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A NOTE ON I-CONVERGENCE AND I?-CONVERGENCE
OF SEQUENCES AND NETS IN TOPOLOGICAL SPACES

Amar Kumar Banerjee and Apurba Banerjee

Abstract. In this paper, we use the idea of I-convergence and I?-convergence of sequences
and nets in a topological space to study some important topological properties. Further we
derive characterization of compactness in terms of these concepts. We introduce also the idea of
I-sequentially compactness and derive a few basic properties in a topological space.

1. Introduction

The concept of convergence of a sequence of real numbers was extended to
statistical convergence independently by H. Fast [3] and I.J. Schoenberg [15] as
follows:

If K is a subset of the set of all natural numbers N then natural density of the
set K is defined by d(K) = limn→∞

|Kn|
n if the limit exits [4,13] where |Kn| stands

for the cardinality of the set Kn = {k ∈ K : k ≤ n}.
A sequence {xn} of real numbers is said to be statistically convergent to ` if

for every ε > 0 the set

K(ε) = {k ∈ N : |xk − `| ≥ ε}
has natural density zero [3,15].

This idea of statistical convergence of real sequence was generalized to the
idea of I-convergence of real sequences [6,7] using the notion of ideal I of subsets
of the set of natural numbers. Several works on I-convergence and on statistical
convergence have been done in [1,2,6,7,9,12].

The idea of I-convergence of real sequences coincides with the idea of ordi-
nary convergence if I is the ideal of all finite subsets of N and with the statistical
convergence if I is the ideal of subsets of N of natural density zero. The concept
of I?-convergence is closely related to that of I-convergence and this notion arises
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from an equivalent characterization of statistical convergence of real sequence by
T. S̆alát [14]. Later B.K. Lahiri and P. Das [10] extended the idea of I-convergence
and I?-convergence to an arbitrary topological space and observed that the ba-
sic properties are preserved also in a topological space. They also introduced [11]
the idea of I-convergence and I?-convergence of nets in a topological space and
examined how far it affects the basic properties.

In this paper, we have studied further some important properties of I-
convergence and I?-convergence of sequences and nets in a topological space which
were not studied before and examined some further consequences in a topological
space like characterization of compactness in terms of I-cluster points etc. Also,
we have introduced the notion of I-sequential compactness and have found out its
relation with the countable compactness in a topological space.

2. I-convergence and I?-convergence of sequences in topological spaces

We recall the following definitions.

Definition 2.1. [8] If X is a non-void set then a family of sets I ⊂ 2X is
called an ideal if

(i) A,B ∈ I implies A ∪B ∈ I and
(ii) A ∈ I, B ⊂ A imply B ∈ I.
The ideal is called nontrivial if I 6= {∅} and X /∈ I.

Definition 2.2. [8] A nonempty family F of subsets of a non-void set X is
called a filter if

(i) ∅ /∈ F

(ii) A,B ∈ F implies A ∩B ∈ F and
(iii) A ∈ F , A ⊂ B imply B ∈ F .

If I is a nontrivial ideal on X then F = F (I) = {A ⊂ X : X \A ∈ I} is clearly
a filter on X and conversely.

A nontrivial ideal I is called admissible if it contains all the singleton sets.
Several examples of nontrivial admissible ideals may be seen in [6].

Let (X, τ) be a topological space and I be a nontrivial ideal of N, the set of
all natural numbers.

Definition 2.3. [10] A sequence {xn} in X is said to be I-convergent to
x0 ∈ X if for any nonempty open set U containing x0, {n ∈ N : xn /∈ U} ∈ I.

In this case, x0 is called an I-limit of {xn} and written as x0=I-lim xn.

Note. If I is an admissible ideal then ordinary convergence implies
I-convergence and if I does not contain any infinite set then converse is also true.

The following properties of convergence in a topological space have been veri-
fied in [10] to be valid in case of I-convergence.
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Theorem 2.1. [10] If X is a Hausdorff space then an I-convergent sequence
has a unique I-limit.

