

(
xn−1, yn,

βn

1− αn

)
, αn

)
, p

)
= c. (2.1)
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Since PT is nonexpansive and F 6= ∅, we have

d(yn, p) ≤ d(yn, PS (p)) ≤ H(PS (xn) , PS (p))

≤ d(xn, p) ≤ d(xn−1, p) for each p ∈ F.

The above inequality after taking lim sup becomes

lim sup
n→∞

d(yn, p) ≤ c. (2.2)

Similarly, we can show that

lim sup
n→∞

d(zn, p) ≤ c. (2.3)

Since d(yn, p) ≤ d(xn−1, p), therefore

d

(
W

(
xn−1, yn,

βn

1− αn

)
, p

)
≤ βn

1− αn
d(xn−1, p) +

(
1− βn

1− αn

)
d(yn, p)

≤ βn

1− αn
d(xn−1, p) +

(
1− βn

1− αn

)
d(xn−1, p)

= d(xn−1, p).

Taking lim sup on both sides in the above estimate, we have

lim sup
n→∞

d

(
W

(
xn−1, yn,

βn

1− αn

)
, p

)
≤ c. (2.4)

From (2.1), (2.3), (2.4) and Lemma 1.2, it follows that

lim
n→∞

d

(
W

(
xn−1, yn,

βn

1− αn

)
, zn

)
= 0. (2.5)

The estimate

d(xn, zn) ≤ d

(
W

(
zn,W

(
xn−1, yn,

βn

1− αn

)
, αn

)
, zn

)

≤ αnd(zn, zn) + (1− αn)d
(

W

(
xn−1, yn,

βn

1− αn

)
, zn

)

= (1− αn)d
(

W

(
xn−1, yn,

βn

1− αn

)
, zn

)

≤ (1− a)d
(

W

(
xn−1, yn,

βn

1− αn

)
, zn

)

and (2.5) give that
lim

n→∞
d(xn, zn) = 0. (2.6)

Now

d(xn, p) = d

(
W

(
zn,W

(
xn−1, yn,

βn

1− αn

)
, αn

)
, p

)
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≤ αnd(zn, p) + (1− αn)d
(

W

(
xn−1, yn,

βn

1− αn

)
, p

)

≤ αnd(xn, p) + (1− αn)d
(

W

(
xn−1, yn,

βn

1− αn

)
, p

)

means (1− αn)d(xn, p) ≤ (1− αn)d
(
W

(
xn−1, yn, βn

1−αn

)
, p

)
or

d(xn, p) ≤ d
(
W

(
xn−1, yn, βn

1−αn

)
, p

)
. Hence

c ≤ lim inf
n→∞

d

(
W

(
xn−1, yn,

βn

1− αn

)
, p

)
. (2.7)

Combining (2.4) and (2.7), we get

lim
n→∞

d

(
W

(
xn−1, yn,

βn

1− αn

)
, p

)
= c. (2.8)

On utilization of Lemma 1.2 for (2.2), (2.8), we get

lim
n→∞

d(xn−1, yn) = 0. (2.9)

Next, we consider

d(xn, xn−1) ≤ d

(
W

(
zn,W

(
xn−1, yn,

βn

1− αn

)
, αn

)
, xn−1

)

≤ αnd(zn, xn−1) + (1− αn) d

(
W

(
xn−1, yn,

βn

1− αn

)
, xn−1

)

≤ αn {d (zn, xn) + d (xn, xn−1)}+ (1− αn − βn) d (xn−1, yn)

≤ αn

1− αn
d (zn, xn) +

(
1− αn − βn

1− αn

)
d (xn−1, yn)

≤ b

1− b
d (zn, xn) +

1− 2a

1− b
d (xn−1, yn) .

