COARSE TOPOLOGIES ON THE REAL LINE

Gerald Kuba

Abstract. Let $c = |\mathbb{R}|$ denote the cardinality of the continuum and let η denote the Euclidean topology on \mathbb{R} . Let \mathcal{L} denote the family of all Hausdorff topologies τ on \mathbb{R} with $\tau \subset \eta$. Let \mathcal{L}_1 resp. \mathcal{L}_2 resp. \mathcal{L}_3 denote the family of all $\tau \in \mathcal{L}$ where (\mathbb{R}, τ) is completely normal resp. second countable resp. not regular. Trivially, $\mathcal{L}_1 \cap \mathcal{L}_3 = \emptyset$ and $|\mathcal{L}_i| \leq |\mathcal{L}| \leq 2^c$ and $|\mathcal{L}_2| \leq c$. For $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is metrizable if and only if $\tau \in \mathcal{L}_1 \cap \mathcal{L}_2$. We show that, up to homeomorphism, both \mathcal{L}_1 and \mathcal{L}_3 contain precisely 2^c topologies and \mathcal{L}_2 contains precisely c completely metrizable topologies. For 2^c non-homeomorphic topologies $\tau \in \mathcal{L}_1$ the space (\mathbb{R}, τ) is *Baire*, but there are also 2^c non-homeomorphic topologies $\tau \in \mathcal{L}_1$ the space (\mathbb{R}, τ) is of first category. Furthermore, we investigate the complete lattice \mathcal{L}_0 of all topologies $\tau \in \mathcal{L}$ such that τ and η coincide on $\mathbb{R} \setminus \{0\}$. In the lattice \mathcal{L}_0 we find 2^c (non-homeomorphic) immediate successors in \mathcal{L}_0 . We construct chains of homeomorphic topologies in $\mathcal{L}_0 \cap \mathcal{L}_1 \cap \mathcal{L}_2$ and in $\mathcal{L}_0 \cap \mathcal{L}_2 \cap \mathcal{L}_3$ and in $\mathcal{L}_0 \cap (\mathcal{L}_1 \setminus \mathcal{L}_2)$ and in $\mathcal{L}_0 \cap (\mathcal{L}_3 \setminus \mathcal{L}_2)$ such that the length of each chain is c (and hence maximal). We also track down a chain in \mathcal{L}_0 of length 2^{λ} where λ is the smallest cardinal number κ with $2^{\kappa} > c$.

1. Introduction

Write |S| for the cardinality (the size) of a the set S and let $c = |\mathbb{R}|$ denote the cardinality of the continuum. Let η denote the Euclidean topology on \mathbb{R} and let \mathcal{L} denote the family of all topologies τ on \mathbb{R} where τ is coarser than η (i.e. τ is a subset of η) and (\mathbb{R}, τ) is a Hausdorff space. If $\tau \in \mathcal{L}$ and B is a nonempty bounded subset of \mathbb{R} then the relative topologies of τ and η coincide on B. (Because they coincide on the interval [inf B, sup B] due to the well-known fact that a topology cannot be T_2 if it is strictly coarser than a T_2 -compact topology.) Nevertheless, on the whole space \mathbb{R} the two topologies τ and η need not coincide. In fact, as we will see, $|\mathcal{L}| = 2^c$. (Note that $|\mathcal{L}| \leq 2^c$ is trivial because $|\eta| = c$.) Moreover, as we will prove in Section 4, \mathcal{L} contains 2^c mutually non-homeomorphic topologies τ such that (\mathbb{R}, τ) is a completely normal Baire space. In Section 8 we will prove that \mathcal{L} also contains 2^c mutually non-homeomorphic topologies τ such that (\mathbb{R}, τ) is a completely normal space of first category.

²⁰¹⁰ Mathematics Subject Classification: 54A10

Keywords and phrases: nonmetrizable Baire spaces; metrizable spaces of first category.

¹⁰⁰

For every $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is separable and arcwise connected and σ compact. Separability is trivial since \mathbb{Q} is clearly a dense set in (\mathbb{R}, τ) . Arcwise connectedness and σ -compactness follow immediately from the coincidence of η and τ on each Euclidean compact interval. Whereas the Euclidean space \mathbb{R} is second countable, for arbitrary $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) need not be second countable. In fact, there cannot be more than c second countable topologies in the family \mathcal{L} since $|\eta| = c$ and a set of size c has precisely c countable subsets. Due to separability, for $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is metrizable if and only if it is regular and second countable. In particular, there are at most c metrizable topologies in the family \mathcal{L} . In Section 7 we will prove that there exist c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is completely metrizable. In Section 9 we will prove that there exist c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a metrizable space of first category.