Theorem 2.2. [10] A continuous function f : X → X preserves
I-convergence. Again if I is an admissible ideal and X is a first axiom T1 space
then continuity of f : X → X is necessary to preserve I-convergence.

Definition 2.4. [10] A sequence {xn} in a topological space (X, τ) is said to
be I?-convergent to x ∈ X if and only if there exists a set M ∈ F (I)(i.e.,N\M ∈ I),
M = {m1 < m2 < · · · < mk < · · · } such that limk→∞ xmk

= x.
In this case we write I?-limxn = x and x is called an I?-limit of {xn}.
It has been proved in [10] that if I is an admissible ideal then I?-lim xn = x

implies I-limxn = x and so in addition if X is a Hausdorff space then I?-lim xn

is unique. Conversely if X has no limit point (i.e, X is a discrete space) then
I-limxn = x implies I?-limxn = x for every admissible ideal I.

Definition 2.5. [10] Let x = {xn} be a sequence of elements of a topological
space (X, τ). Then

(i) y ∈ X is called an I-limit point of x if there exists a set
M = {m1 < m2 < · · · < mk < · · · } ⊂ N such that M /∈ I and limk→∞ xmk

=y.
(ii) y ∈ X is called an I-cluster point of x if for every open set U containing y,

{n ∈ N : xn ∈ U} /∈ I.

In [10], it has been proved that if I is an admissible ideal then
(a) I(Lx) ⊂ I(Cx) and
(b) I(Cx) is a closed set in X

where I(Lx) and I(Cx) denote respectively the set of all I-limit points and set of
all I-cluster points of x.

We now prove two important results in a topological space which were not
studied in [10]. Let I be a nontrivial ideal of the set N of natural numbers consisting
of all finite subsets of N and (X, τ) be a topological space.

Theorem 2.3. Every sequence {xn} has an I-cluster point if and only if every
infinite set in X has an ω-accumulation point.

Proof. Suppose that every sequence in (X, τ) has an I-cluster point and let
A be an infinite subset of the space X. Then there is a sequence {xn} (say) of
distinct points in A. Let y be an I-cluster point of {xn}. Then for any open set V
containing y we have {n ∈ N : xn ∈ V } /∈ I. Hence the set {n ∈ N : xn ∈ V } must
be an infinite set. Consequently V contains infinitely many points of the sequence
{xn}, i.e., V contains infinitely many elements of A. Thus by definition y becomes
an ω-accumulation point of A.

Conversely, let every infinite subset of the space X has an ω-accumulation
point. Let {xn} be a sequence of points in X. If the range of the sequence is infinite
then let y be an ω-accumulation point of {xn}. So for each open set V containing y,
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{n ∈ N : xn ∈ V } is an infinite set and so {n ∈ N : xn ∈ V } /∈ I. Hence y becomes
an I-cluster point of {xn}. Otherwise let for some point y of the space X we have
xn = y for infinitely many positive integers n. So for every open set V containing
y we get {n ∈ N : xn ∈ V } is an infinite subset of N and so {n ∈ N : xn ∈ V } /∈ I.
Thus y becomes an I-cluster point of {xn}.

Throughout, I will stand for a nontrivial admissible ideal of N and (X, τ)
stands for a topological space unless otherwise stated. Below we obtain a sufficient
condition for a Lindelöf space to be compact.

Theorem 2.4. If (X, τ) is a Lindelöf space such that every sequence in X has
an I-cluster point then (X, τ) is compact.

Proof. Let (X, τ) be a Lindelöf space such that every sequence in X has
an I-cluster point. We have to show that any open cover of the space X has a
finite subcover. Let {Aα : α ∈ Λ} be an open cover of the space X, where Λ is an
index set. Since (X, τ) is a Lindelöf space so this open cover admits a countable
subcover say {A1, A2, . . . , An, . . . }. Proceeding inductively let B1 = A1 and for
each m > 1 let Bm be the first member of the sequence of A’s which is not covered
by B1 ∪ B2 ∪ · · · ∪ Bm−1. If this choice becomes impossible at any stage then the
sets already selected becomes a required finite subcover. Otherwise it is possible
to select a point bn in Bn for each positive integer n such that bn /∈ Br, for r < n.
Let x be an I-cluster point of the sequence {bn}. Then x ∈ Bp for some p. Now
we have by definition of I-cluster point that the set M = {n ∈ N : bn ∈ Bp} /∈ I.
Hence M must be an infinite subset of N, since I is an admissible ideal of N. So
there is some q > p such that q ∈ M i.e., there exists some q > p such that bq ∈ Bp

which leads to a contradiction. Thus the result follows.
We now recall the definition of I-convergence of a real sequence which will be

needed in the next section.

