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DING PROJECTIVE MODULES WITH RESPECT
TO A SEMIDUALIZING MODULE

Chaoling Huang and Peihua Zhong

Abstract. In this paper, for a fixed semidualizing module C, we introduce the notion of Do~
projective modules which are the special setting of G¢-projective modules introduced by White
[D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut.
Algebra 2(1) (2010) 111-137]. Then we investigate the properties of Dc-projective modules and
dimensions, in particular, we give descriptions of the finite D¢-projective dimensions.

1. Introduction

Auslander and Bridger in [1], introduced the notion of so-called G-dimension
for finitely generated modules over commutative Noetherian rings. Enochs and
Jenda defined in [4] a homological dimension, namely the Gorenstein projective
dimension, Gpdg(—), for any R-module as an extension of G-dimension. Let R be
any associative ring. Recall that an R-module M is said to be Gorenstein projective
(for short G-projective; see [4]) if there is an exact sequence

P:~--—>P1—>P0—>PO—>P1—>---

of projective modules with M = Ker(P? — P!) such that Hom(P, Q) is exact for
each projective R-module . Such exact sequence is called a complete projective
resolution. We use GP(R) to denote the class of all G-projective R-modules. We
say that M has Gorenstein projective dimension at most n, denoted Gpdr(M) <
n, if there is a Gorenstein projective resolution, i.e., there is an exact sequence
0— G, — - — Gy — M — 0, where all G; are G-projective R-modules, and say
Gpdr(M) = n if there is not a shorter Gorenstein projective resolution.

In [3], an R-module M is called strongly Gorenstein flat if there is an exact

sequence
P:~--—>P1—>P0—>PO—>P1—>---

of projective modules with M = Ker(P® — P') such that Hom(P, Q) is exact
for each flat R-module Q. It is clear that strongly Gorenstein flat R-modules are
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Gorenstein projective. But no one knows whether there is a Gorenstein projective
R-module which is not strongly Gorenstein flat. Following [8, 19], the strongly
Gorenstein flat R-modules are called Ding projective, since strongly Gorenstein
flat R-modules are not necessarily Gorenstein flat [3, Example 2.19] and strongly
Gorenstein flat R-modules were first introduced by Ding and his coauthors. In [3],
the authors gave a lot of wonderful results about Ding projective R-modules over
coherent rings. Mahdou and Tamekkante in [14], generalized some of these results
over arbitrary associative rings. In this paper, we use DP(R) to denoted the class
of all Ding projective R-modules.

In [7], the author initiated the study of semidualizing modules; see Definition
2.1. Over a noetherian ring R, Vasconcelos [17] studied them too. Golod [9] used
these to define G-dimension for finitely generated modules, which is a refinement
of projective dimension. Holm and Jgrgensen [11] have extended this notion to
arbitrary modules over a noetherian ring. Moreover, for semi-dualizing R-module
C and the trivial extension of R by C' R x C; that is, the ring R & C equipped
with the product: (r, ¢)(r/, ¢) = (r1’, v’ +1'c), they considered the ring changed
Gorenstein dimensions, GpdrxcM and proved that M is G¢-projective R-module
if and only if M is G-projective R x C-module [11, Theorem 2.16]. In [18], White
unified and generalized treatment of this concept over any commutative rings and
showed many excellent G¢-projective properties shared by G-projectives. Recall
that an R-module M is called G¢-projective if there exists a complete PC-resolution
of M, which means that

P=...—P -P—-C@rP'—-C@rP — ...

is an exact complex such that M = Coker(P, — P) and each P; and P! is
projective and such that the complex Hompg (P, C®rQ) is exact for every projective
R-module Q). We use GoP(R) to denote the class of all Go-projective R-modules.
Motivated by the above, in this paper, we define the concept of Ding projective R-
modules with respect to a fixed semidualizing module C, for short, Do-projective
and show properties of Dgo-projective modules and dimensions. It is organized as
follows:

Section 2 is devoted to the study of the D¢g-projective modules and dimen-
sions. White proved that every module that is either projective or C-projective
is Go-projective [18, Proposition 2.6]. Moreover, we show that they are also D¢-
projective, see Proposition 2.7. Further, we give homological descriptions of the
De-projective dimension, see Proposition 2.11. And then characterize modules
with the finite Dgo-projective dimension as follows,

THEOREM 1.1. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,
(1) DC'de(M) <n;
(2) For some integer k with 1 < k < n, there is an exact sequence 0 — P,, —
- — Py = Py — M — 0 such that P; is Dc-projective if 0 < i < k and P; is
‘Pc-projective if j > k.
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(8) For any integer k with 1 < k < n, there is an exact sequence 0 — P, —
- — P — Py = M — 0 such that P; is Dc-projective if 0 < ¢ < k and P; is
Pc-projective if 7 > k.

