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TOPOLOGY GENERATED BY CLUSTER SYSTEMS

R. Thangamariappan and V. Renukadevi

Abstract. In this paper, we prove that (X, τ) and the new topology (X, τE) have the same
semiregularization if E is a π-network in X with the property H. Also, we discuss the properties
of E, τE and study generalized Volterra spaces and discuss their properties. We show that τE
coincides with the ?-topology for a particular E.

1. Introduction

An ideal J on a nonempty set X is a collection of subsets of X which satisfies
that (i) A ∈ J and B ⊂ A implies B ∈ J and (ii) A ∈ J and B ∈ J implies
A∪B ∈ J . Given a topological space (X, τ) with an ideal J on X and if 2X is the set
of all subsets of X, a set operator (.)? : 2X → 2X , called a local function [7] of A with
respect to J and τ , is defined as follows: for A ⊂ X, A?(J , τ) = {x ∈ X | U∩A 6∈ J
for every U ∈ τ(x)}, where τ(x) = {U ∈ τ | x ∈ U}. We will make use of the
basic facts concerning the local functions [6, Theorem 2.3] without mentioning it
explicitly. A Kuratowski closure operator cl?(A) for a topology τ?(τ,J ), called the
?-topology, finer than τ , is defined by cl?(A) = A ∪ A?(J , τ) [14]. When there is
no chance for confusion, we will simply write A? for A?(J , τ) and τ? or τ?(J ) for
τ?(J , τ). An ideal I is said to be codense [6] if τ ∩I = {∅}. By a space, we always
mean a topological space (X, τ) with no separation properties assumed. If A ⊂ X,
cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ). A
subset A of a space is said to be regular open (resp. α-open [11], semiopen [8], preopen
[9]) if A = int(cl(A)) (resp. A ⊂ int(cl(int(A))), A ⊂ cl(int(A)), A ⊂ int(cl(A))).
The family of all preopen (resp. semiopen) sets in (X, τ) is denoted by PO(X)
(resp. SO(X)). The regular open sets in (X, τ) form a basis for a new topology on
X, known as semiregularization of τ , denoted τs. The topology τs is coarser than
τ , and τ is said to be semiregular if τ = τs. The family of all α-open sets in (X, τ)
is denoted by τα. τα is a topology on X which is finer than τ . The complement of
an α-open set is called an α-closed set. The closure and interior of A in (X, τα) are
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denoted by clα(A) and intα(A), respectively. If N is the ideal of all nowhere dense
subsets in (X, τ), then τ?(N ) = τα and clα(A) = A ∪ A?(N ) [6]. A topological
space (X, τ) is said to be submaximal space [2] if every dense set is open. A space
X is said to be resolvable [2] if X is union of two disjoint dense subsets of X.

A nonempty collection A of nonempty subsets of a set X is called a grill [3]
if A ∈ A and A ⊂ B ⊂ X implies B ∈ A, and A,B ⊂ X and A ∪ B ∈ A
implies either A ∈ A or B ∈ A. Given a space (X, τ) with a grill A on X, a
set operator ΦA : 2X → 2X [12] with respect to τ and A is defined as follows:
for A ⊂ X, ΦA(A) = {x ∈ X | U ∩ A ∈ A for every U ∈ τ(x)}. The operator
ψ : 2X → 2X defined by ψ(A) = A ∪ ΦA(A) satisfies Kuratowski’s closure axioms
[12, Theorem 2.4] and τA = {U ⊂ X | ψ(X − U) = X − U} is the unique topology
on X induced by A. In [13], Renukadevi proved that I is a proper ideal on X if
and only if 2X − I is a grill on X and A is a grill on X if and only if I = 2X −A
is an ideal on X. Also, she proved that A?(I) = ΦA(A) for every subset A of X.

Any nonempty system E ⊂ 2X − {∅} will be called a cluster system in X. If
any nonempty open subset of a nonempty open set G contains a set from E , then
E is called a π-network [10] in G. For a cluster system E and a subset A of a space
X, E(A) is the set of all points x ∈ X such that for any neighborhood U of x, the
intersection U ∩A contains a set from E .

