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GROUPS AND OTHER RESULTS
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Abstract. In this paper, the group IA(G) of all IA-automorphisms of a group G is studied.
We prove some results regarding non-triviality, polycyclicity and commutativity of IA(G) in
addition to proving some basic results. We also prove some results analogous to a result by
Schur and a weak form of its converse in the context of IA-automorphisms.

1. Introduction

For a group G, we denote the group of all automorphisms on G by Aut (G).
Following Bachmuth [3], we call an automorphism α on G an IA-automorphism iff
it preserves all cosets of G′, i.e., x−1α(x) ∈ G′, ∀ x ∈ G; here G′ is the derived
subgroup of G. The set of all IA-automorphisms of G is denoted by IA(G), and it
is a normal subgroup of Aut(G). It is obvious that every inner automorphism is an
IA-automorphism, and indeed IG / IA(G) (IG denotes the group of all inner auto-
morphisms of G). An automorphism α of G is known as a central automorphism if
it preserves cosets of the centre Z(G). It is clear that every central automorphism
commutes with every inner automorphism, and also every central automorphism
preserves the derived group G′ element wise. We shall denote the group of all
central automorphisms of G by Autc(G).

For a group G with [G : G′] = 2, obviously IA(G) = Aut (G). Further, if G is
of nilpotency class 2, then G′ ≤ Z(G) and thus IA(G) ≤ Autc(G). The inclusion
may be proper. For example, suppose G is the central product of a dihedral group
D8 and cyclic group C of order 8. Here the centre of D8 is identified with subgroup
of order 2 of C. G′ has order 2 and Z(G) = C. Consider the automorphism φ of G
that acts trivially on D8 and inverts the elements of C. Then φ acts non-trivially
on G/G′ but acts trivially on G/C. Thus, while φ is in Autc(G), it is not in IA(G).

It is also clear that every class preserving automorphism is an IA-automor-
phism. However, for semidihedral group D16, the class preserving automorphisms
form a proper subgroup of IA-automorphisms.
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In this paper, we prove some basic results on IA-automorphisms, and also
some results related with a result by Schur and its converse. We state below a
standard lemma which we shall be using subsequently.

Definition 1.1. Let G be any group and let Gk / Gk−1 / . . . / G1 / G0 = G
be the derived series. We say that α of Aut(G) stabilizes the series if α(xGi) = xGi

for i = 1, 2, . . . , k, and for all x ∈ Gi−1.

Lemma 1.2. [9] If a group G acts faithfully on a group γ and stabilizes a series
of normal subgroups of γ of length n, then G is nilpotent of class at most n− 1.

2. Some basic results on IA-automorphisms

Proposition 2.1. Let γk be the set of all IA-automorphisms of G which
stabilize the derived series Gk / Gk−1 / . . . / G1 / G0 = G, then γk is a normal
subgroup of IA(G).

Proof. It is obvious that γk is a subgroup of IA(G). Let σ ∈ IA(G) and f ∈ γk.
By the definition it follows that x−1f(x) ∈ Gm, ∀ x ∈ Gm−1, m ∈ {1, 2, . . . , k}.
The result will follow if we show that σ−1fσ(Gm−1/Gm) = Gm−1/Gm. This is
equivalent to show that x−1σ−1fσ(x) ∈ Gm, ∀ x ∈ Gm−1. Thus, let x ∈ Gm−1

and denote σ(x) by x′. As Gm−1 is a characteristic subgroup, σ(x) = x′ ∈ Gm−1.
So x−1σ−1fσ(x) = x−1σ−1(x′x′−1

f(x′)). But x′−1
f(x′) ∈ Gm. Let us denote

x′−1
f(x′) by g. So g ∈ Gm. Thus x−1σ−1fσ(x) = x−1σ−1(x′g) = x−1σ−1(σ(x)g)

= x−1xσ−1(g) = σ−1(g) ∈ Gm (∵ Gm is the characteristic subgroup).