Definition 2.6. [1] A real sequence {xn} is said to converge to x with respect
to an ideal I of the set of natural numbers N (or I-convergent to x) if for any ε > 0,
A(ε) = {n ∈ N : |xn − x| ≥ ε} ∈ I.

In this case we write I − limn→∞ xn = x.

3. I-convergence and I?-convergence of nets in topological spaces

The following two definitions are widely known.

Definition 3.1. [5] Let D be a non-void set and ‘≥’ be a binary relation on
D such that ‘≥’ is reflexive, transitive and for any two elements m,n ∈ D there is
an element p ∈ D such that p ≥ m and p ≥ n. The pair (D,≥) is called a directed
set.

Definition 3.2. [5] Let (D,≥) be a directed set and let X be a nonempty
set. A mapping s : D → X is called a net in X, denoted by {sn;n ∈ D} or simply
by {sn} when the set D is clear from the context.
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Throughout our discussion (X, τ) will denote a topological space (which will
be written sometimes as X) and I will denote a non-trivial ideal of a directed set D.
Also the symbol N is reserved for the set of all natural numbers. For n ∈ D let Dn =
{k ∈ D : k ≥ n}. Then the collection F0 = {A ⊂ D : A ⊃ Dn, for some n ∈ D}
forms a filter in D. Let I0 = {B ⊂ D : D \B ∈ F0}. Then I0 is also a non-trivial
ideal in D.

Definition 3.3. [11] A non-trivial ideal I of D will be called D-admissible if
Dn ∈ F (I) for all n ∈ D.

We are reproducing below the definition of I-convergence of a net where I is
an ideal of D.

Definition 3.4. [11] A net {sn;n ∈ D} in X is said to be I-convergent to
x0 ∈ X if for any open set U containing x0, {n ∈ D : sn /∈ U} ∈ I.

Symbolically we write I-lim sn = x0 and we say that x0 is an I-limit of the net
{sn}.

Note. If I is D-admissible, then convergence of a net in a topological space
implies I-convergence and the converse holds if I = I0. Also if D = N with the
natural ordering then the concepts of D-admissibility and admissibility coincide
and in that case I0 is the ideal of all finite subsets of N.

We recall the following definition of an I-cluster point of a net {sn;n ∈ D} in
a topological space (X, τ).

Definition 3.5. [11] y ∈ X is called an I-cluster point of a net {sn;n ∈ D} if
for every open set U containing y, {n ∈ D : sn ∈ U} /∈ I.

The following result holds in case of I-convergence in a topological space which
is true for ordinary convergence of net also.

Theorem 3.1. For every net {sn; n ∈ D} in X there is a filter F on X such
that x is an I-limit of the net {sn;n ∈ D} if and only if x is the limit of the filter
F and, y is an I-cluster point of the net {sn; n ∈ D} if and only if y is the cluster
point of the filter F .

Proof. Let {sn; n ∈ D} be a net in the space X. Let I be a non-trivial ideal
of D and F (I) be the associated filter on D. Let us construct for each M ∈ F (I)
the set AM = {sn : n ∈ M}. Then the family B = {AM : M ∈ F (I)} forms a filter
base on X. Indeed, each AM is non-empty, since each M is non-empty and if
AM , AR ∈ B where M, R ∈ F (I) then AM∩R ⊂ AM ∩ AR where M ∩ R ∈ F (I),
since F (I) is a filter. Thus our conclusion is valid. Let F be the filter generated
by this filter base B. Now we show that F has the required property.