In 1993, the class of Volterra spaces was introduced by Gauld and Piotrowski
[5]. A topological space (X, τ) is said to be Volterra [5] (resp. weakly Volterra [5])
if the intersection of any two dense Gδ-sets in X is dense (resp. nonempty). A
subset A of X is called weakly E-Volterrra space [10] if for any two sets A1 and
A2 such that E(A) ⊂ E(Ai), i=1,2, A1 ∩ A2 is nonempty. Moreover, if A 6= ∅ and
cl(A1 ∩ A2) ⊃ A, that is, A1 ∩ A2 is dense in A, then A is called E-Volterra [10].
The following lemmas will be useful in the sequel.

Lemma 1.1. [4] Let (X, τ) be a space. Then the following hold.
(a) PO(X, τ) = PO(X, τα).
(b) If X is submaximal, PO(X, τ) = τ .

Lemma 1.2. [4] For a resolvable space (X, τ), the following are equivalent.
(a) PO(X, τ) is a topology.
(b) Every subset of X is preopen.
(c) Every open set is closed.

Lemma 1.3. [6, Lemma 6.3] Let τ and σ be topologies on X and τ ⊆ σ. If
clτ (V ) = clσ(V ) for every V ∈ σ, then τs = σs.

Lemma 1.4. [1] If (X, τ) is submaximal, then X remains submaximal when
endowed with any finer topology.

Lemma 1.5. [10, Remark 1 (2)] Let (X, τ) be a space and G be a nonempty open
subset of X. Then E is a π-network in G if and only if E(G) = E(cl(G)) = cl(G).
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Lemma 1.6. [10, Theorem 2] Let (X, τ) be a space with a cluster system E.
If E is a π-network in an open set X0, then X0 is E-Volterra if and only if any
nonempty open subset of X0 is weakly E-Volterra.

2. Properties of E-operator

In this section, we discuss the properties of E(A). We have E(X) = X if and
only if E is a π-network in X. The following Theorem 2.1 gives the properties of E
and Example 2.2 below shows that it can be E(X) 6= X even if E is a π-network in
a proper open subset of X.

Theorem 2.1. Let (X, τ) be a space with cluster systems E and E1 on X, and
let A and B be subsets of X. Then the following hold.

(a) E(∅) = ∅.
(b) E(E(A)) ⊆ E(A).
(c) If E ⊆ E1, then E(A) ⊆ E1(A).
(d) E(A) is closed, E(A) ⊂ cl(A) and if A ⊂ B, then E(A) ⊂ E(B) [10, Remark

1(1)].
(e) If U ∈ τ , then U ∩ E(A) = U ∩ E(U ∩A) ⊆ E(U ∩A).

Proof. It is enough to prove (e). U ∩ A ⊂ A implies E(U ∩ A) ⊂ E(A) which
implies that U ∩ E(U ∩A) ⊂ U ∩ E(A). If x ∈ U ∩ E(A), then x ∈ U and for every
Ux ∈ τ(x), Ux ∩ A ⊃ E for some E ∈ E . Take W = U ∩ Ux. Then W ∈ τ(x)
with W ∩ A ⊃ E so that Ux ∩ (U ∩ A) ⊃ E. Therefore, x ∈ U ∩ E(U ∩ A) and so
U ∩ E(A) = U ∩ E(U ∩A).

Example 2.2. Consider R with the usual topology τ and E = {G ⊂ (0, 1) |
G ∈ τ − {∅}}. Clearly, E is a π-network in (0, 1). But E(R) = [0, 1] 6= R.

Theorem 2.3. Let (X, τ) be a space and G be open in X. If E is a π-network
in G and E(G) ⊂ E(A) for A ⊂ X, then E(G) = E(A ∩G).

Proof. Since A ∩G ⊂ G, E(A ∩G) ⊂ E(G) by Theorem 2.1(d). Let x ∈ E(G).
Since E is a π-network in G, E(G) = cl(G) ⊂ E(A), by Lemma 1.5. Therefore, for
any U ∈ τ(x), U ∩G is a nonempty subset of E(A), hence there is E ∈ E such that
E ⊂ U∩G∩A. So x ∈ E(A∩G). Thus, E(A∩G) ⊃ E(G) and so E(A∩G) = E(G).

