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DIRECTED PROPER CONNECTION OF GRAPHS
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Abstract. An edge-colored directed graph is called properly connected if, between every
pair of vertices, there is a properly colored directed path. We study some conditions on directed
graphs which guarantee the existence of a coloring that is properly connected. We also study
conditions on a colored directed graph which guarantee that the coloring is properly connected.

1. Introduction

With the ever-increasing awareness of network security and the challenges it
poses, there is always an effort to produce more reliable and better protected net-
works. A graph model of a computer network consists of a vertex for each node
(computer) and an edge (possibly directed) between two vertices when there is a
link directly between the two nodes. If we let different types of security measures
on the links between nodes be represented by colors on the edges of the correspond-
ing graph, it would make the network more secure if, in order to move from one
computer to another within the network, one must pass through different types of
security on each consecutive steps. The goal of this work is to study precisely this
problem and to determine the minimum number of colors (types of security) that
are required to achieve this property.

Unless otherwise noted, a coloring of a graph will be assumed to be an edge-
coloring. All undefined terminology comes from [2].

A coloring of a graph is called proper if no two adjacent edges share a color.
Given a colored (undirected) graph G, we say that G is properly connected if,
between every pair of vertices, there is a properly colored path. In particular, if
only two colors are used, then a properly colored path would be one that alternates
between the two colors. This notion was defined and studied in [4] where the
following result was proven.
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Theorem 1. (Fujita et al. [4]) If n ≥ 3 and each vertex has at least n
2 different

incident colors, then G is properly connected.

Defined in [1] and further studied in [3], the proper connection number of a
graph G, denoted pc(G), is the minimum number of colors k needed so that there
exists a k-coloring of the edges of G which is properly connected. Among other
results, the following relation between connectivity and proper connection number
was proven. Here we recall that κ(G) denotes the vertex connectivity, the order of
a smallest vertex cut set, of a graph.

Theorem 2. (Borozan et al. [1]) If κ(G) ≥ 2, then pc(G) ≤ 3 and if κ(G) ≥ 3,
then pc(G) ≤ 2.

In this work, we define a directed version of these concepts. First of all, a
directed graph is called strongly connected if, for every ordered pair of vertices
(u, v), there exists a directed path from u to v. We defined a colored digraph G to
be properly strong if, for every ordered pair of vertices (u, v), there exists a properly
colored directed path from u to v. The directed proper connection number −→pc(G)
is then defined to be the minimum number of colors needed to color the edges of G
so that G is properly strong. In what follows, our first main result is the following.

Theorem 3. If G is strongly connected, then −→pc(G) ≤ 3.

Theorem 3 is proven in Section 3. Note here that a coloring can only be prop-
erly strong if the underlying digraph is strongly connected so Theorem 3 provides
a bound for all nontrivial cases. Any directed odd cycle C certainly has −→pc(C) = 3
so this result is also sharp.

In the case of a tournament, we get an even stronger result.

Theorem 4. Every strongly connected tournament T on n ≥ 4 vertices has−→pc(T ) = 2.

The proof of Theorem 4 is presented in Section 4. This proof relies on a
structure much like that of Fact 1 (Section 2), an “almost spanning” strongly
connected bipartite subgraph. Here by almost spanning, we mean that the subgraph
spans all but at most two vertices. We wonder if such a substructure may be the
only way to get −→pc(G) = 2.

Question 1. Classify the digraphs G with −→pc(G) = 2. Do they all have an
almost spanning strongly connected bipartite subgraph?

Here the assumption that the subgraph is almost spanning is critical since there
are simple examples where the result is not true without this assumption. See, for
example, the graph pictured in Figure 1, which consists of a directed C4 sharing
an edge with a directed C5. This graph contains a strongly connected bipartite
subgraph (the C4) but requires three colors to produce a properly strong coloring.

As a special case of Question 1, we believe the following to be true.
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Fig. 1. Two directed cycles

Conjecture 1. If G is a strongly connected digraph with no even cycle, then−→pc(G) = 3.

