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Abstract. A 2-rainbow dominating function (2RDF) of a graph G is a function f from the
vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with
f(v) = ∅ the condition ∪u∈N(v)f(u) = {1, 2} is fulfilled. The weight of a 2RDF f is the value

ω(f) = Σv∈V |f(v)|. The 2-rainbow domination number of a graph G, denoted by γr2(G), is the
minimum weight of a 2RDF of G. The 2-rainbow domination subdivision number sdγr2 (G) is the
minimum number of edges that must be subdivided (each edge in G can be subdivided at most
once) in order to increase the 2-rainbow domination number. In this paper, we initiate the study
of 2-rainbow domination subdivision number in graphs.

1. Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E(G)
(briefly V and E). For every vertex v ∈ V , the open neighborhood N(v) is the set
{u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v is the set N [v] = N(v)∪
{v}. Similarly, the open neighborhood of a set S ⊆ V is the set N(S) =

⋃
v∈S N(v),

and the closed neighborhood of S is the set N [S] = N(S) ∪ S. A leaf of a graph G
is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong
support vertex is a vertex adjacent to at least two leaves.

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph
G is a function f from the vertex set V (G) to the set of all subsets of the set
{1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition⋃

u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a kRDF f is the value
ω(f) =

∑
v∈V |f(v)|. The k-rainbow domination number of a graph G, denoted by

γrk(G), is the minimum weight of a kRDF of G. A γrk(G)-function is a k-rainbow
dominating function of G with weight γrk(G). Note that γr1(G) is the classical
domination number γ(G). The k-rainbow domination number was introduced by
Brešar, Henning, and Rall [2] and has been studied by several authors [3–5,11,13].
For a more thorough treatment of domination parameters and for terminology not
presented here see [10].
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The 2-rainbow domination subdivision number sdγr2(G) of a graph G is the
minimum number of edges that must be subdivided (where each edge in G can be
subdivided at most once) in order to increase the 2-rainbow domination number
of G. (An edge uv ∈ E(G) is subdivided if the edge uv is deleted, but a new
vertex x is added, along with two new edges ux and vx. The vertex x is called
a subdivision vertex ). Observation 3 below shows that the 2-rainbow domination
number of graphs cannot decrease when an edge of graph is subdivided. Since the
2-rainbow domination number of the graph K2 does not change when its only edge
is subdivided, in the study of 2-rainbow domination subdivision number we must
assume that the graph has maximum degree at least two.

The purpose of this paper is to initiate the study of the 2-rainbow domination
subdivision number sdγr2(G). Although it may not be immediately obvious that the
2-rainbow domination subdivision number is defined for all graphs with maximum
degree at least two, we will show this shortly.

We make use of the following results in this paper.

Theorem A. [6] Let G be a graph of order n ≥ k +1. Then γrk(G) = k if and
only if there exists a vertex set A with |A| ≤ k such that every vertex of V (G)−A
is adjacent to every vertex of A.

Theorem B. [3] For n ≥ 1,

γr2(Pn) =
⌊n

2

⌋
+ 1.

Corollary 1. For n ≥ 3,

sdγr2(Pn) =
{

1 if n is odd
2 if n is even.

Theorem C. [3] For n ≥ 3,

γr2(Cn) =
⌊n

2

⌋
+

⌈n

4

⌉
−

⌊n

4

⌋
.

Corollary 2. For n ≥ 3,

sdγr2(Cn) =





1 if n ≡ 0, 1 (mod 4)
3 if n ≡ 2 (mod 4)
2 if n ≡ 3 (mod 4).

Observation 3. Let G be a connected graph of order n ≥ 3 and e = uv ∈
E(G). If G′ is the graph obtained from G by subdividing the edge e, then γr2(G′) ≥
γr2(G).
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Proof. Let G′ be the graph obtained from G by subdividing the edge e with
subdivision vertex x, and let f be a γr2(G′)-function. It is easy to see that the
function g : V (G) → P({1, 2}) defined by g(u) = f(u) ∪ f(x) and g(w) = f(w)
for w ∈ V (G) − {u} is a 2-rainbow dominating function of G which implies that
γr2(G′) = ω(f) ≥ γr2(G). This completes the proof.

Observation 4. Let v be a vertex of G with deg(v) ≥ 2 and let N(v) =
{v1, . . . , vk}. Assume 1 ≤ r ≤ k and G′ is obtained from G by subdividing the
edge vvi with vertex xi for i = 1, . . . , r. If G′ has a γr2(G′)-function f such that
|f(v)|+ ∑r

i=1 |f(xi)| ≥ 3, then γr2(G′) ≥ γr2(G).

Proof. Define g : V → P({1, 2}) by g(v) = {1, 2} and g(x) = f(x) for x ∈
V (G)− {v}. Obviously, g is a 2RDF of G of weight less than γr2(G′) that implies
γr2(G′) ≥ γr2(G).

The proof of the following observation is straightforward and therefore omitted.

Observation 5. For n ≥ 3, sdγr2(Kn) = 2.

Observation 6. If G = Km,n is the complete bipartite graph and m ≥ n ≥ 4,
then sdγr2(Km,n) = 3.