Two cluster systems E1 and E2 are said to be equivalent if E1(A) = E2(A) for
every subset A of X. For example, if for any E1 ∈ E1, there is E2 ∈ E2 such that
E2 ⊂ E1 and vice versa, then the cluster systems E1 and E2 are equivalent. Let
Eπ = {E | E is a π-network in X and every element of E has nonempty interior}.
If γ = {G | G ∈ τ − {∅}}, then γ ∈ Eπ is clear. But there are equivalent cluster
systems different from γ in Eπ as given in the following Example 2.4.

Example 2.4. Consider R with the usual topology. Let E1, E2 and E3 be the
cluster systems in R given by E1 = {(a, b] | a, b ∈ R and a < b}, E2 = {[a, b) | a, b ∈ R
and a < b} and E3 = {[a, b] | a, b ∈ R and a < b}. Then for i = 1, 2, 3, Ei ∈ Eπ and
Ei 6= γ. But for i 6= j and i, j ∈ {1, 2, 3}, each Ei is equivalent with Ej .
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Theorem 2.5. Let (X, τ) be a space and A ⊂ X. If E is a π-network in
X, then cl(int(A)) ⊂ E(A). Equality holds, if every element of E has nonempty
interior.

Proof. Sice E is a π-network in X, cl(int(A)) = E(int(A)) ⊂ E(A). Assume
that x ∈ E(A). Then for every Ux ∈ τ(x), there exists E ∈ E such that Ux∩A ⊃ E.
Since E ⊂ Ux ∩ A, int(E) ⊂ Ux ∩ int(A) and so Ux ∩ int(A) 6= ∅, by hypothesis.
Thus, x ∈ cl(int(A)) so that E(A) ⊂ cl(int(A)). Hence E(A) = cl(int(A)).

The following Example 2.6 shows that the condition “every element of E has
nonempty interior” is necessary for equality in Theorem 2.5.

Example 2.6. Consider X = [0,∞), τ = {(a,∞) | a ∈ X} ∪ {X, ∅} and
E = {(a, b) | a, b ∈ X}. Since every nonempty open subset of X has many element
of E , E is a π-network in X. Also, int(E) = ∅ for every E ∈ E . If A = [1, 3), then
E(A) = [0, 3) and cl(int(A)) = ∅. Hence E(A) * cl(intA).

Corollary 2.7. Let (X, τ) be a space and A ⊂ X. If E is a π-network in X
with int(E) 6= ∅ for every E ∈ E, then E(E(A)) = E(A).

Proof. By Theorem 2.5, E(E(A)) = E(cl(int(A))) = cl(int(cl(int(A)))) =
cl(int(A)) = E(A).

Corollary 2.8. Let (X, τ) be a space and A ⊂ X. If E is a π-network in X,
then the following hold.

(a) If E ⊂ SO(X), then E(A) = cl(int(A)).
(b) A ⊂ E(A) for every A ∈ SO(X).

We say that a cluster system E on X satisfies the property I, whenever
E1, E2 ∈ E implies that E1 ∩ E2 ∈ E . A cluster system E is said to satisfy the
property H if for every Ux ∈ τ(x) and A,B ⊂ X such that Ux∩(A∪B) ⊃ E implies
Ux ∩ A ⊃ E1 or Ux ∩ B ⊃ E2 for some E1 or E2 in E . If we consider a cluster
system E with the property H, then a system E ′ of all supersets of all sets from E
is equivalent with E and 2X −E ′ is an ideal. The following Example 2.9 shows that
a cluster system with H-property need not be a grill.

Example 2.9. (a) Consider R with the usual topology. If E = {{r} : r ∈ Q},
then E is a cluster system in R. Also, E is a π-network in R satisfying the property
H. But E is not a grill.

(b) In any topological space (X, τ) with a proper ideal I on X, I − {∅} is a
cluster system satisfying the property H. But I− {∅} is not a grill.

Theorem 2.10. Let (X, τ) be a space and A1, A2 ⊂ X. If E is a cluster
system with the property I, then E(A1 ∩A2) = E(A1) ∩ E(A2).