Finally, in Section 5, we discuss some notions of color degree and whether they
imply that the graph is properly strong.

2. Preliminaries

We start this section with the following useful fact.

Fact 1. If there exists a spanning, bipartite, strongly connected subgraph of a
strongly connected digraph G, then −→pc(G) = 2.

Proof. Let A ∪ B be the assumed bipartition. Color all edges leaving A with
red and all edges leaving B with blue. Since A ∪ B is strongly connected, there
are directed paths between every pair of vertices but since A∪B is bipartite, these
paths must alternate colors. This means −→pc(G) = 2.

One might be tempted to conjecture that this fact may be strengthened to
provide a necessary and sufficient condition but this is not the case. Indeed, consider
the directed graph constructed from a directed C4, say using vertices u, v, w, x in
this order around the cycle. To this cycle, we add a single vertex y with an edge
in from u and out to v. If we color the edges v → w and x → u with red and
all other edges with blue, this provides a properly connected 2-coloring but there
is no spanning, bipartite, strongly connected subgraph of this graph. In fact, this
coloring trick will be used in the proof of Theorem 4.

For our next result, we recall that κ′(G) denotes the edge connectivity, the size
of a minimum edge cut, of a graph.

Proposition 1. If G is a graph with edge connectivity κ′(G) ≥ 3, then there
exists an orientation of the edges of G such that −→pc(G) = 2.

Proof. It is an easy exercise to show that if κ′(G) ≥ 3, then G has a spanning 2-
edge-connected bipartite subgraph B (see [1] for example). It is also straightforward
to show that a 2-edge-connected graph has a strongly connected orientation. Such
an orientation of B, provides a spanning, bipartite, strongly connected subgraph of
an orientation of G. By Fact 1, there is an orientation of G with −→pc(G) = 2.
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3. Proof of Theorem 3

An ear decomposition is a partition of the edges of a 2-edge-connected graph
G into paths and cycles such that the graph G is constructed by starting with any
single cycle and repeatedly adding one path or cycle at a time from the decomposi-
tion, at each step maintaining a 2-edge-connected graph on the vertices that have
been used.

Since G is strongly connected, there is an ear decomposition of G into directed
(possibly closed) ears starting at any directed cycle of G. We will produce a properly
connected coloring of G using three colors by induction on the number of ears in
this decomposition.

For a base, let G = Cn be a directed cycle. A proper edge coloring of Cn with
at most 3 colors is trivially properly connected.

Let Gi be this directed cycle after the addition and coloring of i directed ears.
By induction, suppose we have a properly connected coloring of Gi using 3 colors
with the additional property that all edges into each vertex have a single color. For
convenience, color each vertex with the color of its incoming edges.

If the (i + 1)st ear is a single directed edge, trivially color it with the color
of its terminal vertex. Since Gi was properly connected, Gi+1 is trivially properly
connected as well. Note that the proper connectivity of Gi+1, does not depend on
this edge so it can be avoided in future paths. Also, note that these single-edge
ears are the only time an edge might go between two vertices of the same color.
Thus, we may assume the (i + 1)st ear contains at least one new vertex.

Let u and v be the start and end vertices of the (i + 1)st ear respectively.
Possibly u and v might be equal. Properly color the ear with the three available
colors so that the last edge receives the color of v and the first edge is not the color
of u. With three colors available, such a coloring is always possible. This produces
a coloring of Gi+1 in which each vertex has only one color on all incoming edges.

In Gi, there is a properly colored path Q from v to u. Let P be the newly
added ear. Note that Q∪P is a properly colored directed cycle. Thus, each pair of
vertices x and y with x, y ∈ Q ∪ P is connected by properly colored paths in both
directions. Also, Gi is properly connected so we need only check pairs x, y where
x ∈ P and y ∈ Gi \Q or x ∈ Gi \Q and y ∈ P .