Let the net {sn; n ∈ D} be I-convergent to x. Then for any neighbourhood V
of x we have {n ∈ D : sn /∈ V } ∈ I. This implies that {n ∈ D : sn ∈ V } ∈ F (I). We
write M = {n ∈ D : sn ∈ V }. Then by our construction AM = {sn : n ∈ M} ⊂ V .
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Since AM ∈ F we get V ∈ F and since V is an arbitrary neighbourhood of x, we
conclude that V ∈ F for all neighbourhood V of x. Hence the filter F is convergent
to x.

Again let the filter F be convergent to x. Then the neighbourhood filter ηx of
the point x is a subfamily of F i.e., ηx ⊂ F . Let V ∈ ηx be arbitrary. Then AM ⊂ V
for some M ∈ F (I). This implies that M ⊂ {n ∈ D : sn ∈ V } which further implies
that {n ∈ D : sn ∈ V } ∈ F (I) i.e., {n ∈ D : sn /∈ V } ∈ I. This shows that the net
{sn; n ∈ D} is also I-convergent to x.

Now we suppose that y is an I-cluster point of the net {sn; n ∈ D}. Then for
any neighbourhood V of y we have {n ∈ D : sn ∈ V } /∈ I i.e., {n ∈ D : sn /∈ V } /∈
F (I). Hence we conclude that the set {n ∈ D : sn /∈ V } contains no M for any
M ∈ F (I). So for every M ∈ F (I) there exists some m ∈ M such that m /∈
{n ∈ D : sn /∈ V } i.e., there exists m ∈ M for each M ∈ F (I) such that sm ∈ V .
Thus we get V ∩AM 6= ∅ for all M ∈ F (I) so that y becomes a cluster point of the
filter F .

Next let y be a cluster point of the filter F . Then for any neighbourhood V
of y we have V ∩ AM 6= ∅ for all M ∈ F (I) i.e., {n ∈ D : sn ∈ V } ∩M 6= ∅ for all
M ∈ F (I). We conclude that {n ∈ D : sn ∈ V } /∈ I. For if {n ∈ D : sn ∈ V } ∈ I
then this it would imply that {n ∈ D : sn /∈ V } ∈ F (I). So, if we write E =
{n ∈ D : sn /∈ V } then V ∩ AE = ∅ and this leads to a contradiction. Hence
{n ∈ D : sn ∈ V } /∈ I so that y becomes an I-cluster point of the net {sn;n ∈ D}.

We know that a topological space is compact if and only if each family of
closed sets which has the finite intersection property [FIP for short] has a non-void
intersection. We now prove a very important result regarding compactness of a
topological space.

Theorem 3.2. In a compact topological space (X, τ) each net {sn; n ∈ D} has
an I-cluster point corresponding to any non-trivial ideal I of D.

Proof. Let (X, τ) be a compact topological space and {sn; n ∈ D} be a net in
X. Let I be a non-trivial ideal of D and F (I) be the filter on D associated with
the ideal I. For each M ∈ F (I) consider the set AM = {sn : n ∈ M}. Then the
family containing all such AM has FIP, since F (I) is a filter. Hence the family
B =

{
AM : M ∈ F (I)

}
is a family of closed sets possessing FIP. Since X is a

compact space, ∩{
AM : M ∈ F (I)

} 6= ∅. So there is some x0 ∈ X such that
x0 ∈ ∩{

AM : M ∈ F (I)
}
. Then for every neighbourhood V of x0 we have V ∩

AM 6= ∅. Now we consider the set K = {n ∈ D : sn /∈ V }. If K ∈ F (I) then
the corresponding set AK = {sn : n ∈ K} does not intersect V i.e., AK ∩ V = ∅
which contradicts the fact deduced above. Hence, K /∈ F (I) which implies that
{n ∈ D : sn ∈ V } /∈ I. Thus, x0 becomes an I-cluster point of the net {sn;n ∈ D}.

A sort of converse of the above theorem is given below.