Definition 2.2. A group G is said to be polycyclic if there exists a subnormal
series 1 = H0 / H1 / . . . / Hn = G with each factor Hi+1/Hi cyclic.

Hall [5] has shown that if G is nilpotent of nilpotency class n, then IA(G)
is nilpotent of class n − 1. The similar result for solvability is not true. For
example, consider the solvable group G constructed as the semidirect product of an
elementary abelian 3-group E by a cyclic group C of order 2, where the nonidentity
element of C acts to invert the elements of E. Then G/G′ has order 2, so every
automorphism of G is an IA. But if |E| > 9, the automorphism group of G is not
solvable. This follows from the following argument.

Consider the semidirect product B of the elementary abelian p-group E of
order pn (for p > 2 and n > 1) acted on naturally by SL(n, p). Since SL(2, p)
contains a unique subgroup T of order 2, the subgroup G = ET is normal in
B. Also, G has trivial centralizer in B, and thus B is isomorphically embedded in
Aut(G). Now G is the semidirect product of E by the group T of order 2, where the
non-identity element of T inverts the elements of E. Also, SL(n, p) is nonsolvable
unless n = 2 and p = 3 and so B is nonsolvable. Thus Aut(G) is nonsolvable.

However, the following result holds.

Theorem 2.3. If G is a finite polycyclic group in which the derived series has
cyclic factors of prime order then IA(G) is polycyclic.
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Proof. Let 1 = Gm / Gm−1 / . . . / G1 / G0 = G be the derived series of
G. We have Gk−1/Gk a cyclic group of prime order. For any k ∈ {1, 2 . . . , m},
we denote by γk the set of all IA-automorphisms of G which stabilize the de-
rived series Gk / Gk−1 / . . . / G1 / G0 = G (we put γ1 = IA(G)). Clearly by
proposition 2.1, γ1, . . . , γm forms a decreasing sequence of normal subgroups of
IA(G). Using Lemma 1.2, we can assert that γm is nilpotent (of class at most
m − 1) and as it is finitely generated, and hence it is polycyclic. It remains to
prove that IA(G)/γm is polycyclic. For each integer k (with 1 ≤ k ≤ m − 1),
consider the homomorphism ψk : γk −→ Aut(Gk/Gk+1) where for any f ∈ γk,
ψk(f) is defined as the automorphism induced by f on Gk/Gk+1. We observe
that Aut(Gk/Gk+1) is finite cyclic and that ker ψk = γk+1. So by the fun-
damental theorem of homomorphism, γk/γk+1 is finite cyclic. It follows that
1 = γm/γm / γm−1/γm / . . . / γ1/γm = IA(G)/γm forms a normal series in which
each factor is finite and cyclic. Thus IA(G)/γm is polycyclic, and hence IA(G) is
polycyclic.

If we consider the dihedral group D2n, it follows that the collection of all
automorphisms which are both central and IA forms an abelian group. Indeed this
can be generalized to the following result.

Theorem 2.4. For a finite group G, the set of all automorphisms which are
both central and IA forms an abelian normal subgroup of Aut(G), and every prime
divisor of the order of this group divides the order of G.

Proof. Let A denote group of all automorphisms which are central as well
as IA. It is obvious that A is a normal subgroup of Aut(G). Consider [G,A] ≡
{x−1σ(x) | x ∈ G and σ ∈ A}. But as x−1σ(x) ∈ G′, [G,A] ⊆ G′. Further, as
elements of A are central, they preserve elements of G′. So A acts trivially on
[G,A]. Thus [G,A, A] ≡ [[G,A], A] = 1, and hence by [7], A is solvable group of
derived length at most one. This implies that A is an abelian group.

To prove the second part, let us assume that p is a prime factor of |A| where
p does not divide |G|. Let P be a p-sylow subgroup of A. By [7], (|G|, |P |) = 1 ⇒
[G,P, P ] = [G,P ]. Clearly, [G,P, P ] ⊆ [G,A,A] = 1. So [G,P ] = 1. It implies that
P acts trivially on G, i.e., |P | = 1. This is not possible, and hence p must divide
order of G.