THEOREM 1.2. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,

(1) Do-pdr(M) < n;

(2) For some integer k with 0 < k < n, there is an exact sequence 0 — A, —

- — Ay — Ag — M — 0 such that Ay is Do-projective and other A; projective
or Pc-projective.

(8) For any integer k with 0 < k < n, there is an exact sequence 0 — A, —

- — Ay — Ag — M — 0 such that Ay is Dgo-projective and other A; projective
or Pc-projective.

Although we do not know whether there is a Gg-projective R-module which
is not Dc-projective, we think that this article gives new things. Proposition 2.7,
Proposition 2.11, Proposition 2.20 and the above two theorems add a new mes-
sage to G¢-projective R-modules if Go-projective R-modules and Dg-projective
R-modules happen to coincide.

SETUP AND NOTATION. Throughout this paper, R denotes a commutative ring.
C is a fixed semidualizing R-module. p M denotes the category of R-modules, and
P(R) and Z(R) denote the class of projective and injective modules, respectively.

2. Properties of Dc-projective modules
Now we begin with recall of the definition on semedualizing R-modules.

DEFINITION 2.1. An R-module C' is semidualizing if

(a) C admits a degreewise finite projective resolution, that is, there is an exact
complex --- — P, — Py — C — 0 with all P; finitely generated projective R-
modules,

(b) the natural homothety map x& : R — Hompg(C, C) is an isomorphism,
where xZ satisfies that xZ(r)(c) = rc for each r € R and ¢ € C, and

(c) Ext}>(C, C) = 0.

For any noetherian ring R, a finitely generated R-module C' is semidualizing
if and only if RHompg(C, C) = R in D(R), the derived category of the category of
R-modules. Clearly, R is a semidualizing R-module.

DEFINITION 2.2. The class of C-projective is defined as
Pc ={C &g P | P is projective}

The Pc-projective dimension of an R-module M is Pe-pd(M) = inf{n | 0 —
X, — - — Xog — M — 0 is exact with all X; C-projective}. The class of C-flat
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modules, denoted by Fo and Fe-flat dimension of M, denoted by Fe-fd(M) are
defined similarly.

DEFINITION 2.3. An R-module M is called Dg-projective if there exists a
complete PC-resolution of M, which means that

P=...—P -P—-C®rP'—-CrP — -

is an exact complex such that M = Coker(P, — P,) and each P; and P° is
projective and such that the complex Homgr(P, C ®r Q) is exact for every flat
R-module Q. We use DcP(R) to denote the class of all Da-projective R-modules.
For any R-module M, we say that M has Dc-projective dimension at most n,
denoted De-pdr(M) < n, if M has a De-projective resolution of length n, that is,
there is an exact complex of the form 0 — D,, — --- — Dy — M — 0, where all
D; are D¢g-projective R-modules, and say Do-pdr(M) = n if there is not a shorter
Dc-projective resolution.

REMARK 2.4. It is clear that DcP(R) C GcP(R). When C = R, DcP(R) =
DP(R).

From Definition 2.3 one can obtain the following characterization of D¢-
projective R-modules.

PROPOSITION 2.5. M is D¢ -projective if and only if Emt’}?l(M, CRrQ)=0
and there exists an exact sequence of the form:

X=0-M-CerP’"—>CerP" — .-
such that Homg(X, C ®g Q) is exact for any flat R-module Q.

Recall that White in [18] proved that for any projective P, P and C ®p P
are G¢-projective. Moreover, we can show that P and C' ®g P are Dc-projective.
First we give the following lemma,

LEMMA 2.6. Let P be a projective R-module and X be a complex. For an
R-module A, if the compler Hompg(X, A) is exact, then the complex Homg(P ®g
X, A) is exact. Thus, if X is a complete PC-resolution of an R-module M, then
P®rX is a complete PC-resolution of an R-module P®g M. The converses hold
in case P is faithfully projective.