Taking lim sup on both sides in the above estimate and then utilizing (2.6) and
(2.9), we get

lim
n→∞

d(xn, xn−1) = 0. (2.10)

The inequality d(xn, yn) ≤ d(xn, xn−1)+d(xn−1, yn) together with (2.9) and (2.10)
gives that

lim
n→∞

d(xn, yn) = 0.

Since d(x, PS (x)) = infz∈PS(x) d(x, z), therefore

d(xn, PS (xn)) ≤ d(xn, yn) → 0 as n →∞.

Similarly
d(xn, PT (xn)) ≤ d(xn, zn) → 0 as n →∞.
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Using above lemma, we prove 4-convergence of the algorithm (1.3).

Theorem 2.4. Let K be a nonempty, closed and convex subset of a uniform-
ly convex hyperbolic space X with monotone modulus of uniform convexity η and
S, T, PT , PS and {xn} be as in Lemma 2.3. Then {xn} 4-converges to a common
fixed point of S and T (or PS and PT ).

Proof. Note that {xn} has a unique asymptotic center because {xn} is bounded
(by Lemma 2.2). That is, A({xn}) = {x}. Let {un} be any subsequence of {xn}
such that A({un}) = {u}. Then by Lemma 2.3, we have limn→∞ d(un, PT (un)) =
0 = limn→∞ d(un, PS (un)). We claim that u is a common fixed point of PS and PT .

To prove this, take {zm} in PT (u). Then

r(zm, {un}) = lim sup
n→∞

d(zm, un)

≤ lim sup
n→∞

{d(zm, PT (un)) + d(PT (un) , un)}
≤ lim sup

n→∞
H(PT (u) , PT (un))

≤ lim sup
n→∞

d(u, un)

= r(u, {un}).
This implies that |r(zm, {un})− r(u, {un})| → 0 as m → ∞. It follows from
Lemma 1.1 that limm→∞ zm = u. Since PT (K) is a closed and bounded subset of
K, therefore PT (u) is closed and consequently limm→∞ zm = u ∈ PT (u). Hence
u ∈ F (PT ). Similarly, u ∈ F (PT ). Hence u ∈ F . Since limn→∞ d(xn, u) exists (by
Lemma 2.2), therefore by the uniqueness of asymptotic centers, we have:

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u) = lim sup
n→∞

d(un, u),

a contradiction. Hence x = u.
Thus A({un}) = {u} for every subsequence {un} of {xn}. This proves that

{xn} 4-converges to a common fixed point of S and T (or PS and PT ).
Next, we give a necessary and sufficient condition for the strong convergence

of the algorithm (1.3).

Theorem 2.5. Let K be a nonempty, closed and convex subset of a com-
plete hyperbolic space X and S, T, PT , PS and {xn} be as in Lemma 2.2. Then the
sequence {xn} converges strongly to p ∈ F if and only if lim infn→∞ d(xn, F ) = 0.

Proof. If {xn} converges to p ∈ F , then limn→∞ d(xn, p) = 0. Since 0 ≤
d(xn, F ) ≤ d(xn, p), we have lim infn→∞ d(xn, F ) = 0.

Conversely, suppose that lim infn→∞ d(xn, F ) = 0. From Lemma 2.2, we have

d(xn+1, F ) ≤ d(xn, F ).
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Therefore limn→∞ d(xn, F ) exists. By hypothesis lim infn→∞ d(xn, F ) = 0, so we
have limn→∞ d(xn, F ) = 0.

Next, we claim that {xn} is a Cauchy sequence in K. In fact, let m,n ∈ N
and assume m > n. Then it follows (as done in Lemma 2.2) that

d(xm, p) ≤ d(xn, p) for all p ∈ F.

Thus we have
d(xm, xn) ≤ d(xm, p) + d(xn, p) ≤ 2d(xn, p).

Taking inf on the set F , we have d(xm, xn) ≤ d(xn, F ). On letting m →∞, n →∞,
the inequality d(xm, xn) ≤ d(xn, F ) gives that {xn} is a Cauchy sequence in K.
The completeness of X guarantees that {xn} converges, say to q.