Proof. Since A1 ∩ A2 is contained in both A1 and A2, E(A1 ∩ A2) ⊂ E(A1) ∩
E(A2). Let x ∈ E(A1) ∩ E(A2). Then for every Ux ∈ τ(x), there exist E1, E2 ∈ E
such that Ux ∩A1 ⊃ E1 and Ux ∩A2 ⊃ E2. Now Ux ∩A1 ⊃ E1 and Ux ∩A2 ⊃ E2
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implies that (Ux∩A1)∩(Ux∩A2) ⊃ E1∩E2 which implies that Ux∩(A1∩A2) ⊃ E3

where E3 = E1 ∩ E2 ∈ E . Hence x ∈ E(A1 ∩ A2). Therefore, E(A1 ∩ A2) =
E(A1) ∩ E(A2).

Theorem 2.11. Let (X, τ) be a space and A, B ⊂ X. If E is a cluster system
with the property H, then the following hold.

(a) E(A ∪B) = E(A) ∪ E(B).

(b) E(A)− E(B) = E(A−B)− E(B) ⊂ E(A−B).

Proof. (a) By Theorem 2.1(d), E(A ∪ B) ⊃ E(A) ∪ E(B). For the reverse
inclusion, if x ∈ E(A ∪ B), then for every Ux ∈ τ(x), Ux ∩ (A ∪ B) ⊃ E for
some E ∈ E . By hypothesis, there exist E1, E2 ∈ E such that Ux ∩ A ⊃ E1 or
Ux ∩ B ⊃ E2 and so x ∈ E(A) or x ∈ E(B) so that x ∈ E(A) ∪ E(B). Hence
E(A ∪B) = E(A) ∪ E(B).

(b) Clearly, E(A − B) − E(B) ⊂ E(A) − E(B). Let x ∈ E(A) − E(B). Then
x ∈ E(A) implies that for any neighborhood Ux of x, Ux ∩ A contains a set from
E and x /∈ E(B) implies that there exists a neighborhood Vx of x such that Vx ∩B
does not contain any element of E . If Wx = Ux ∩ Vx, then Wx ∩ A ⊃ E for
some E ∈ E and Wx ∩ B 6⊃ E for every E ∈ E . By the H property of E and
E ⊂ Wx ∩ ((A − B) ∪ B), there exists E1 ∈ E such that E1 ⊂ Wx ∩ (A − B).
Therefore, E1 ⊂ Ux ∩ (A−B). Hence x ∈ E(A−B) and so x ∈ E(A−B)− E(B).
Thus, E(A−B)− E(B) ⊃ E(A)− E(B).

The following Example 2.12 shows that the propertyH on E cannot be dropped
in the above Theorem 2.11.

Example 2.12. Consider X = [0,∞), τ = {(a,∞) | a ∈ X} ∪ {X, ∅} and
E = {(n, n + 1) | n ∈ W} where W = N ∪ {0}. Clearly, E does not satisfy the
property H.

(a) If A = (2, 3)∪[3.5, 4.5] and B = (2, 3)∪[4.5, 5), then A∪B = (2, 3)∪[3.5, 5].
Also, E(A) = [0, 2] = E(B) and E(A ∪ B) = [0, 4]. Therefore, E(A) ∪ E(B) 6=
E(A ∪B).

(b) If A = [2, 3.5] and B = [1, 2.5], then A − B = (2.5, 3.5]. Also, E(A) =
[0, 2], E(B) = [0, 1], E(A)−E(B) = (1, 2] and E(A−B) = ∅. Therefore, E(A−B)−
E(B) 6⊃ E(A)− E(B).

Theorem 2.13. Let (X, τ) be a space and A ⊂ X. If E is a cluster system with
the property that every nonempty subset of element of E is in E, then E(A) = cl(A)
for A ∈ E.

Proof. By Theorem 2.1(d), E(A) ⊂ cl(A). Let x ∈ cl(A). Then for every
Ux ∈ τ(x), Ux∩A 6= ∅. Since A ∈ E every nonempty subset of A is also in E implies
that Ux∩A ∈ E and so x ∈ E(A). Hence cl(A) ⊂ E(A) which completes the proof.

The following Example 2.14 shows that the property that every nonempty
subset of element of E is also in E , cannot be dropped in Theorem 2.13.
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Example 2.14. Consider R with the usual topology with a cluster system
E = {(a, b) | a, b ∈ Z} where Z is the set of all integers and a < b. If A = (1, 2),
then E(A) = ∅ and cl(A) = [1, 2].