Proof. Since Hompg(P, —) is an exact functor, by the isomorphism of com-
plexes given by Hom-tensor adjointness

Hompr(P®rX, A) = Homg(P, Homgr(X, A)),

exactness of the complex Homg(X, A) implies that the complex Homgr(P®rX, A)
is exact. The remains are trivial. m

PROPOSITION 2.7. (1) C and R are D¢c-projective;
(2) For any projective P, P and C @ P are D¢ -projective.
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Proof. (1) Since C' is semidualizing, there is an exact sequence of the form:
X=:-+—R" — R" — (C — 0 with all n; being positive integer numbers. By
[18, Lemma 1.11 (b)], Homgr(X, C ®g Q) is exact for any flat R-module Q. On
the other hand, there is an exact sequence of the form:

Yy=0%Xc Lo Lot ...
By tensor evaluation homomorphism; see [2, p. 11],
Homp(Y, C®r Q)= Homgr(Y, C)®rQ=Q
is exact, where Q is the following exact sequence
Yoo %o %o
Therefore, C' is Da-projective.
It is clear that the complex Homg(X, C) =0 — R — C™ — C™ — - is
exact. Since R and all C™ are finitely generated, for any flat R-module F,
Homgr(Homp(X, C), C®r F) = Homg(Homgr(X, C), C)@r F XX Qg F

is exact. Thus R is D¢-projective.

(2) By Lemma 2.6 and (1), for any projective P, P and C ®g P are Dc¢-
projective. m

Using a standard argument, we can get the following proposition.

ProposSITION 2.8. If X is a complete PC-resolution, and L is an R-module
with Fo-fd(L) < oo, then the complex Homg(X, L) is exact. Thus if M is D¢-
projective, then Extz' (M, L) = 0.

In [3, Lemma 2.4], the authors proved that for a D-projective R-module M,
either M is projective or fdr(M) = co. Now we generalize it as follows:

PropPOSITION 2.9. If R-module M is Dc-projective, then either M is C-flat
or fc—de(M) = Q.

Proof. Suppose that Fo-fdr(M) = n with 1 <n < co. We show by induction
on n that M is C-flat. First assume that n = 1, then there is an exact sequence
0 — X; - Xog — M — 0 with Xy and X; C-flat. Thus by Proposition 2.8,
Exth(M, X1) = 0. So the above short exact sequence is split, and M is a direct
summand of Xy. By [13, Proposition 5.5], M is C-flat. Then assume that n > 2.
There is a short exact sequence 0 - K — X — M — 0 with X C-flat and
Fo-fdr(K) < n — 1. By induction, we conclude that K is C-flat. Thus Fce-
fdr(M) < 1. By the above discussion, M is C-flat. m

It is easy to prove the following two results using standard arguments. We

leave the proofs to readers.

PROPOSITION 2.10. The class of Dgo-projective R-modules is projectively re-
solving and closed under direct summands.
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PROPOSITION 2.11. Let M be an R-module with De-pdr(M) < oo and n be
a positive integer. The following are equivalent.

(1) De-pdr(M) < n.

(2) Extiy(M, L) =0 for alli > n and all R-modules L with Fc-fd(L) < co.

(3) Extiy(M, C ®r F) =0 for all i > n and all flat R-modules F.

(4) For any exact sequence 0 — K,, - Gp_1 — -+ = G = Gy — M — 0
with all G; De-projective, K, is D¢ -projective.

We give the following lemma which plays a crucial role in this paper.

LEMMA 2.12. Let 0 - A — G1 — Gy — M — 0 be an exact sequence with Gg
and Gy Dg-projective. Then there are two exact sequences 0 — A — C Qg P —
G — M — 0 with P projective and G Dg¢-projective and 0 - A — H — Q —
M — 0 with Q projective and H D¢ -projective.