Next, we show that q ∈ F . Indeed, by d (xn, F (PT )) = infy∈F (PT ) d (xn, y).
So for each ε > 0, there exists p

(ε)
n ∈ F (PT ) such that

d
(
xn, p(ε)

n

)
≤ d(xn, F (PT )) +

ε

3
.

This implies limn→∞ d
(
xn, p

(ε)
n

)
≤ ε

3 . From the inequality d
(
p
(ε)
n , q

)
≤

d
(
xn, p

(ε)
n

)
+ d(xn, q), it follows that

lim sup
n→∞

d
(
p(ε)

n , q
)
≤ ε

3
.

Finally the estimate

d(PT (q) , q) ≤ d
(
q, p(ε)

n

)
+ d

(
p(ε)

n , PT (q)
)

≤ d
(
q, p(ε)

n

)
+ H

(
PT

(
p(ε)

n

)
, PT (q)

)

≤ 2d
(
p(ε)

n , q
)

.

gives that d(PT (q) , q) < ε. Since ε is arbitrary, therefore d(PT (q) , q) = 0. Similarly
we can show that d(PS (q) , q) = 0. Since F is closed, q ∈ F as required.

The following definitions are needed for further use.
(i) A map T : K → CB(K) is semi-compact if any bounded sequence {xn}

satisfying d(xn, Txn) → 0 as n →∞, has a convergent subsequence.
(ii) Let f be a nondecreasing selfmap on [0,∞) with f(0) = 0 and f(t) > 0 for

all t ∈ (0,∞) and let d(x, F ) = inf{d(x, y) : y ∈ F}. Let S, T : K → CB(K) be two
multi-valued maps with F 6= ∅. Then the two maps are said to satisfy condition
(A) if

d (x, Tx) ≥ f(d(x, F )) or d (x, Sx) ≥ f(d(x, F )) for all x ∈ K.

The following strong convergence results can easily be obtained by applying
Lemma 2.3.



408 S.H. Khan, H. Fukhar-ud-din, A. Kalsoom

Theorem 2.6. Let K be a nonempty closed convex subset of a complete and
uniformly convex hyperbolic space X with monotone modulus of uniform convexity
η and S, T, PT , PS and {xn} be as in Lemma 2.3. Suppose that a pair of maps PT

and PS satisfy condition (A), then the sequence {xn} defined in (1.3) converges
strongly to p ∈ F .

Theorem 2.7. Let K be a nonempty closed convex subset of a uniformly
convex hyperbolic space X with monotone modulus of uniform convexity η and
S, T, PT , PS and {xn} be as in Lemma 2.3. Suppose that one of the maps in PT

and PS is semi-compact, then the sequence {xn} defined in (1.3) converges strongly
to p ∈ F .

Acknowledgement. The author H. Fukhar-ud-din is grateful to King
Fahd University of Petroleum & Minerals for supporting the research project
IN121023. The author A. Kalsoom gratefully acknowledges Higher Education Com-
mission(HEC) of Pakistan for financial support during this research project.

REFERENCES

[1] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin,
1999.

[2] S. Dhompongsa, B. Panyanak, On 4-convergence theorems in CAT(0) spaces, Comput.
Math. Appl., 56 (2008), 2572–2579.

[3] H. Fukhar-ud-din, A. R. Khan and M. Ubaid-ur-Rehman, Ishikawa type algorithm of two
multivalued quasi-nonexpansive maps on nonlinear domains, Ann. Funct. Anal. 4 (2013),
97–109.

[4] K. Goebel and W. A. Kirk, Iteration processes for nonexpansive maps. In: SP. Singh, S.
Thomeier, B. Watson (eds.) Topological methods in nonlinear functional analysis (Toronto,
1982), Contemporary Mathematics, vol. 21, pp. 115–123.