First suppose x ∈ Gi \ Q and y ∈ P . Since Gi is properly connected, there
exists a proper path from x to u. By the definition of the coloring, this path must
end with an edge having the color of u. This path can then be extended along P
to get to y and complete the proof in this case.

Finally, suppose x ∈ P and y ∈ Gi \ Q, since Gi was properly connected,
there exists a proper path, say R, from v to y, not using single-edge ears. In
particular, this means the first edge R will not have the same color of v. Thus,
x → P → v → R → y is a properly colored path from x to y to complete the
proof.
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4. Proof of Theorem 4

Theorem 4 follows almost immediately the following structural claim, which
provides an almost spanning, bipartite, strongly connected subgraph, slightly weak-
er than the structure used in Fact 1.

Claim 1. Every strongly connected tournament of order n ≥ 4 contains a
bipartite, strongly connected subgraph of order at least n − 2. Moreover, if the
bipartite subgraph is A ∪ B, then the vertices outside the bipartite subgraph must
have either Type I: all in-edges from A and all out-edges to B or Type II: all out-
edges to A and all in-edges from B. Furthermore, there is at most one vertex of
each type.

Proof. Let T be a strongly connected tournament of order n ≥ 4. The proof
is by induction on n. For a base, if n = 4, every strongly connected tournament
on 4 vertices contains a directed C4. Since a directed C4 is a spanning, bipartite,
strongly connected subgraph, the base of the induction is complete. Now assume
n > 4 and, by induction, there exists a bipartite, strongly connected subgraph
A ∪ B of order at least n − 3, say color A with red and B with blue to label the
bipartition. Let A ∪B be a largest bipartite, strongly connected subgraph of T .

Let v be a vertex outside A ∪ B. If v has an in-edge from A, then it must
have all edges from A being in-edges since otherwise we could color v with blue to
contradict the choice of A ∪B as a largest bipartite, strongly connected subgraph.
By the same argument, v must have one of the following types:

Type I: all in-edges from A and all out-edges to B,
Type II: all out-edges to A and all in-edges from B,
Type III: all in-edges from A and all in-edges from B, or
Type IV: all out-edges to A and all out-edges to B.
Suppose there is a vertex of Type III. Since T is strongly connected, there must

be a vertex w of Type III with an edge to a vertex that is not Type III. Without
loss of generality, suppose w has an out-edge to x, which has an out-edge to B.
Then the path A → w → x → B can be absorbed into A ∪ B by coloring w with
blue and x with red, contradicting the maximality of |A ∪ B|. Thus, there can be
no vertex of Type III and symmetrically no vertex of Type IV.

Finally, suppose there are at least two vertices v, w of Type I. Without loss of
generality, suppose the edge between v and w goes from v to w. Then the path
A → v → w → B can be absorbed into A ∪ B by coloring v with blue and w
with red, contradicting the maximality of |A∪B|. Thus, there can be at most one
vertex of Type I and symmetrically at most one of Type II, completing the proof
of Claim 1.

By Claim 1, we may assume there is a bipartite subgraph of T , say A∪B that
is strongly connected and misses at most two vertices of T . Color all edges from A
to B with color 1 and all edges from B to A with color 2 as in the proof of Fact 1.
If a vertex outside A∪B has Type I, color all edges to and from A∪B with color 1
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and if a vertex outside has Type II, color all edges to and from A∪B with color 2.
It is easy to see this coloring is properly connected so pc(T ) = 2.

5. Color degree

We also consider using minimum color degree to force a colored digraph to be
properly strong. Leaving out the assumption that the digraph is strongly connected
almost trivializes the problem of just using out-degree since you need out-degree
at least n−1

2 to guarantee that the digraph is strongly connected but then it is
already a regular (strongly connected) tournament in which every vertex has all
different colors on the out-edges. It might be natural to hope that this graph is
properly strong as long as n ≥ 5 (since n = 3 trivially fails) but in fact, this is
not the case. For example, consider the cyclic (counter clockwise) tournament on
5 vertices and color some of the edges as shown in Figure 2. Remaining edges
are colored arbitrarily to satisfy the color degree assumption. This coloring is not
properly strong since there is no proper path from a to b. In fact, this shows that an
original assumption that the graph was strongly connected would not have helped.