Proof. Set K = Im(Gy — Gg). Since G is Dg-projective, there is a short
exact sequence 0 — G; — C ®r P — G} — 0 with P projective and G| Dc¢-
projective. Consider the following pushout diagram:

0 G K——=0
0 C ®p P B >0
G4 £

Then consider the following pushout diagram:

N
]
)

>()
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By Proposition 2.10, G is Dg-projective, since Gy and G} are Dg-projective.
Therefore, we can obtain exact sequence 0 — A - C®r P — G — M — 0.
Similarly, we use pullbacks and can obtain the other exact sequence. m

THEOREM 2.13. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,
(1) Do-pdr(M) < n;
(2) For some integer k with 1 < k < n, there is an exact sequence 0 — P, —
- — Py = Py — M — 0 such that P; is Dc-projective if 0 < i < k and P; is
C-projective if j > k.
(3) For any integer k with 1 < k < n, there is an exact sequence 0 — P, —
- — P — Py = M — 0 such that P; is Dc-projective if 0 < ¢ < k and P; is
C-projective if j > k.

Proof. (3) = (2) and (2) = (1): It is clear.
(1)= (3): Let 0 > G, — -+ = G — Gy — M — 0 be an exact sequence
with all G; D¢-projective. We prove (3) by induction on n. Let n = 1. Since Gy

is De-projective, there is a short exact sequence 0 — G; — P, — N — 0 with P,
C-projective and N D¢-projective. Consider the following pushout diagram:

0 0

By Proposition 2.10, Dy is Do-projective, since Gy and N are Dg-projective.
Now assume that n > 1. Set A = Ker(Gy — M), then Dc-pdr(A) < n — 1.
By the induction hypothesis, for any integer k£ with 2 < k < n, there is an exact
sequence 0 — P, — --- — P} — A — 0 such that P; is D¢g-projective if 1 <1i < k
and P; is C-projective if j > k. Therefore, there is an exact sequence 0 — P, —

- —= P - Gy - M — 0. Set B = Ker(P, — Gy). For the exact sequence
0B — P, — Gy — M — 0, by Lemma 2.16, there is an exact sequence 0 —
B — P| — G, — M — 0 with P] C-projective and G}, Dc-projective. Therefore,
we get the wanted exact sequence 0 - P, —--- —> P, = Pl -Gy — M — 0. =

Let F be a class of R-modules. A morphism ¢: F' — M of A is called an
F-precover of M if F € F and Hom(F', F) — Hom(F', M) — 0 is exact for
all F/ € F. ¢ is called an epic F-precover of M if it is an F-precover and is an
epimorphism. If every R-module admits an (epic) F-precover, then we say F is an
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(epic) precovering class. M is said to have a special F-precover if there is an exact
sequence
0—C—F—M-—70

with F' € F and Ezt'(F, C) = 0. It is clear that M has an epic F-precover if it
has a special F-precover. For more details about precovers, readers can refer to [5,
6, 16].

The authors in [14, Theorem 2.2] proved the following result: If M is an
R-module with D-pdr(M) < oo, then M admits a special D-projective precover
¢ : G - M where pdr(Kerp) =n—1ifn > 0 and Kero = 0 if n = 0. We can
use the above theorem to generalize it to the below form,

COROLLARY 2.14. If M is an R-module with Do-pdr(M) = n < co, then M
admits a special D¢ -projective precover ¢: G — M where Po-pdr(Kerp) <n —1
ifn>0 and Kerp =0 ifn=0.

Proof. If n = 0, it is trivial. Now assume that n > 0. By Theorem 2.13,
there is an exact sequence 0 — P, — --- — P, — G — M — 0 such that G is
Dc-projective and any P; is Pc-projective. Then the remainder is trivial. m

REMARK 2.15. In [18, Definition 3.1], the author called a bounded Gc-
projective resolution of R-module M a strict Go-projective resolution if there is an
exact sequence

0—-G,—Gp1— =G —-Gy—M—0

with all G; C-projective for ¢ > 1 and Gy G¢-projective. And it is proved that
every R-module M of finite G¢-projective dimension always admits a strict G-
projective resolution [18, Thereom 3.6]. Using the different method (Theorem 2.13),
we can prove that the R-module M of finite Dgo-projective dimension has the similar

property.

COROLLARY 2.16. (1) Let 0 —» G; — G — M — 0 be a short exact sequence
with G1 and G Dc-projective and Exth(M, F) = 0 for any C-flat R-module F.
Then M is D¢-projective.

(2) If M is an R-module with De-pdr(M) = n, then there exists an exact
sequence 0 — M — H — N — 0 with Pc-pdr(H) <n and N D¢-projective.