Proof. Note that γr2(Km,n) = 4 when m ≥ n ≥ 4. Let X = {u1, u2, . . . , un}
and Y = {v1, v2, . . . , vm} be the partite sets of Km,n. First we show that
sdγr2(Km,n) ≥ 3. Let e1 = uivj , e2 = ui′vj′ be two arbitrary edges of Km,n

and let G be obtained from Km,n by subdividing the edges e1, e2. If ui = ui′

(the case vj = vj′ is similar), then the function g : V → P({1, 2}) defined by
g(ui) = {1, 2}, g(vj) = {1} and g(vj′) = {2} is a 2-rainbow dominating function of
G of weight 4. Let ui 6= ui′ and vj 6= vj′ . Then the function g : V → P({1, 2})
defined by g(ui) = g(vj′) = {1} and g(ui′) = g(vj) = {2} is a 2-rainbow dominating
function of G of weight 4. It follows that sdγr2(Km,n) > 2.

To prove sdγr2(Km,n) ≤ 3, assume that G′ is the graph obtained from Km,n by
subdividing the edges u1v1, u1v2, u1v3 with vertices x1, x2, x3, respectively. Let f
be a γr2(G′)-function. By Observation 4, we may assume |f(u1)|+

∑3
i=1 |f(xi)| ≤ 2.

We consider three cases.
Case 1. f(u1) = {1, 2}.
Then f(xi) = ∅ for i = 1, 2, 3. If |f(ui)| ≥ 1 for each i ≥ 2 or |f(vi)| ≥ 1

for i = 1, 2, 3, then γr2(G′) = ω(f) ≥ 5 and we are done. Suppose |f(ui)| = 0
and |f(vj)| = 0 for some i, j, say i = 2 and j = 1. To dominate u2 and v1, we
must have

∑m
i=1 |f(vi)| ≥ 2 and

∑n
i=2 |f(ui)| ≥ 2, respectively. It follows that

γr2(G′) = ω(f) ≥ 5 as desired.
Case 2. f(u1) = ∅.
Then to dominate xi, we must have f(xi) 6= ∅ or f(vi) = {1, 2} for i =

1, 2, 3. If
∑3

i=1(|f(xi)|+ |f(vi)|) ≥ 4 then to dominate v4, we must have |f(v4)|+∑n
i=2 |f(ui)| ≥ 1 implying that γr2(G′) = ω(f) ≥ 5 as desired. Let

∑3
i=1(|f(xi)|+

|f(vi)|) ≤ 3. It follows that |f(xi)| = 1 and |f(vi)| = 0 for i = 1, 2, 3. If |f(ui)| ≥ 1
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for each i ≥ 2, then γr2(G′) = ω(f) ≥ 5. Suppose |f(ui)| = 0 for some i ≥ 2, say
i = 2. To dominate u2, we must have

∑m
i=4 |f(vi)| ≥ 2 which implies γr2(G′) =

ω(f) ≥ 5.
Case 3. |f(u1)| = 1.
We may assume, without loss of generality, that f(u1) = {1}. To dominate

xi, we must have |f(xi)|+ |f(vi)| ≥ 1 for i = 1, 2, 3. Now to dominate v4, we must
have |f(v4)| +

∑n
i=2 |f(ui)| ≥ 1. It follows that γr2(G′) = ω(f) ≥ 5 and hence

sdγr2(Km,n) ≤ 3. This completes the proof.

2. Sufficient conditions for small rainbow domination
subdivision number

Lemma 7. Let G be a connected graph. If there is a path v3v2v1 in G with
deg(v2) = 2 and deg(v1) = 1, then G has a γr2(G)-function f such that f(v1) = {1},
and 2 ∈ f(v3).

Proof. Assume that g is a γr2(G)-function. To dominate v1, we must have
|g(v1)|+ |g(v2)| ≥ 1. Consider two cases.

Case 1. |g(v1)|+ |g(v2)| ≥ 2.
Define f : V (G) → P({1, 2}) by f(v1) = {1}, f(v2) = ∅, f(v3) = g(v3) ∪ {2}

and f(x) = g(x) for x ∈ V (G) − {v1, v2, v3}. It is easy to see that f is a γr2(G)-
function with the desired property.

Case 2. |g(v1)|+ |g(v2)| = 1.
Then |g(v1)| = 1 and |g(v2)| = 0. We may assume, without loss of generality,

that g(v1) = {1}. To dominate v2, we must have 2 ∈ g(v3) and hence g has the
desired property and the proof is completed.

Proposition 8. If G contains a strong support vertex, then sdγr2(G) = 1.

Proof. Let w be a strong support vertex of G and let u, v ∈ V be two leaves
adjacent to w. Suppose G′ is the graph obtained from G by subdividing the edge uw
with vertex x. By Lemma 7, G has a γr2(G′)-function f such that f(u) = f(v) =
{1} and 2 ∈ f(w). Define g : V → P({1, 2}) by g(u) = g(v) = ∅, g(w) = {1, 2} and
g(z) = f(z) for each z ∈ V \ {u, v, w}. Clearly, g is a 2RDF of G with w(g) < w(f)
and hence sdr2(G) = 1.

Theorem 9. For any tree T of order n ≥ 3, sdγr2(T ) ≤ 2.