Corollary 2.4.1. IA(G) is abelian if and only if G is a nilpotent group of
class at most 2.

Proof. If G is nilpotent with nilpotency class ≤ 2 then G′ ≤ Z(G). So every
IA-automorphism is central and hence by above theorem, IA(G) is an abelian
group. Conversely, let IA(G) be an abelian group. As IG is normal subgroup of
IA(G), IG is also an abelian group. But IG

∼= G/Z(G). Thus G/Z(G) is an abelian
group, and this implies that G′ ≤ Z(G). Hence the result follows.

Corollary 2.4.2. Let G be a 2-generated group of class 2. Then IA(G) ∼=
G′ × G′.
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Proof. In [4], Caranti and Scoppola proved that for a 2-generated metabelian
group G, Z(IA(G)) ∼= G′ ∩ Z(G) × G′ ∩ Z(G). Since G is nilpotent of class 2, it
is metabelian. By the above corollary, IA(G) is abelian. As G is nilpotent of class
2, G′ ≤ Z(G).

∴ IA(G) ∼= G′ × G′.

Adney [1] proved that if G is a purely non-abelian p-group then Autc(G) is
also a p-group. An analogous result can be proved for IA(G). To this end, we first
prove the following proposition.

Proposition 2.5. Let N be a normal subgroup of G. Let σ be an automor-
phism which fixes all cosets of N . Suppose o(σ) = p where p does not divide o(N).
Then G = NC where C is a subgroup of all elements of G which are fixed by σ.

Proof. Since σ fixes all cosets of N and p does not divide the order of N , it
follows that σ permutes the elements of cosets of N and the order of each orbit is
1 or p. But as p does not divide the order of N , each coset of N contains at least
one element of C. Thus G = NC.

Theorem 2.6. If G is a finite p group then IA(G) is also a p group.

Proof. Since G is a p-group, it is nilpotent. Hence G′ ≤ φ(G) (where φ(G) is
the Frattini subgroup of G). Let σ be an IA-automorphism with order q. Suppose q
does not divide the order of G′. As σ is an IA-automorphism, it preserves all cosets
of G′. So by Proposition 2.5, G = G′C where C is the subgroup of all elements
of G which are fixed by σ. G is generated by elements of G′C, i.e. G = {〈x,C〉,
x ∈ G′}. But G′ ≤ φ(G) which is the set of all non-generators. So G is generated
by elements of C. However this implies that σ is an identity on G, i.e. o(σ) = 1.
This is a contradiction. So the order of every IA-automorphism divides the order
of G′, a non-trivial subgroup of p-group G. Hence the result follows.

3. Extension of a result by Schur and related results

Schur [8] proved that if G/Z(G) is finite then so is G′. Hegarty [6] proved an
analogous result stated below.

Let L(G) = {g ∈ G | α(g) = g, ∀ α ∈ Aut G} and let G∗ = 〈g−1α(g) | g ∈
G, α ∈ Aut(G)〉. Hegarty showed that if G/L(G) is finite then so is G∗.

On the lines of the above results of Schur and Hegarty, a similar result is
rather trivially provable for IA-automorphisms. Following Hegarty, we introduce
the following

Definition 3.1. S(G) = {g ∈ G | α(g) = g, α ∈ IA(G)}.

In general, the set S(G) need not be trivial as the following result shows.

Proposition 3.2. For a finite p-group G, S(G) is non-trivial.
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Proof. From Theorem 2.6, the group IA(G) is a p-group. Take an action of
IA(G) on G in a natural way: IA(G) × G −→ G such that (f, x) −→ f(x). This
restricts to an action of IA(G) on G \ {e}. By the orbit-stabilizer theorem, for any
y in G \ {e}, |IA(G)| = [order of orbit(y)].[order of stabilizer(y)]. Since IA(G) is
a p-group, the orbit of y has order 1 or power of p. If all orbits in G \ {e} have
order a positive power of p, then order of G \ {e} will be divisible by p. This is
a contradiction. Hence there is some y in G \ {e}, whose orbit under IA(G) is a
singleton. Such a y must be in S(G).