Proof. (1) Since Do-pdr(M) < 1, by Corollary 2.14, there is an exact sequence
0 — K — G — M — 0 where G is D¢g-projective and K is C-projective. By the
hypothesis Ext} (M, K) = 0, the exact sequence 0 — K — G — M — 0 is split
and by Proposition 2.10, M is D¢c-projective.

(2) If n = 0, by the definition of Dg-projective R-modules, there is an exact
sequence 0 - M — C ®r P — K — 0 where P is projective and K is D¢-
projective. If n > 1, by Corollary 2.14, there is an exact sequence 0 — K — G —
M — 0 with Pe-pdr(K) < n — 1. Since G is Dg-projective, there is 0 — G —
C ®r Q@ — N — 0 where @ is projective and N is Dg-projective. Consider the
following pushout diagram:
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Then Po-pdr(H) <n.m

THEOREM 2.17. Let M be an R-module and n be a non-negative integer. Then
the following are equivalent,
(1) Dc—de(M) S n;
(2) For some integer k with 0 < k < n, there is an exact sequence 0 — A, —
- — Ay — Ag — M — 0 such that Ay is Dgo-projective and other A; projective
or C-projective.
(3) For any integer k with 0 < k < n, there is an exact sequence 0 — A, —
- — Ay — Ag — M — 0 such that Ay is Do-projective and other A; projective
or C'-projective.

Proof. (3) = (2) and (2) = (1): It is clear.

(1)=(3): Let 0 - G, — -+ = G1 — Gy — M — 0 be an exact sequence
with all G; Dg-projective. We prove (3) by induction on n. If n = 1, by Lemma
2.12, the assertion is true. Now we assume that n > 2. Set K = Ker(G; — Go).
For the exact sequence 0 - K — G; — Gy — M — 0, by Lemma 2.12, we get
two exact sequences 0 — K — G} — Py — M — 0 with G| D¢-projective and Py
projective and 0 — G,, — -+ — Go — G} — Py — M — 0. Set N = Ker(Py —
M), then De-pdr(N) < n— 1. By the induction hypothesis, for any integer k with
1 < k < n, there is an exact sequence 0 — A,, — --- — A; — N — 0 such that A
is Do-projective and other A; are projective or C-projective. Therefore, we get the

wanted exact sequence 0 — A,, — -+ — Ay — Py — M — 0. Now we prove the
case k = 0. Set A = Ker(Go — M), then Dc-pdr(A) < n — 1. By the induction
hypothesis, there is an exact sequence 0 — B, — .-+ — B; — A — 0 such that

B; is De-projective and other B; projective or C-projective. So we have an exact
sequence 0 — B, — -+ — By — Gy — M — 0. Set B = Ker(B; — Gp). For the
exact sequence 0 - B — By — Gy — M — 0, by Lemma 2.12, we get an exact
sequence 0 — B — P" — G — M — 0 with G D¢g-projective and P C-projective.
Hence the exact sequence 0 — B,, — -+ — By — P’ — G — M — 0 is wanted. m

Let F be a class of R-modules. F+ will denote the right orthogonal class of
F, that is, FX = {M | ExtL(F, M) = 0,YF € F}. Analogously, 1F = {M |
Exth(M, F) = 0,VF € F}. A cotorsion theory is a pair of classes (F, C) of
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R-modules such that F+ = C and *C = F. A cotorsion theory (F, C) is called
complete if every R-module has a special F-precover and a special C-preenvelope.
It is called hereditary if for any exact sequence 0 — F' — F — F” — 0 with
F, F” € F implies that F’ € F. For more details about cotorsion theory, readers
can refer to [5, 6, 16]. Let glGepd(R) = sup{Gc-pdr(M) | VM €r M}. We
in [12, Theorem 5.1] proved that (GoP(R), GcP(R)*) is a complete hereditary
cotorsion theory if glGepd(R) < oo and [12, Corollary 5.2] (GP(R), GP(R)1) is
a complete hereditary cotorsion theory if glGpd(R) < oco. Similarly, we prove that
(DcP(R), DcP(R)4) is a complete hereditary cotorsion theory if gl Depd(R) < oo,
where glDopd(R) = sup{Dc-pdr(M) | VM €r M}.

THEOREM 2.18. Assume that glDcpd(R) < oo. Then (DcP(R), DoP(R)1)
is a complete hereditary cotorsion theory.