Proof. If diam(T ) = 2 then T is a star and by Proposition 8, sdr2(T ) = 1.
Let diam(T ) ≥ 3 and let v1v2 . . . vd be a diametral path in T . By Proposition 8,
we may assume deg(v2) = 2. Let T ′ be obtained from T by subdividing the edge
vivi+1 with subdivision vertex xi for i = 1, 2. Suppose f is a γr2(T ′)-function. By
Lemma 7, we may assume f(v1) = {1} and 2 ∈ f(v2). Define g : V (T ) → P({1, 2})
by g(v1) = f(v2), g(v2) = f(x2) and g(z) = f(z) for each z ∈ V (T ) \ {v1, v2}. It is
easy to see that g is a 2RDF of T of weight less than γr2(T ′). Thus sdγr2(T ) ≤ 2
and the proof is completed.
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Proposition 10. If G is a connected graph of order n ≥ 3 with γr2(G) = 2,
then sdγr2(G) ≤ 2. This bound is sharp for complete graphs.

Proof. Let w be a vertex of degree at least two and let u1, u2 be its neighbors.
Assume G′ is the graph obtained from G by subdividing the edge wui with subdi-
vision vertex xi for i = 1, 2. We claim that γr2(G′) ≥ 3. Suppose to the contrary
that γr2(G′) = 2. By Theorem A, there exists a vertex set A with |A| ≤ 2 such that
every vertex of V (G′)−A is adjacent to every vertex of A. Since |V (G′)−A| ≥ 3,
we have x1, x2 /∈ A. Then |A| = 2, for otherwise G′ must have a vertex of degree
|V (G′)| − 1, a contradiction. Then all neighbors of x1, x2 must belong to A which
leads to a contradiction, because there are three neighbors. This completes the
proof.

Proposition 11. If G is a connected graph of order n ≥ 3 with γr2(G) = 3,
then sdγr2(G) ≤ 3.

Proof. If ∆(G) = 2, then G is a path or cycle and the result follows from
Corollaries 1 and 2. Let ∆(G) ≥ 3. Let v ∈ V (G) be a vertex of maximum degree
and v1, v2, v3 ∈ N(v). Assume G′ is the graph obtained from G by subdividing
the edge vvi with vertex xi for i = 1, 2, 3. We show that γr2(G′) > γr2(G) which
implies sdγr2(G) ≤ 3. Let f be a γr2(G′)-function. By Observation 4, we may
assume |f(v)|+ ∑3

i=1 |f(xi)| ≤ 2. We consider three cases.
Case 1. f(v) = {1, 2}.
Then f(xi) = ∅ for i = 1, 2, 3. If |f(vi)| ≥ 1 for each 1 ≤ i ≤ 3, then

γr2(G′) = ω(f) ≥ 5 and we are done. Suppose |f(vi)| = 0 for some 1 ≤ i ≤ 3, say
i = 1. To dominate v1, we must have

∑
x∈V (G)−{v,v1} |f(x)| ≥ 2. It follows that

γr2(G′) = ω(f) ≥ 4.
Case 2. f(v) = ∅.
Then to dominate xi, we must have f(xi) 6= ∅ or f(vi) = {1, 2} for i =

1, 2, 3. If
∑3

i=1(|f(xi)| + |f(vi)|) ≥ 4, we are done. Let
∑3

i=1(|f(xi)| + |f(vi)|) ≤
3. Then |f(xi)| = 1 and |f(vi)| = 0 for i = 1, 2, 3. To dominate v1, we have∑

x∈V (G)−{v} |f(x)| ≥ 2. Hence γr2(G′) = ω(f) ≥ 5.

Case 3. |f(v)| = 1.
To dominate xi, we must have |f(xi)| + |f(vi)| ≥ 1 for i = 1, 2, 3. Hence

γr2(G′) = ω(f) ≥ 4.
Thus γr2(G′) > γr2(G) and the proof is completed.

3. Bounds on the rainbow domination subdivision number

In this section we present some upper bounds on sdγr2(G) in terms of the
vertex degree and the minimum degree of G. We start with the following lemma.

Lemma 12. Let G be a connected graph of order n ≥ 3, v ∈ V (G), N(v) =
{v1, . . . , vk} and F ⊆ E(G)− {vvi | 1 ≤ i ≤ k} (possibly empty set). Let G′ be the
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graph obtained from G by subdividing the edge vvi with vertex xi for 1 ≤ i ≤ k and
the edges in F . If G′ has a γr2(G′)-function, f , such that f(v) 6= ∅ and f(xi) 6= ∅
for some i, then γr2(G′) ≥ γr2(G) + 1.

Proof. Let f be a γr2(G′)-function such that f(v) 6= ∅ and f(xi) 6= ∅ for
some i. Then |f(v)|+ ∑k

i=1 |f(xi)| ≥ 2. Suppose G1 is the graph obtained from G

by subdividing the edges in F . Define g : V (G1) → P({1, 2}) by g(v) =
⋃k

i=1 f(xi)
and g(z) = f(z) for each z ∈ V (G1)− {v}. Obviously g is a 2RDF of G1 of weight
less than ω(f). Hence γr2(G′) ≥ γr2(G1) + 1. It follows from Observation 3 that
γr2(G′) ≥ γr2(G) + 1 and the proof is completed.