[5] L. Gorniewicz, Topological fixed point theory of multivalued maps, Kluwer Academic Pub.,
Dordrecht, Netherlands, 1999.

[6] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive map-
pings, Marcel Dekker, New York, 1984.

[7] A. R. Khan, H. Fukhar-ud-din and M. A. A. Khan, An implicit algorithm for two finite
families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012:54
(2012), doi:10.1186/1687-1812-2012-54.

[8] U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans.
Amer. Math. Soc., 357 (2005), 89–128.

[9] S. H. Khan, M. Abbas and B. E. Rhoades, A new one-step iterative scheme for approximating
common fixed points of two multivalued nonexpansive mappings, Rend. Circ. Mat., 59 (2010),
149–157.

[10] S. H. Khan and J. K. Kim, Common fixed points of two nonexpansive mappings by a modified
faster iteration scheme, Bull. Korean Math. Soc. 47 (2010), 973–985.

[11] S. H. Khan, I. Yildirim and M. Ozdemir, Convergence of an implicit algorithm for two
families of nonexpansive mappings, Comp. Math. Appl., 59 (2010), 3084–3094.

[12] S. H. Khan and I. Yildirim, Fixed points of multivalued nonexpansive mappings in Banach
spaces, Fixed Point Theory Appl., 2013:73 (2012), doi:10.1186/1687-1812-2012-73.

[13] W. A. Kirk, Krasnosel’skii iteration process in hyperbolic spaces, Numer. Funct Anal Optim.,
4 (1982), 371–381.

[14] W. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68
(2008), 3689–3696.



Common fixed points of two multivalued nonexpansive maps 409

[15] T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive maps in CAT(0)
spaces, Int. J. Math. Anal., 3 (2009), 1305–1315.

[16] W. Laowang and B. Panyanak, Strong and 4-convergence theorems for multivalued maps in
CAT(0) spaces, J. Inequal. Appl., 16 (2009).

[17] L. Leustean, Nonexpansive iterations in uniformly convex W-hyperbolic spaces, to appear in
Contemporary Math., http://arxiv.org/abs/0810.4117.

[18] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976),
179–182.

[19] J. T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38 (1973),
545–547.

[20] S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488.

[21] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach
spaces, Comput. Math. Appl., 54 (2007), 872–877.

[22] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15
(1990), 537–338.

[23] K. P. R. Sastry and G. V. R. Babu, Convergence of Ishikawa iterates for a multivalued
mapping with a fixed point , Czechoslovak Math. J., 55 (2005), 817–826.

[24] Y. Song and Y. J. Cho, Some notes on Ishikawa iteration for multivalued mappings, Bull.
Korean. Math. Soc., 48 (2011), 575–584.

[25] Y. Song and H. Wang, Erratum to “Mann and Ishikawa iterative processes for multivalued
mappings in Banach spaces”, Comput. Math. Appl., 54 (2007), 872–877, Comput. Math.
Appl., 55 (2008), 2999–3002.

[26] N. Shahzad and H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps
in Banach spaces, Nonlinear Anal. 71 (2009), 838–844.

[27] T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric
spaces, Topol. Methods Nonlinear Anal., 8 (1996), 197–203.

[28] W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Sem.
Rep., 22 (1970), 142–149.

(received 18.04.2013; in revised form 06.01.2014; available online 20.01.2014)

S. H. Khan, Department of Mathematics, Statistics & Physics, Qatar University, Doha 2713,
Qatar

E-mail : safeerhussain5@yahoo.com, safeer@qu.edu.qa

H. Fukhar-ud-din, Department of Mathematics & Statistics, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia and Department of Mathematics, The Islamia Uni-
versity of Bahawalpur, Bahawalpur 63100, Pakistan

E-mail : hfdin@kfupm.edu.sa, hfdin@yahoo.com

A. Kalsoom, Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur
63100, Pakistan

E-mail : amna iub@yahoo.com