3. E-topology and its properties

Throughout this section, we consider the cluster system with the property H.
By Theorem 2.1 and Theorem 2.11, we have clE : 2X → 2X defined by clE(A) =
A∪E(A) is a Kuratowski closure operator on 2X . We will denote by τE the topology
generated by clE , called E-topology, where τ is the original topology on X, that is,
τE = {A ⊂ X | clE(X − A) = X − A}. If E = 2X − {∅} or E = {{x} | for every
x ∈ X}, then E(A) = cl(A). Hence in this case, clE(A) = cl(A) and τE = τ .

We observe that if E1 and E2 are cluster systems on X with the property H,
then E1 ∨E2 = {E1 ∪E2 | E1 ∈ E1 and E2 ∈ E2}, E1 ∪E2 = {E | E ∈ E1 or E ∈ E2}
are also cluster systems on X and E1 ∪ E2 satisfies the property H. But E1 ∨ E2

need not satisfy the property H as shown by the following Example 3.1. Corollary
3.3 below follows from Theorem 2.1(c) and Theorem 3.2.

Example 3.1. Consider the topological space (X, τ) where X = {a, b} and
τ = {∅, X}. Let E1 = {{a}} and E2 = {{b}}. Then E1 ∨ E2 = {{a, b}}. If
A = {a}, B = {b} and E = {a, b}, then E ⊂ X ∩ (A ∪ B) = X, but X ∩ A and
X ∩B do not contain a set from E1∨E2, respectively. Thus, E1∨E2 does not satisfy
the property H.

Theorem 3.2. Let (X, τ) be a space with two cluster systems E1 and E2 in X.
Then the following hold.

(a) (E1 ∪ E2)(A) = E1(A) ∪ E2(A).
(b) (E1 ∨ E2)(A) = E1(A) ∩ E2(A).

Proof. (a) is clear.
(b) x ∈ (E1 ∨ E2)(A) if and only if for every Ux, Ux ∩ A ⊃ E1 ∪ E2 for some

E1 ∈ E1 and E2 ∈ E2 if and only if Ux ∩ A ⊃ E1 and Ux ∩ A ⊃ E2 if and only if
x ∈ E1(A) and x ∈ E2(A) if and only if x ∈ E1(A) ∩ E2(A).

Corollary 3.3. Let (X, τ) be a space with two cluster systems E1 and E2.
Then the following hold.

(a) E1 ⊆ E2 implies τE2 ⊆ τE1 .
(b) τE1∪E2 = τE1 ∩ τE2 .

In general, we do not have any cluster system E which produces τE = discrete
topology. The following Theorem 3.4 shows that in a T1 space, τE can be discrete.

Theorem 3.4. Let (X, τ) be a T1 space. If E = {{x0}} for some x0 ∈ X, then
τE is discrete.

Proof. Let A be any nonempty subset of X. If x0 /∈ A, then for any open set
U, U ∩ A contains no set from E = {{x0}} and so E(A) = ∅. If x0 ∈ A, then for
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any U ∈ τ(x0), U ∩ A ⊃ {x0} and so x0 ∈ E(A). If y 6= x0, then there exists a
U ∈ τ(y) (U = X −{x0}) such that U ∩A contains no set from E , so y /∈ E(G) and
E(G) = {x0}. Hence τE is discrete.

Remark 3.5. If (X, τ) is T1 and {{x0}} = E1 ⊂ E2 ⊂ E3 = 2X − {∅} for some
x0 ∈ X, then by Corollary 3.3(a), we have τ = τE3 ⊂ τE2 ⊂ τE1 = discrete topology.

If E is a cluster system in X with the property H, then the system E ′ of all
supersets of all sets from E is equivalent with E and I = 2X − E ′ is an ideal on X.
Therefore, by Theorem 2.1 of [13], E(A) = A?(I) and so τE = τ?(I). The following
Theorem 3.6 shows that I is a codense ideal if and only if E is a π-network.

Theorem 3.6. Let (X, τ) be a topological space with a cluster system E. If
I = 2X − E ′, then E is a π-network in X if and only if I is codense.

Proof. Suppose that E is a π-network in X. Let ∅ 6= A ∈ τ ∩ I. Then A ∈ τ
and A ∈ I. Since E is a π-network, there exists E ∈ E such that E ⊂ A. Since I
is an ideal and E ⊂ A, E ∈ I which contradicts the fact that E ∈ E ′. Hence I is
codense. Converse follows from Theorem 2.2 of [13].