Lemma 13. Let G be a connected graph of order n ≥ 3 and let G have a vertex
v ∈ V (G) which is contained in a triangle vuw such that N(u) ⊆ N [v]. Then
sdγr2(G) ≤ deg(v).

Proof. Let N(v) = {u = v1, w = v2, . . . , vk} and let G′ be the graph obtained
from G by subdividing the edge vvi with vertex xi for 1 ≤ i ≤ k. Let f be a
γr2(G′)-function. By Observation 4 and Lemma 12, we may assume that |f(v)| +∑k

i=1 |f(xi)| ≤ 2 and |f(v)| = 0 or
∑k

i=1 |f(xi)| = 0. If f(v) = {1, 2}, then
the function g : V (G) → P({1, 2}) defined by g(v) = {1} and g(z) = f(z) for
each z ∈ V (G) − {v}, is a 2RDF of G of weight less than γr2(G′). If |f(v)| = 1,
then the function h : V (G) → P({1, 2}) by h(v1) = ∅ and h(z) = f(z) for each
z ∈ V (G)− {v1}, is a 2RDF of G of weight less than γr2(G′). Hence let f(v) = ∅.
Then

∑k
i=1 |f(xi)| = 2. We consider the following cases.

Case 1. f(x1) = {1, 2}.
Then

∑k
i=2 |f(xi)| = 0. Now to dominate x2, we must have f(v2) = {1, 2}. So

the function f , restricted to G is a 2RDF of G of weight less than γr2(G′).

Case 2. |f(x1)| = 1.

Then
∑k

i=2 |f(xi)| = 1. This implies that f(vi) = {1, 2} for each 2 ≤ i ≤ k,
except one of them. If f(v1) 6= ∅ or v1 has a neighbor with label {1, 2}, then
define g : V (G) → P({1, 2}) by g(v) =

⋃k
i=2 f(xi) and g(z) = f(z) for each

z ∈ V (G) − {v}. Clearly g is a 2RDF of G of weight less than γr2(G′) as desired.
Hence let f(v1) = ∅ and let v1 does not have a neighbor with label {1, 2}. Since
v1v2 ∈ E(G), we deduce that |f(v2)| ≤ 1 and f(vi) = {1, 2} for each i ≥ 3. We
may assume, without loss of generality, that f(x1) = {1}. Since N(v1) ⊆ N [v] and
since v1 does not have a neighbor with label {1, 2}, to rainbowly dominate v1 we
must have 2 ∈ f(v2). Define g : V (G) → P({1, 2}) by g(v) = {1} and g(z) = f(z)
for each z ∈ V (G)− {v}. Clearly g is a 2RDF of G of weight less than ω(f).

Case 3. f(x1) = ∅.
To dominate x1, we have f(v1) = {1, 2}. Then the function g : V (G) →

P({1, 2}) defined by g(v1) = ∅, g(v) =
⋃k

i=2 f(xi) and g(z) = f(z) for each z ∈
V (G)−{v, v1}, is a 2RDF of G of weight less than γr2(G′). This yields sdγr2(G) ≤
deg(v).
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Theorem 14. For any connected graph G with adjacent vertices u and v, each
of degree at least two,

sdγr2(G) ≤ deg(u) + deg(v)− |N(u) ∩N(v)| − 1.

Proof. If N(u) ⊆ N [v] or N(v) ⊆ N [u], then the result is immediate by
Lemma 13. Let N(u)−N [v] 6= ∅, N(v) = {v1, v2 . . . , vk} where u = vk and N(u)−
N [v] = {u1, u2, . . . , ut}. Let G′ be the graph obtained from G by subdividing
the edge vvi with subdivision vertex xi for i = 1, 2, . . . , k, and the edge uuj with
subdivision vertex yj for j = 1, 2, . . . , t. Let f be a γr2(G′)-function. By Lemma 12,
we may assume |f(v)| = 0 or

∑k
i=1 |f(xi)| = 0. On the other hand, by Lemma 13,

we can assume |f(v)|+ ∑k
i=1 |f(xi)| ≤ 2. If f(v) = {1, 2}, then define g : V (G) →

P({1, 2}) by g(v) = {1}, g(uj) = f(uj) ∪ f(yj) for each j, and g(z) = f(z) for
z ∈ V \ {v, u1, . . . , ut}. It is easy to see that g is a 2RDF of G of weight less than
γr2(G′). We now consider two cases.

Case 1. |f(v)| = 1.
Assume, without loss of generality, that f(v) = {1}. Then f(xi) = ∅ for each

i because
∑k

i=1 |f(xi)| = 0. It follows that 2 ∈ f(vi) for each i. Then the function
g : V (G) → P({1, 2}) by g(v) = ∅, g(u) = {1}, g(uj) = f(uj)∪f(yj) for each j, and
g(z) = f(z) for each z ∈ V \ {u, v, u1, . . . , ut} is a 2RDF of G of weight less than
γr2(G′).