Proof. We begin with proving that ~(DcP(R)1) = DeP(R). It is clear that
L(DcP(R)Y) 2 DeP(R) because Exth(A, B) = 0 for any A € DcP(R) and
B € DcP+ by definition. By Corollary 2.14, there is an exact sequence 0 — K —
G — M — 0 such that G is D¢-projective and Po-pd(K) < oo. By Proposition
2.8, K € DcP(R)*. So Exth(M, K) =0, and then 0 - K — G — M — 0 is
split, i.e., M is a direct summand of GG. By Proposition 2.10, M is Dg-projective.

By Proposition 2.10, DcP(R) is projectively resolving, DcP(R)*: is in-
jectively resolving, so (DcP(R), DcP(R)*:) is hereditary. By Corollary 2.14,
(DcP(R), DcP(R)1) is complete. m

COROLLARY 2.19. If glDpd(R) = sup{Dpdr(M) | VM €r M} < oo,
(DP(R), DP(R)™ ) is a complete hereditary cotorsion theory.

PROPOSITION 2.20. (1) Exth(G, M) =0 for alln > 1, G € DcP(R) and
M e Dcp(R)J‘.

(2) Pc = DcP(R)\DcP(R)*.

(3) If M be an R-module with Po-pdr(M) < oo, then Po-pdr(M) = De-
pdr(M).

(4) If M be an R-module with Do-pdr(M) < oo, then Go-pdr(M) = De-
pdr(M).

(5) If M be an R-module with pdr(M) < oo, then pdr(M) = Dc-pdr(M).

Proof. (1) For any D¢-projective R-module G, there is an exact sequence
0—-G =P, 1—-—P—-P—G—0
where all P; are projective and G’ is Dg-projective. So for any M € DcP(R)*,
Ext (G, M) = Exth(G', M) =0.
(2) By Propositions 2.7 and 2.8, Pc C DcP(R)(DcP(R):. Let M €

DcP(R)(DcPt. There is a short exact sequence 0 — M — C ®@r P — M’ — 0
where P is projective and M’ is Dc-projective. So Exth(M’, M) = 0 and
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0 - M - C®r P — M — 0 is split. Therefore M € Pg and Pc D
DcP(R)DcP(R)*.

(3) It is clear that Po-pdr(M) > Dec-pdr(M), since every C-projective R-
module is D¢-projective. Now we prove that Pe-pdr(M) < De-pdg(M). For
doing this we assume that De-pdr(M) = n < oo. Since P¢ is precovering [13,
Proposition 5.10] and projectively resolving [13, Corollary 6.8], there is an exact
sequence

0—-K—-C®rP,1— - —CRrPL—>CegrPy— M — 0.

with K Dg-projective. Since M be an R-module with Pe-pdr(M) < oo, Pe-
pdr(K) < oo. By (2), K is C-projective.

(4) Tt is clear that Go-pdr(M) < De-pdr(M), since every De-projective
R-module is G¢-projective. Now we assume that Deo-pdgp(M) = n < oco. By
[18, Proposition 2.12], it is sufficient to find a projective R-module P such that
Exth (M, C ®g P) # 0. By Proposition 2.11, there is a flat R-module F' such
that Exth (M, C ®g F) # 0. Since Pc¢ is precovering [13, Proposition 5.10] and
Fe is projectively resolving [13, Corollary 6.8], there is a short exact sequence
0> K—>C®rP — CRrF — 0 where K is C-flat. By [15, Theorem 7.3],
there is a long exact sequence - -- — Ext’} (M, C ®r P) — Ext’}y,(M, C Qr F) —
Ext' ™ (M, K) — -+, where Ext's™' (M, K)=0. So Ext}(M, C ®g P) # 0.

(5) It is clear that Go-pdr(M) < De-pdr(M) < pdr(M). It is well-known
that pdr(M) = Ge-pdr(M) if pdr(M) < 00. So pdr(M) = De-pdr(M). m

We round off this paper with the following questions:

(1) Recall that the author in [14, Theorem 3.1] proved that for any ring R,
r.glGdim(R) = r.glDdim(R). So we conjecture that glGepd(R) = glDepd(R), is
it true?

(2) Whether is there a Go-projective R-module which is not Do-projective?
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