Theorem 3.3. A topological space is compact if every net {sn; n ∈ D} has an
I-cluster point corresponding to a D-admissible ideal I.
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The proof is omitted.

Here we show that I-convergence of a net in a product topological space can
be described in terms of the projections.

Theorem 3.4 Let {Xa : a ∈ A} be a family of topological spaces where A is
any indexing set. A net {sn; n ∈ D} in a product space X = ×{Xa : a ∈ A} is
I-convergent to a point x if and only if the net {Pa(sn) : n ∈ D} is I-convergent to
xa where Pa : X → Xa is the a-th projection mapping and Pa(x) = xa and where I
is a non-trivial ideal of the domain D of the net.

Proof. We know that projection map into each co-ordinate space is continuous.
Let x be a point of the product space ×{Xa : a ∈ A} and Pa be the a-th projection
map into the factor space Xa for some a ∈ A. Let {sn; n ∈ D} be a net in the
product space ×{Xa : a ∈ A} which is I-convergent to the point x in the product
space where I is a non-trivial ideal of the domain D of the net. Let Va be any open
set in Xa containing Pa(x) = xa. Then by continuity of Pa there is some open set
V containing x such that Pa(V ) ⊂ Va. So the set {n ∈ D : sn /∈ V } ∈ I. Now since
{n ∈ D : Pa(sn) /∈ Va} ⊂ {n ∈ D : sn /∈ V }, we have {n ∈ D : Pa(sn) /∈ Va} ∈ I.
Since Va is an arbitrary open set containing Pa(x) = xa we conclude the first part.

For the converse part let {sn; n ∈ D} be a net in the product space such that
{Pa(sn) : n ∈ D} is I-convergent to xa ∈ Xa for each a in A. Let us write x =<
xa : a ∈ A >. We shall show that {sn; n ∈ D} is I-convergent to the point x
in the product space. Now for each open set Va in Xa containing xa we have
{n ∈ D : Pa(sn) /∈ Va} ∈ I i.e.,

{
n ∈ D : sn /∈ P−1

a (Va)
} ∈ I. This in turn implies

that
{
n ∈ D : sn ∈ P−1

a (Va)
} ∈ F (I) where F (I) is the filter on D associated with

the ideal I. Hence if Λ be any finite subfamily of the indexing set A we have⋂
a∈Λ

{
n ∈ D : sn ∈ P−1

a (Va)
} ∈ F (I) i.e.,

{
n ∈ D : sn ∈

⋂
a∈Λ P−1

a (Va)
} ∈ F (I).

Again this implies
{
n ∈ D : sn /∈ ⋂

a∈Λ P−1
a (Va)

} ∈ I. Since the family of such finite
intersections is a base for the neighbourhood system of the point x in the product
topology so the net {sn; n ∈ D} is I-convergent to x in the product space.

4. Countable compactness and I-sequential compactness
of a topological space

We now introduce the following definition.

Definition 4.1. A topological space (X, τ) is said to be I-sequentially com-
pact if every sequence in X has an I-cluster point, where I is a non-trivial ideal of
the set N of all positive integers.

The notions of I-sequential compactness and sequential compactness of a topo-
logical space are different as shown in the following two examples.

Example 4.1. In this example we show that a sequence in a topological space
has a cluster point without having an I-cluster point corresponding to a non-trivial
ideal I of N, the set of all positive integers.
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Let I be a non-trivial ideal of N generated by all subsets of the set of all even
positive integers and all finite subsets of the set of all odd positive integers. Let us
consider the topological space (R, τ), the set of all real numbers R endowed with
the usual topology τ and a sequence {xn} in R, where

xn =
{

0 if n is even
n + 1 if n is odd.

Then clearly {xn} has a convergent subsequence. But {xn} has no I-cluster point.
Example 4.2. This example demonstrates to us that there is a sequence in a

topological space which has an I-cluster point corresponding to a non-trivial ideal
I of the set N but has no cluster point.