Case 2. f(v) = ∅.
Then

⋃k
i=1 f(xi) = {1, 2} and

∑k
i=1 |f(xi)| = 2. If f(xi) = {1, 2} for some i,

then the function g : V (G) → P({1, 2}) by g(vi) = f(vi)∪{1}, g(uj) = f(uj)∪f(yj)
for each j and g(z) = f(z) otherwise, is a 2RDF of G of weight less than γr2(G′).

Thus we assume f(xi) = {1}, f(xj) = {2} for some i 6= j. If f(vi) 6= ∅, then
the function f1 : V (G) → P({1, 2}) defined by f1(v) = f(xj), f1(uj) = f(uj)∪f(yj)
for each j and f1(z) = f(z) otherwise, is a 2RDF of G of weight less than γr2(G′).
Thus we may assume that f(vi) = ∅. Similarly, we assume that f(vj) = ∅.

If k /∈ {i, j} then f(xk) = ∅ and to rainbowly dominate xk, we must have
f(u) = {1, 2}. It is easy to see that the function f2 : V (G) → P({1, 2}) by f2(v) =
{1, 2}, f2(u) = ∅, f2(uj) = f(uj) ∪ f(yj) for each j and f2(z) = f(z) otherwise, is
a 2RDF of G of weight less than γr2(G′). Let k ∈ {i, j}. Assume, without loss of
generality, that i = k. Then f(u) = ∅. If 1 ∈ ⋃

z∈(NG(u)∪NG′ (u))−{xk} f(z), then
the function f3 : V (G) → P({1, 2}) by f3(v) = {2}, f3(uj) = f(uj) ∪ f(yj) for
each j and f3(z) = f(z) otherwise, is a 2RDF of G of weight less than γr2(G′). Let
1 /∈ ⋃

z∈(NG(u)∪NG′ (u))−{xk} f(z). Then f(yj) = {2} for each j and the function
f4 : V (G) → P({1, 2}) by f4(v) = f4(u) = {2} and f4(z) = f(z) for each z ∈
V \ {u, v} is a 2RDF of G of weight less than γr2(G′). Thus sdγr2(G) ≤ k + t =
deg(u) + deg(v)− |N(u) ∩N(v)| − 1 and the proof is completed.

Corollary 15. For any connected graph G of order n ≥ 3,

sdγr2(G) ≤ n− γr2(G) + 3.
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Proof. If G is a star, then γr2(G) = 2 and hence sdγr2(G) = 1 < n−γr2(G)+3.
Let G have two adjacent vertices u, v, each of degree at least two. Define f : V (G) →
P({1, 2}) by f(v) = f(u) = {1, 2}, f(z) = ∅ for z ∈ (N(u) ∪ N(v)) \ {u, v} and
f(z) = {1} for each z ∈ V \ (N [u] ∪N [v]). It is clear that f is a 2RDF of G and
hence γr2(G) ≤ n− |N(u) ∪N(v)|+ 4. Thus |N(u) ∪N(v)| − 1 ≤ n− γr2(G) + 3.
It follows from Theorem 14 that sdγr2(G) ≤ deg(u)+ deg(v)− |N(u)∩N(v)| − 1 =
|N(u) ∪N(v)| − 1 ≤ n− γr2(G) + 3.

The next result is an immediate consequence of Propositions 10, 11 and Corol-
lary 15.

Theorem 16. For any connected connected graph G of order n ≥ 3,

sdγr2(G) ≤ n− 1.

Theorem 17. Let G be a connected graph of order n ≥ 3 with δ(G) = 1. If
v ∈ V (G) is a support vertex v, then sdγr2(G) ≤ deg(v).

Proof. Let u ∈ V (G) be a leaf adjacent to v, where deg(v) ≥ 2 and let
N(v) = {v1 = u, v2, . . . , vk}. Let G1 be the graph obtained from G by subdividing
the edges vv1, vv2, . . . , vvk with vertices x1, x2, . . . , xk, respectively. Let f be a
γr2(G1)-function. Considering the path vx1u in G1, we may assume that f(u) = {1}
and 2 ∈ f(v) by Lemma 7. By Observation 4 and Lemma 12, we can assume
|f(v)|+ ∑k

i=1 |f(xi)| ≤ 2 and |f(v)| = 0 or
∑k

i=1 |f(xi)| = 0. If f(v) = {1, 2}, then
clearly the function g : V (G) → P({1, 2}) defined by g(u) = ∅ and g(z) = f(z)
for each z ∈ V \ {u} is a 2RDF of G of weight less than γr2(G1). Let f(v) = {2}.
Then f(xi) = ∅ for each i. Then 1 ∈ f(vi) for each i and the function g : V (G) →
P({1, 2}) defined by g(u) = {2}, g(v) = ∅ and g(z) = f(z) for each z ∈ V \ {u, v}
is a 2RDF of G of weight less than γr2(G1). This completes the proof.

Theorem 18. Let G be a connected graph of order n ≥ 3 with δ(G) = 1. Then
sdγr2(G) ≤ γr2(G).