From Theorem 3.6 and the construction of E ′, we have the following Theorem
3.7 whose routine proof is omitted. Theorem 3.7(b) shows that (X, τ) and (X, τE)
have the same semiregularizations if E is a π-network in X. The proof of (c) and
(d) follows from (b).

Theorem 3.7. Let (X, τ) be a space and E be a π-network in (X, τ). Then
the following hold.

(a) V ⊂ E(V ) for every V ∈ τE .
(b) τs = (τE)s.
(c) Semiregular properties are shared by (X, τ) and (X, τ?).
(d) If (X, τE) is semiregular, then τ = τE .

Proof. (a) Observe that a subset A of X is τE -closed if and only if E(A) ⊂ A.
Let V ∈ τE . Then X − V is τE -closed implies that E(X − V ) ⊂ X − V which
implies E(X) − E(V ) ⊂ X − V , by Theorem 2.11(b). Since E is a π-network in
X, E(X) = X. Therefore, X − E(V ) ⊂ X − V so that V ⊂ E(V ).

Theorem 3.8. Let (X, τ) be a space and E be a π-network in X. Then
τE ⊂ PO(X, τ).

Proof. Let A ∈ τE . Then E(X−A) ⊂ X−A. By Theorem 2.5, cl(int(X−A)) ⊂
X − A which implies A ⊂ X − cl(int(X − A)) so that A ⊂ int(cl(A)). Hence
A ∈ PO(X, τ). Therefore, τE ⊂ PO(X, τ).

Theorem 3.9. Let (X, τ) be a space and E ∈ Eπ. Then the following hold.
(a) τE = PO(X).
(b) If X is submaximal, then τ = τα = τ∗(N ) = τE = PO(X).
(c) If X is resolvable, then τE is discrete.
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Proof. (a) Let A ∈ PO(X). Then A ⊂ int(cl(A)) implies that X−int(cl(A)) ⊂
X−A which implies cl(int(X−A)) ⊂ X−A and so E(X−A) ⊂ X−A, by Theorem
2.5. Hence A ∈ τE and so τE ⊃ PO(X). Thus, τE = PO(X), by Theorem 3.8.

(b) follows from (a) and Lemma 1.1(b).

(c) follows from (a) and Lemma 1.2.

From Example 2.6, we assure that the condition “every element of E has
nonempty interior” is necessary for equality in Theorem 3.9(a). Consider X =
[0,∞), τ = {(a,∞) | a ∈ X} ∪ {X, ∅} and E = {(a, b) | a, b ∈ X}. Since ev-
ery open subset of X contains many elements of E , E is a π-network in X and so
τE ⊂ PO(X, τ), by Theorem 3.8. But int(E) = ∅ for every E ∈ E . If A = [1,∞),
then E(A) = X. Since E(A) ⊂ cl(A), int(cl(A)) = X and so A is a preopen set in
(X, τ). Now X−A = [0, 1) and E(X−A) = [0, 1]. But clE(X−A) = [0, 1] 6= X−A.
Therefore, A /∈ τE . Hence τE 6= PO(X, τ).

Given a space (X, τ) and a proper ideal J on X, we can form a cluster system
E which satisfies the property H such that τ? = τE . For A ⊂ X and x ∈ X, consider
J (A, x) = {B ⊂ Ux ∩ A | Ux ∩ A ∈ J } and J ′

=
⋃

A,x J (A, x), EJ
′

= 2X − J ′

and also EJ c

= 2X − J .

Lemma 3.10. Let (X, τ) be any topological space with an ideal J and A ⊂ X.
Then the following hold.

(a) EJ
′
(A) = A?.

(b) EJ c

(A) = A?.

Proof. (a) Let x ∈ A?. Then for every Ux ∈ τ(x), Ux ∩ A /∈ J . Now
Ux ∩A /∈ J implies Ux ∩A ∈ EJ

′
which implies x ∈ EJ

′
(A) so that A? ⊂ EJ

′
(A).