Fig. 2. Tournament that is not properly strong

More generally, consider the cyclic tournament Tn on n = 2k + 1 vertices in
which the edges are colored with k colors. Prescribe consecutive vertices, b and
a, in the cyclic ordering so the edge b → a is present. Label the vertices of Tn as
v1 = a, v2, v3, . . . , vn = b. To each vertex in B = {vk+1, vk+1, . . . , vn−1}, associate
one of the available colors, say vi becomes associated with color i − k + 2. For
each vertex vi ∈ B, let the edge vib have the color i − k + 2 associated with vi.
Furthermore, color all incoming edges to each vi ∈ B with the associated color. All
remaining edges of Tn are colored arbitrarily to satisfy the color degree condition.
The last vertex on any path from a to b must be in B but since all incoming edges
to each vertex vi ∈ B have the same color as the edge vi → b, there can be no
properly colored path from a to b, meaning that Tn cannot be properly strong.

One aspect of this construction that allows it to work is that for several vertices,
all in-edges have the same color. If this is not the case, we get the following result.

Theorem 5. If in a colored tournament Tn of odd order n ≥ 201, each vertex
has n−1

2 different colors on in-edges and n−1
2 different colors on out-edges, then Tn

is properly strong.

Here we choose n ≥ 201 merely to simplify computations. We make no attempt
to minimize this constant since it is unlikely that this approach will provide the
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desired result for all n. We believe this approach works for n ≥ 27 and, on the
other hand, we have verified the cases when n = 5 and 7 by hand.

Proof. First a simple fact that follows from the color degree assumption.

Fact 2. Each vertex of Tn has no two in-edges in the same color and no two
out-edges in the same color.

For a contradiction, suppose there are two vertices a and b so that there is no
directed properly colored path from a to b. In particular, this means that the edge
ba is directed from b to a. Let A be the set of vertices with in-edges from a and let
B be the set of vertices with out-edges to b. Since the out-degree of a is n−1

2 and
the in-degree of b is n−1

2 , we see that |A ∩B| ≥ 1.
Suppose for a moment that |A∩B| ≥ 2 and let x, y ∈ A∩B. In order to avoid a

proper path from a to b, the edges ax and xb must have the same color and similarly
ay and yb must also have the same color. Also, since b has n−1

2 different colored
in-edges, we may assume these colors are different, say red and blue respectively.
Without loss of generality, suppose the edge between x and y is directed from x to
y. By Fact 2, the edge xy is neither red nor blue, say green. Then the path axyb is
rainbow (in particular, proper), a contradiction. Thus, |A∩B| = 1. Let c ∈ A∩B.

The set A induces a tournament so the graph induced on A has average out-
degree |A|−1

2 = n−3
4 assuming the appropriate divisibility. Thus, over all vertices

in A, the average number of edges directed to vertices of B \ {c} is at least

n− 1
2

− n− 3
4

− 1 =
n− 3

4
again assuming appropriate divisibility.

Since n ≥ 201 and at least half the vertices of A have at least half the average
number of edges to B \ {c}, there must exist two vertices in A which share at least
3 out-neighbors in B. Say we have u, v ∈ A both adjacent with directed edges
to all of {x, y, z} ⊆ B. By Fact 2, although the color of au may be the same as
the color of uy, there is at least one vertex, say x, such that the colors satisfy
col(au) 6= col(ux) and col(av) 6= col(vx). Then the edge xb cannot have the same
color as both ux and vx, say col(xb) 6= col(ux). This means auxb is a proper path,
a contradiction completing the proof.
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