Proof. Let u ∈ V (G) be a leaf adjacent to v, where deg(v) ≥ 2 and let
N(v) = {v1 = u, v2, . . . , vk}. By Theorem 17, we may assume deg(v) > γr2(G). Let
γr2(G) = ` and let G′ be obtained from G by subdividing the edges vv1, vv2, . . . , vv`

with vertices x1, x2, . . . , x`, respectively. Let f be a γr2(G′)-function. We may
assume that f(u) = {1} and 2 ∈ f(v) by Lemma 7. If f(v) = {1, 2} or f(xi) 6= ∅
for some i, then clearly the function defined in the proof of Theorem 17 is a 2RDF
of G of weight less than γr2(G′). Let f(v) = {2} and f(xi) = ∅ for each i. It follows
that |f(vi)| ≥ 1 for each 1 ≤ i ≤ `. Thus γr2(G′) = ω(f) ≥ |f(v)|+ ∑`

i=1 |f(vi)| >
γr2(G). Hence sdγr2(G) ≤ γr2(G) and the proof is completed.

Theorem 19. Let G be a connected graph of order n ≥ 3 with δ(G) = 1. Then
sdγr2(G) ≤ α′(G) + 1, where α′(G) is the matching number of G.
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Proof. If sdγr2(G) ≤ 2, then the result is immediate. Suppose sdγr2(G) ≥ 3.
Let u ∈ V (G) be a leaf adjacent to v, where deg(v) ≥ 2 and let N(v) = {v1 =
u, v2, . . . , vk}. By Theorem 17, we may assume deg(v) > α′(G) + 1. Note that
subdividing all edges incident to v, increases the rainbow domination number of
G. Let S be the smallest subset of edges incident to v such that subdividing
the edges of S increases the rainbow domination number of G. We may assume
that S = {vv1, vv2, . . . , vvr} where 3 ≤ r ≤ k. Let G′ be the graph obtained
from G by subdividing the edges vv1, vv2, . . . , vvr−1 with vertices x1, x2, . . . , xr−1

respectively. Then γr2(G) = γr2(G′). Let f be a γr2(G′)-function. By Lemma 7,
we may assume that f(u) = {1}, 2 ∈ f(v). If |f(v)| = 2 or

⋃r−1
i=1 f(xi) 6= ∅,

then an argument similar to that described in the proof of Theorem 17 leads to a
contradiction. Let f(v) = {2} and

⋃r−1
i=1 f(xi) = ∅. It follows from

⋃r−1
i=1 f(xi) = ∅

that 1 ∈ f(vi) for each 2 ≤ i ≤ r − 1.
If there exists some vi (2 ≤ i ≤ r − 1) such that f(w) 6= ∅ or⋃

x∈N(w)−{vi} f(x) = {1, 2} for each w ∈ N(vi)−{v}, then the function g : V (G) →
P({1, 2}) defined by f(u) = f(vi) = ∅, f(v) = {1, 2} and g(z) = f(z) for each
z ∈ V \ {u, v, vi} is a 2RDF of G of weight less than γr2(G), a contradiction. Thus
for each 2 ≤ i ≤ r − 1, vi has a {v2, . . . , vr−1}-private neighbor, say wi. Now the
set {uv, v2w2, . . . , vr−1wr−1} is a matching of G implying that sdγr2(G) ≤ r + 1 ≤
α′(G) + 1 and the proof is completed.

A vertex v of a graph G is a simplicial vertex if the induced subgraph G[N(v)],
is a clique.

Theorem 20. If a graph G contains a simplicial vertex u of degree at least
two, then sdγr2(G) ≤ deg(u) + 1.

Proof. Let u be a simplicial vertex in G with N(u) = {u1, u2, . . . , uk}, and let
G′ be the graph obtained from G by subdividing the edge u1u2 with subdivision
vertex w and the edge uui with subdivision vertex xi for each 1 ≤ i ≤ k. We
show that γr2(G′) > γr2(G). Suppose f is a γr2(G′)-function. By Lemma 12, we
may assume |f(u)| = 0 or

∑k
i=1 |f(xi)| = 0. If f(u) = {1, 2}, then the function g :

V (G) → P({1, 2}) by g(u) = {1}, g(u1) = f(u1)∪f(x1)∪f(w), g(uj) = f(uj)∪f(xj)
for each 2 ≤ j ≤ k, and g(z) = f(z) for each z ∈ V \ {u, u1, . . . , uk} is a 2RDF of
G of weight less than γr2(G′). Let |f(u)| ≤ 1. If |f(u)|+ |f(w)|+∑k

i=1 |f(xi)| ≥ 3,
then the function g : V → P({1, 2}) by g(u) = {1, 2}, and g(z) = f(z) for each
z ∈ V \ {u} is a 2RDF of G of weight less than γr2(G′). Let |f(u)| + |f(w)| +∑k

i=1 |f(xi)| ≤ 2. If f(u) = ∅, then we must have
⋃k

i=1 f(xi) = {1, 2} and so∑k
i=1 |f(xi)| = 2 and f(w) = ∅. Then f(u1) ∪ f(u2) = {1, 2} and the function f ,

restricted to G is a 2RDF of G of weight less than γr2(G′).