Again, x /∈ A? implies that there exists Ux ∈ τ(x) such that Ux ∩ A ∈ J so that
every subset of Ux ∩ A is not in EJ

′
and so Ux ∩ A 6⊃ E for every E ∈ E which

implies that x /∈ EJ
′
(A). Therefore, A? ⊃ EJ

′
(A). Hence A? = EJ

′
(A).

(b) If x ∈ A?, then for every Ux ∈ τ(x), Ux ∩ A /∈ J and so Ux ∩ A ∈ EJ c

which implies that x ∈ EJ c

(A). Therefore, A? ⊂ EJ c

(A). Let x /∈ A?. Then there
exists Ux ∈ τ(x) such that Ux ∩ A ∈ J so that every subset of Ux ∩ A is not in
EJ c

and so Ux ∩ A 6⊃ E for every E ∈ E which implies that x /∈ EJ c

(A). Thus,
A? ⊃ EJ c

(A). Hence A? = EJ c

(A).

Lemma 3.11. Let (X, τ) be any topological space with an ideal J on X. Then
the cluster systems EJ

′
and EJ c

satisfy the property H.

Proof. Suppose that for every U ∈ τ(x), U ∩ (A ∪ B) ⊃ E for some E ∈ EJ
′
.

Then U ∩ (A ∪B) /∈ J for every U ∈ τ(x) and so x ∈ (A ∪B)?. Since (A ∪B)? =
A? ∪ B?, x ∈ A? or x ∈ B?. By Lemma 3.10, x ∈ EJ

′
(A) or x ∈ EJ

′
(B). Similar

proof can be written for EJ c

. Hence the lemma is proved.
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Theorem 3.12. Let (X, τ) be any topological space with an ideal J on X.
Then the three topologies τ?, τEJ′ and τEJc are the same. That is, τ? = τEJ′ =
τEJc .

4. Generalized Volterra spaces

In this section, we characterize E ′ -Volterra spaces by choosing proper cluster
system.

Lemma 4.1. [10, Remark 1 (3)] Let (X, τ) be a space and E be any cluster
system on X. If A is weakly E-Volterra and E(A) ⊂ E(A1) for any A1 ⊂ X, then
A1 ∩A 6= ∅.

In Example 4.2 of [10], Matejdes proved that a subset A of X is weakly E-
Volterra if and only if A is cofinite. Also, he proved that there is no subset which is
E-Volterra. Here we show that weakly E-Volterra need not imply E-Volterra. Note
that E is not a π-network.

Example 4.2. Let X = {0, 1
2 , 1

3 , . . . } with the usual topology and E = {E : E
is cofinite }. Then every element of E does not contain finitely many elements of
X. Also, E is not a π-network in X, since every {x}, x 6= 0, is an open set not
containing any element of E . To prove E(X) = {0}. Since {0} is the only limit
point of X, for given ε > 0, (0, 0 + ε) does not contain finitely many elements of
X and so (0, 0 + ε) ∈ E . Therefore, 0 ∈ E(X). Also, every point other than 0 does
not belong to E . If x 6= 0 ∈ X, then {x} does not contain any element of E , since
{x} is open in X and every element of E is countable. Therefore, E(X) = {0}. Let
A1, A2 be two sets such that E(X) ⊂ E(Ai), i=1,2. Since {0} ⊂ E(Ai), there exists
E ∈ E such that U ∩ Ai ⊃ E for every open set U ∈ N (0). Therefore, U ∩ Ai

contains every points of X except the finitely many points. Hence A1 ∩ A2 6= ∅
and so X is weakly E-Volterra. Take A1 = X − { 1

2} and A2 = X − { 1
3}. Then

E(X) ⊂ E(Ai), i = 1, 2. But A1 ∩ A2 = X − { 1
2 , 1

3} is not dense, since {1
2} is an

open set in X which does not intersect A1 ∩A2. Hence X is not E-Volterrra.
In view of Matejdes, we introduce E ′-Volterra as follows. A subset A is said to

be E ′ -Volterra if for any two sets A1 and A2 of X such that E(A) ⊂ E(Ai), i = 1, 2
A ⊂ E(A1 ∩ A2). Clearly, every E ′-Volterra set is both E-Volterra and weakly E-
Volterra. The following Example 4.3 shows that a weakly E-Volterra set need not
be a E ′ -Volterra set even though E is a π-network.