We further introduce the following

Definition 3.3. G∗∗ = 〈g−1α(g) | g ∈ G,α ∈ IA(G)〉.

Obviously, we have L(G) / S(G) / Z(G). Similarly G′ ≤ G∗∗ ≤ G∗. However
from the definition of IA-automorphisms, g−1α(g) ∈ G

′
, ∀ g ∈ G, α ∈ IA(G).

Therefore G∗∗ ≤ G
′
. Thus, G

′
= G∗∗ ≤ G∗.

Theorem 3.4. If G/S(G) is finite then so is G∗∗.

Proof. We can define a homomorphism from G/S(G) onto G/Z(G) as
gS(G) −→ gZ(G), ∀g ∈ G, with kernel Z(G)/S(G). So, if G/S(G) is finite then
G/Z(G) will also be finite. By Schur’s result, G′ will be finite. That is G∗∗ is
finite.

However, an overall generalisation of these results is not true. That is, if
IG / N/ Aut(G) then the corresponding result may not hold for N . The following
example was suggested to us by Prof. Martin Issacs in personal communication.

Example 3.5. Let G be an infinite elementary abelian p-group with minimum
generating set = 〈x0, x1, x2, . . . 〉. Let Si = {α ∈ Aut(G) : α(xi) = xi, and
α(x0) = x0xi} for all i > 0. Let A be the group generated by all Si, and CG[A] be
the subgroup of G of elements fixed by A. Then CG[A] = 〈x1, x2, . . . 〉 has index
p in G, but [G,A] = 〈x1, x2, . . . 〉 is infinite. Since G is abelian, IG is trivial, and
hence A contains IG. Thus, while index of CG[A] is finite(p), the order of [G,A] is
infinite.

A weak converse of Hegarty’s result is proved below.

Theorem 3.6. Let G be an arbitrary group. If G∗ is finite and Aut G is
finitely generated then [G : L(G)] is finite.

Proof. Let Aut(G) = 〈α1, α2, . . . , αn〉. We define f : G/L(G) −→ G∗ × . . . ×
G∗(n times) by ḡ −→ (g−1α1(g), . . . , g−1αn(g)), where ḡ = gL, for some g ∈ G.
For x̄, ȳ ∈ G/L(G), x̄ = ȳ ⇒ xL = yL =⇒ x = yl for some l ∈ L. Therefore
f(x̄) = ((yl)−1α1(yl), . . . , (yl)−1αn(yl)) = (y−1α1(y), . . . y−1αn(y)) = f(ȳ). So,
f is well defined.

It is enough to prove that f is injective. For this, let f(ȳ) = f(x̄) for some
x̄, ȳ ∈ G/L(G). Thus, we have y−1αi(y) = x−1αi(x) for all 1 ≤ i ≤ n, i.e.
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αi(y) = yx−1αi(x). But then, αi(yx−1) = αi(y)αi(x−1) = yx−1αi(x)αi(x−1) =
yx−1, 1 ≤ i ≤ n.

∴ yx−1 ∈ L(G), i.e. ȳ = x̄.

This completes the proof.
As in Hegarty [6], we introduce

Definition 3.7. V ar(G) =
{
α ∈ Aut G | g−1α (g) ∈ L(G), ∀ g ∈ G

}
.

On the similar lines, we introduce

Definition 3.8. Ivar(G) =
{
α ∈ IA(G) | g−1α (g) ∈ S(G),∀ g ∈ G

}
.

Attar[2] proved that Autzc(G) ≈ Hom(G/Z(G), Z(G)), where Autzc(G) is the
group of those central automorphisms of G, which preserve centre Z(G) element-
wise. A similar result replacing Z(G) by L(G) is true, as proved below.

Theorem 3.9. For a finite group G, V ar(G) ≈ Hom(G/L(G), L(G)).