Now let |f(u)| = 1. Then
∑k

i=1 |f(xi)| = 0 and hence f(xi) = ∅ for each i.
Assume, without loss of generality, that f(u) = {1}. It follows that 2 ∈ f(ui) for
each i. If f(w) = ∅, then f(u1)∪f(u2) = {1, 2} and the function g : V → P({1, 2})
defined by g(u) = ∅, and g(z) = f(z) for each z ∈ V \ {u} is a 2RDF of G of
weight less than γr2(G′). Let |f(w)| = 1. Then the function f , restricted to G
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is a 2RDF of G of weight less than γr2(G′). Thus γr2(G′) ≥ γr2(G) and hence
sdγr2(G) ≤ deg(u) + 1. This completes the proof.

4. Graphs with large rainbow domination subdivision number

In the previous two sections, we essentially encountered graphs with small
rainbow domination subdivision number. Our aim in this section is to show that the
rainbow domination subdivision number of a graph can be arbitrarily large. First
we define total domination subdivision number and Roman domination subdivision
number.

A subset S of vertices of G is a total dominating set if N(S) = V . The
total domination number γt(G) is the minimum cardinality of a total dominating
set of G. The total domination subdivision number sdγt

(G) of a graph G is the
minimum number of edges that must be subdivided (where each edge in G can be
subdivided at most once) in order to increase the total domination number. The
total domination subdivision number was introduced by Haynes et al. [8].

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [12,
14] as a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v
for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The
weight of an RDF is the value w(f) =

∑
v∈V f(v). The Roman domination number

of a graph G, denoted by γR(G), equals the minimum weight of an RDF on G. By
definitions, we have

γr2(G) ≤ γR(G) (1)

for every graph G. The Roman domination subdivision number sdγR
(G) of a graph

G is the minimum number of edges that must be subdivided in order to increase
the Roman domination number of G. The Roman domination subdivision number
was introduced by Atapour et al. [1].

The following graph was introduced by Haynes et al. [9] to prove a similar
result on sdγt(G) and we keep the main idea of their proof. Let k ≥ 3 be an
integer. Let X = {1, 2, . . . , 3(k − 1)} and let Y = {Y ⊂ X | |Y | = k}. Thus, Y
consists of all k-subsets of X, and so |Y| = (

3(k−1)
k

)
. Let G be the graph with vertex

set X ∪ Y and with edge set constructed as follows: add an edge joining every two
distinct vertices of X and for each x ∈ X and Y ∈ Y, add an edge joining x and Y

if and only if x ∈ Y . Then, G is a (connected graph of order n =
(
3(k−1)

k

)
+3(k−1).

The set X induces a clique in G, while the set Y is an independent set and each
vertex of Y has degree k in G. Therefore δ(G) = k.

Lemma 21. For any integer k ≥ 3, γr2(G) = 4k − 5.

Proof. Atapour et al. [1] proved that γR(G) = 4k − 5. It follows from (1) that

γr2(G) ≤ 4k − 5. (2)

Now let f be a γr2(G)-function such that |Z = {v ∈ V : |f(v)| = 1}| is
minimum. We proceed further with a series of claims that we may assume satisfied
by the f .
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Claim 1. For each Y ∈ Y, |f(Y )| ≤ 1.
Suppose to the contrary that f(Y ) = {1, 2} for some Y ∈ Y. Let y ∈ Y and

define g : V (G) −→ P({1, 2}) by g(Y ) = ∅, g(y) = {1, 2} and g(v) = f(v) for each
v ∈ V (G)\{y, Y }. Since Y is independent and G[X] is a complete graph, we deduce
that g is a γr2(G)-function. By repeating this process we may assume |f(Y )| ≤ 1
for each Y ∈ Y.

Claim 2. |Z ∩ Y| ≤ 2.
Suppose to the contrary that |Z ∩ Y| ≥ 3. Let |f(Y1)| = |f(Y2)| = |f(Y3)| =

1. If Y1, Y2, Y3 are mutually disjoint, then we must have |X| ≥ 3k which is a
contradiction. Assume, without loss of generality, that x ∈ Y1 ∩ Y2. Then the
function g : V (G) −→ P({1, 2}) by g(Y1) = g(Y2) = ∅, g(x) = {1, 2} and g(v) =
f(v) for each v ∈ V (G) \ {x, Y1, Y2}. Obviously, g is a γr2(G)-function which
contradicts the choice of f . Henceforth, we may assume |Z ∩Y| ≤ 2 and the claim
is proved.

Claim 3. |Z ∩ Y| ≤ 1.
Assume to the contrary that |Z ∩ Y| = 2. Let Y1, Y2 ∈ Z ∩ Y. If Y1 ∩ Y2 6= ∅,

then as in the proof of Claim 2, we can obtain a contradiction. Thus Y1 ∩ Y2 =
∅. If |f(x)| = 1 for some x ∈ Y1, then the function g : V (G) −→ P({1, 2})
by g(Y1) = ∅, g(x) = {1, 2} and g(v) = f(v) for each v ∈ V (G) \ {x, Y1}, is a
γr2(G)-function which contradicts the choice of f . Thus f(x) = ∅ for each x ∈ Y1.
Similarly, f(x) = ∅ for each x ∈ Y2. Now let x1 ∈ Y1 and x2 ∈ Y2. Then the set
(Y1 − {x1}) ∪ {x2} is not rainbowly dominated by f , a contradiction.