Example 4.3. Consider X = (0,∞) with the topology τ = {(a,∞) : a ∈
X} ∪ {X, ∅} and the cluster system E = {(n, n + 2.5) : n ∈ N}. Clearly, E is a
π-network on X and hence every open set of X. If G = (2,∞), then G is E-Volterra
and hence weakly E-Volterra. Also, E(G) = X. Let A = X − {2i : i is an odd
natural number} and B = X−{2i : i is an even natural number}. Then E(A) = X
and E(B) = X. By construction, A ∩B 6= ∅. Also, A ∩B is dense in X and hence
in G. But E(A ∩B) = ∅ and so G is not E ′-Volterra.

The proof of the following Theorem 4.4 follows from Lemma 1.6 and the fact
that every E ′-Volterra space is E-Volterra. The converse of Theorem 4.4 need not
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be true. In Example 4.3, it is clear that every open subset of X is weakly E-
Volterra but X is not E ′-Volterra. Theorem 4.5 below shows that the converse of
Theorem 4.4 holds if E satisfies the property I. Since every E-Volterra set is weakly
E-Volterra, Theorem 4.6 follows from Theorem 4.5. Also, Example 4.3 shows that
the property I is necessary in Theorem 4.5 and Theorem 4.6.

Theorem 4.4. Let (X, τ) be a space and E be a π-network in a nonempty
open set X0 of X. If X0 is E ′-Volterra, then any nonempty open subset of X0 is
weakly E-Volterra.

Theorem 4.5. Let (X, τ) be a space and E be a π-network in a nonempty
open set X0 with the property I. If any nonempty open subset of X0 is weakly
E-Volterra, then X0 is E ′-Volterra.

Proof. Since X0 itself an open subset of X0, X0 is weakly E-Volterra. Let
A1 and A2 be two sets such that E(X0) ⊂ E(Ai), i = 1, 2. By Theorem 2.10,
E(A1 ∩ A2) = E(A1) ∩ E(A2). Therefore, E(X0) ⊂ E(Ai), i = 1, 2 implies that
E(X0) ⊂ E(A1) ∩ E(A2) = E(A1) ∩ E(A2) which implies X0 ⊂ E(A1 ∩ A2), since E
is a π-network in X0. Hence X0 is E ′-Volterra.

Theorem 4.6. Let (X, τ) be a space and E be a π-network in a nonempty open
set X0 with the property I. Then X0 is E-Volterra if and only if X0 is E ′-Volterra.

Theorem 4.7. Let (X, τ) be a submaximal space. Then for every π-network
E in X, every nonempty open subset of X is E ′-Volterra and hence E-Volterra. In
particular, X is E ′-Volterra, hence E-Volterra.

Theorem 4.8. Let (X, τ) be a space. If E ∈ Eπ, then every nonempty open
subset of X is E ′-Volterra, hence E-Volterra. In particular, X is also E ′-Volterra.

Proof. Let G be any nonempty open subset of X and A,B be two subsets of X
such that E(G) ⊂ E(A) and E(G) ⊂ E(B). By Theorem 2.5, G ⊂ cl(G) ⊂ cl(int(A))
and G ⊂ cl(G) ⊂ cl(int(B)). Let x ∈ cl(G) and Ux be any open set in G. Now
x ∈ Ux ⊂ cl(int(A)) implies that Ux ∩ int(A) 6= ∅. Therefore, there exists some
y ∈ Ux ∩ int(A). Since cl(G) ⊂ cl(int(B)), y ∈ Ux ∩ int(A) ⊂ cl(G) ⊂ cl(int(B))
implies that Ux ∩ int(A)∩ int(B) 6= ∅ implies that Ux ∩ int(A∩B) 6= ∅. Therefore,
x ∈ cl(int(A ∩B)). Hence E(G) ⊂ E(A ∩B). Therefore, G is E ′ -Volterra.

Here we partially answer the question that if (X, τ) is E ′-Volterra whether the
new space (X, τE) is E ′ -Volterra. The proof of Theorem 4.9 follows from Theorem
4.7 and Theorem 4.8.

Theorem 4.9. Let (X, τ) be a submaximal space and E ∈ Eπ. Then every
open subset of (X, τE) is E ′-Volterra, and hence E-Volterra. In particular, (X, τE)
is E ′-Volterra, hence E-Volterra.
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