Proof. For any µ ∈ V ar(G), define the map ψµ : G/L(G) −→ L(G) as
ψµ(gL(G)) = g−1µ(g). We first show that ψµ is well defined. Let gL(G) = hL(G).
Then h = gl for some l ∈ L(G), and ψµ(hL(G)) = h−1µ(h) = (gl)−1µ(gl) =
l−1g−1µ(g)l = g−1µ(g) = ψµ(gL(G)). Further, it is clear from the definition that
ψµ is a homomorphism.

We now define a map ψ : V ar(G) −→ Hom(G/L(G), L(G)) as ψ(µ) =
ψµ. We show that ψ is an isomorphism. For f, g ∈ V ar(G), consider ψ(fg).
For h ∈ G, ψ(fg)(hL(G)) = ψfg(hL(G)) = h−1fg(h) = h−1f(hh−1g(h)) =
h−1f(h)h−1g(h)=ψf (hL(G) ψg(hL(G). ∴ ψ(fg) = ψ(f)ψ(g). Consider ψ(µ1) =
ψ(µ2). So ψµ1 = ψµ2 , and this implies ψµ1(gL(G)) = ψµ2(gL(G)) ⇒ g−1µ1(g) =
g−1µ2(g) ⇒ µ1 = µ2, as g is an arbitrary element of G. Therefore ψ is a monomor-
phism.

We next show that ψ is onto. For any τ ∈ Hom((G/L(G), L(G)), define the
map µ : G → G as µ(g) = gτ(gL(G)). We show that µ ∈ V ar(G).

For g1, g2 ∈ G, µ(g1g2) = g1g2τ(g1g2L(G)) = g1τ(g1L(G))g2τ(g2L(G)) =
µ(g1)µ(g2). ∴ µ is a homomorphism.

Further, let µ(g) = 1. This implies gτ(gL(G)) = 1 ⇒ τ(gL(G)) = g−1 ⇒
g−1 ∈ L(G). ∴ gL(G) = L(G) ⇒ τ(gL(G)) = 1 ⇒ g = 1 as gτ(gL(G)) = 1. Hence
µ is one-one. As G is finite, µ is also onto.

As g−1µ(g) = g−1gτ(gL(G)) = τ(gL(G)) ∈ L(G), for all g ∈ G, we have
µ ∈ V ar(G). It is obvious that ψ(µ) = τ. Thus, given τ ∈ Hom((G/L(G), L(G)),
we can find µ ∈ V ar(G) such that ψ(µ) = τ . Hence the result follows.

Corollary 3.9.1. For a p-group G, Var(G) is also a p-group.

Proof. As G is a p-group, Hom(G/L(G), L(G)) is also a p-group. Hence by
above theorem, V ar(G) is a p-group.
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Lastly we prove a sufficient condition for IA(G) to be finite.

Theorem 3.10. If G is a group with G/S(G) finite then so is IA(G).

Proof. Let |G/S(G)| = n. Then IA(G)/Ivar(G) is isomorphic to a subgroup
of Sn and by theorem 3.4, G∗∗ is finite. We thus need only to show that G∗∗ finite
⇒ Ivar(G) is finite.

Let α ∈ Ivar(G). Define α∗ : G/S(G) −→ S(G) as α∗(gS(G)) = g−1α(g)∀g ∈
G. Since (yz)−1α(yz) = z−1y−1α(y)z = y−1α(y) (as z ∈ S(G)), α∗ is well defined.
Clearly α∗ ∈ Hom(G/S(G), S(G)) and α∗(G/S(G)) is a finite subgroup of S(G).

Let σ : Ivar(G) −→ Hom(G/S(G), S(G)) be defined by σ(α) = α∗. Clearly,
σ is a monomorphism from Ivar(G) into Hom(G/S(G), S(G)). If Ivar(G) were
infinite, then S(G) would contain infinitely many elements of the form g−1α (g),
and so G∗∗ would, by definition be infinite. Hence G∗∗ finite =⇒ Ivar(G) finite.
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