Claim 4. |Z ∩ Y| = 1.
Assume to the contrary that |Z ∩ Y| = 0. Let Xi (i = 1, 2) be the set of

vertices of X such that f(x) = {i} and let X3 be the set of vertices of X assigned
∅ by f . Then obviously |X1|+ |X3| ≤ k − 1 and |X2|+ |X3| ≤ k − 1. It is easy to
see that the below integer linear programming

Max |X1|+ |X2|+ |X3|
s.t. |X1|+ |X3| ≤ k − 1

|X2|+ |X3| ≤ k − 1

|Xi| ∈ Z≥0 (i = 1, 2, 3)

has the unique solution |X1| = |X2| = k− 1 and |X3| = 0. It follows that γr2(G) =
ω(f) ≥ 4(k − 1) which contradicts (2).

Let Y ∈ Z ∩ Y. As in the proof of Claim 3, we must have f(x) = ∅ for each
x ∈ Y . If there is a vertex w /∈ Y such that |f(w)| ≤ 1, then the set (Y−{x})∪{w} is
not rainbowly dominated by f for each x ∈ Y , a contradiction. Hence f(w) = {1, 2}
for each w ∈ X \ Y implying that γr2(G) = ω(f) = 2(2k − 3) + 1 ≥ 4k − 5. Thus
γr2(G) = 4k − 5 and the proof is complete.

Theorem 22. For any integer k ≥ 4, there exists a simple connected graph G
with sdγr2(G) = k.
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Proof. Let G = G. First we show that sdγr2(G) ≤ k. Let Y = {x1, . . . , xk} ∈
Y and let G′ be the graph obtained from G by subdividing the edge Y xi with
subdivision vertex zi, for each 1 ≤ i ≤ k. Let f be a γr2(G′)-function such that
|Z = {v ∈ V (G′) : |f(v)| = 1}| is minimum. If f(Y ) = {1, 2}, then the function
g : V (G) −→ P({1, 2}) defined by g(Y ) = {1}, g(xi) = f(xi) ∪ f(zi) for 1 ≤ i ≤ k
and g(v) = f(v) for v ∈ V (G) \ {Y, x1, . . . , xk}, is a γr2(G)-function of weight less
than γr2(G′).

Let f(Y ) = ∅. Then obviously
∑k

i=1 |f(zi)| ≥ 2. If
∑k

i=1 |f(zi)| ≥ 3, then
the function g : V (G) −→ P({1, 2}) defined by g(Y ) = {1, 2} and g(v) = f(v) for
each v ∈ V (G) \ {Y }, is a γr2(G)-function of weight less than γr2(G′). Suppose∑k

i=1 |f(zi)| = 2. Then f(zi) = ∅ for some i, implying that f(xi) = {1, 2}. Now
the function f , restricted to G is a γr2(G)-function of weight less than γr2(G′).

Finally let |f(Y )| = 1. Without loss of generality, assume that f(Y ) = {1}.
By Lemma 12 we may assume f(zi) = ∅ for each i. Then obviously 2 ∈ f(xi) for
each i. If

⋃k
i=1 f(xi) = {1, 2}, then by defining g(Y ) = ∅ and g(v) = f(v) for each

v ∈ V (G) − {Y } we obtain a 2RDF of G with weight less than γr2(G′). Hence
f(xi) = {2} for each i. As in Claim 2 in the proof of Lemma 21, we must have
|Z ∩ Y| ≤ 2. We claim that |Z ∩ Y| = 1. Assume to the contrary that |Z ∩ Y| = 2.
Let Y, Y ′ ∈ Z ∩ Y. As in the proof of Claim 3 in Lemma 21, we may assume
that f(x) = ∅ for each x ∈ Y ′. Then obviously the set (Y − {xk}) ∪ {x} is not
rainbowly dominated by f , a contradiction. Thus |Z ∩Y| = 1. If f(x) = ∅ for some
x ∈ V (G) \ Y , then the set (Y − {xk}) ∪ {x} is not rainbowly dominated by f , a
contradiction. Clearly the number of vertices in X assigned {1} under f is at most
k − 1. Thus γr2(G′) = ω(f) ≥ 2(k − 2) + 2k = 4k − 4 > γr2(G). Thus

sdγr2(G) ≤ k. (3)

Now we show that sdγr2(G) ≥ k. Atapour et al. [1] proved that γR(G) = 4k−5
and sdγR(G) = k. Hence γR(G) = γr2(G) by Lemma 21. Let F = {e1, . . . , ek−1} be
an arbitrary subset of k−1 edges of G. Assume H is obtained from G by subdividing
each edge in F . It follows from Lemma 21 and the fact γr2(H) ≤ γR(H) that

γr2(H) ≤ γR(H) = γR(G) = γr2(G) ≤ γr2(H).

Hence γr2(H) = γr2(G) and
sdγr2(G) ≥ k. (4)

By (3) and (4) we have sdγr2(G) = k and the proof is complete.
As noticed in [9] for sdγt(G), the following corollary is an immediate conse-

quence of Theorem 22.

Corollary 23. There exist simple connected graphs G of arbitrary large order
n satisfying sdγr2(G) ≥ 1

3 log2 n + 1.

We conclude this paper with an open problem.
Problem 1. Prove or disprove: For any connected graph G of order n ≥ 3,

sdγr2(G) ≤ α′(G) + 1.
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