Let I be a non-trivial ideal of N containing all subsets of the set of all even
positive integers. Let us consider the topological space (R, τ), the set of all real
numbers R endowed with the usual topology τ and a sequence {xn} in R where
xn = n, for all n ∈ N. Now clearly {xn} has no cluster point in R but every odd
positive integer becomes an I-cluster point of the sequence {xn}.

We show below that under certain condition there is some relation between
countable compactness and I-sequential compactness of a topological space.

Now we recall the following result.

Lemma. For a topological space (X, τ) the following are equivalent.
(a) (X, τ) is countably compact.
(b) For every countable collection of closed subsets of X satisfying the finite

intersection property has non-empty intersection.
(c) If F1 ⊃ F2 ⊃ F3 ⊃ · · · ⊃ Fn ⊃ · · · is a descending family of non-empty

closed subsets of X then
⋂∞

n=1 Fn 6= ∅.
Let I be an admissible ideal of the set N.

Theorem 4.1. If (X, τ) is I-sequentially compact then (X, τ) becomes a count-
ably compact space.

Proof. Suppose (X, τ) is an I-sequentially compact space. Let {Vn}∞n=1 be
a countable open cover of X which has no finite subcover. Then we may pick
xn ∈ X−⋃n

i=1 Vi. Now the sequence {xn} must have an I-cluster point say x0 ∈ X.
Let x0 ∈ Vr for some r ∈ N. Then by definition {n ∈ N : xn ∈ Vr} /∈ I. Since I is an
admissible ideal of N so the set A = {n ∈ N : xn ∈ Vr} must be an infinite subset of
N. Hence there is some m > r such that xm ∈ Vr. But by our construction xm /∈ Vr

and so we arrive at a contradiction. Thus (X, τ) must be countably compact.

Theorem 4.2. If (X, τ) is a first countable countably compact space then
(X, τ) becomes I-sequentially compact.

Proof. Suppose (X, τ) is a first countable countably compact space. Let {xn :
n ∈ N} be a sequence of distinct points of X. Let us take Tn = {xm : m ≥ n} for
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each positive integer n. Then {Tn} is a descending sequence of non-empty closed
sets and hence by above lemma

⋂∞
n=1 Tn 6= ∅. Let x0 ∈

⋂∞
n=1 Tn. Since (X, τ) is

a first countable space, suppose that {Bn(x0)}∞n=1 is a countable local base at the
point x0 ∈ X such that Bn ⊃ Bn+1 for all n ∈ N. Now Bm(x0)∩ Tm 6= ∅. So there
exists some km ≥ m such that xkm ∈ Bm(x0). Since B1(x0) ∩ T1 6= ∅, we choose a
positive integer k1 such that xk1 ∈ B1(x0). Again since B2(x0)∩ Tk1 6= ∅, choose a
positive integer k2 > k1 such that xk2 ∈ B2(x0). Suppose k1 < k2 < · · · < kn have
been chosen such that xki ∈ Bi(x0) for i = 1, 2, . . . , n. Again since Bn+1(x0) ∩
Tkn+1 6= ∅, there is some kn+1 > kn such that xkn+1 ∈ Bn+1(x0). Thus we get a
subsequence {xkn}∞n=1 of the sequence {xn} such that xkr ∈ Br(x0), ∀r ∈ N. We
show that this subsequence converges to x0. Let x0 ∈ V where V is an open subset
of X. Then there exists some positive integer m such that Bm(x0) ⊂ V . Then
for all n > m we have xkn ∈ Bn(x0) ⊂ Bm(x0) ⊂ V . Since I is an admissible
ideal of N, the sequence {xkn

} is I-convergent to x0. This implies that for every
open set U containing x0 we have {n ∈ N : xkn /∈ U} ∈ I. Since I is a non-
trivial ideal, {n ∈ N : xkn

∈ U} /∈ I i.e., x0 becomes an I-cluster point of the
sequence {xkn}. Now since {n ∈ N : xn ∈ U} ⊃ {n ∈ N : xkn ∈ U} so we obtain
{n ∈ N : xn ∈ U} /∈ I, which in turn implies that x0 becomes an I-cluster point of
the sequence {xn}. Thus (X, τ) is an I-sequentially compact space.
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