Let us call the image $g(\mathbb{R})$ of any continuous one-to-one mapping g from the Euclidean space \mathbb{R} into a Hausdorff space X a real arc. There is a natural correspondence between topologies in the family \mathcal{L} and real arcs. Because, with g and X as above, evidently the family τ_g of all sets $g^{-1}(U)$ where U is an open subset of X is a topology in the family \mathcal{L} and g defines a homeomorphism between the space (\mathbb{R}, τ_g) and the subspace $g(\mathbb{R})$ of X. Conversely, for each $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is a real arc since the identity is a continuous mapping from (\mathbb{R}, η) onto (\mathbb{R}, τ) . As a consequence of our enumeration results mentioned above and proved in Sections 4 and 7, up to homeomorphism there are precisely 2^c completely normal real arcs and precisely c completely metrizable real arcs.

2. Locally and globally coarse topologies

If τ is a topology on the set \mathbb{R} and $a \in \mathbb{R}$ then let $\mathcal{N}_{\tau}(a)$ denote the filter of the neighborhoods of the point a in the space (\mathbb{R}, τ) . Trivially, $\mathcal{N}_{\tau}(a) \subset \mathcal{N}_{\eta}(a)$ for every $\tau \in \mathcal{L}$. Let us call a topology τ in our family \mathcal{L} coarse at the point $a \in \mathbb{R}$ if and only if $\mathcal{N}_{\tau}(a) \neq \mathcal{N}_{\eta}(a)$. A proof of the following lemma is straightforward.

LEMMA 1. If an injective mapping g with domain \mathbb{R} defines a real arc $g(\mathbb{R})$ then the topology τ_g in \mathcal{L} corresponding with g is coarse at $a \in \mathbb{R}$ if and only if the bijection g^{-1} from $g(\mathbb{R})$ onto \mathbb{R} is not continuous at g(a).

The following proposition makes it easy to detect whether a topology $\tau \in \mathcal{L}$ is coarse at a point $a \in \mathbb{R}$.

PROPOSITION 1. A topology $\tau \in \mathcal{L}$ is coarse at a point $a \in \mathbb{R}$ if and only if every set in the filter $\mathcal{N}_{\tau}(a)$ is an unbounded subset of \mathbb{R} .

Proof. Let $\tau \in \mathcal{L}$ and $a \in \mathbb{R}$ and assume that some $U \in \mathcal{N}_{\tau}(a)$ is bounded. Fix $\delta > 0$ so that $[a - \delta, a + \delta] \subset U$ and let $0 < \varepsilon \leq \delta$ be arbitrary. The Euclidean compact set $A = [\inf U, a - \varepsilon] \cup [a + \varepsilon, \sup U]$ is compact and hence closed in the space (\mathbb{R}, τ) . Consequently, $]a - \varepsilon, a + \varepsilon [= U \setminus A$ is τ -open whenever $0 < \varepsilon \leq \delta$ and hence $\mathcal{N}_{\tau}(a) = \mathcal{N}_{\eta}(a)$.

The following proposition provides a nice and very useful characterization of the first-category topologies in the family \mathcal{L} .

PROPOSITION 2. For $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is of first category if and only if every nonempty open set in the space (\mathbb{R}, τ) is an unbounded subset of \mathbb{R} .

Proof. Assume firstly that $\tau \in \mathcal{L}$ and every nonempty τ -open set is unbounded. Then for each $n \in \mathbb{N}$ the set [-n, n] is nowhere dense in the space (\mathbb{R}, τ) . (Note that the Euclidean compact set [-n, n] is τ -compact and hence τ -closed.) Thus the space (\mathbb{R}, τ) is of first category since $\mathbb{R} = \bigcup_{n=1}^{\infty} [-n, n]$. Assume secondly that $\tau \in \mathcal{L}$ and that (\mathbb{R}, τ) is a space of first category and suppose indirectly that there exists a nonempty τ -open set U which is bounded. As an open subspace of a space of first category. But this space is identical with U equipped with the relative topology of τ is a space of first category. But this space is identical with U equipped with the relative topology of η (since U is bounded) and, naturally, the Euclidean space U is of second category. This is a contradiction.

REMARK. As a trivial consequence of Propositions 1 and 2, for $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is of first category if and only if τ is *everywhere* coarse. In [5] we construct 2^{2^c} non-homeomorphic connected topologies τ on \mathbb{R} with certain properties where τ is finer than η . In [5] it is not explicitly stated that all these topologies τ are actually *everywhere* finer than η , i.e. $\mathcal{N}_{\eta}(a)$ is a proper subset of $\mathcal{N}_{\tau}(a)$ for every $a \in \mathbb{R}$. However, some of these 2^{2^c} topologies are of first category, but some of them are of second category.

For $\tau \in \mathcal{L}$ let $C(\tau)$ denote the set of all points *a* such that τ is coarse at *a*. Clearly, if $C(\tau) \neq \mathbb{R}$ then the subspace topologies of τ and η coincide on the set $\mathbb{R} \setminus C(\tau)$. The following proposition shows that the set $C(\tau)$ is always of a very special form.

PROPOSITION 3. Let $\tau \in \mathcal{L}$. Then $C(\tau)$ is a closed subset of the Euclidean space \mathbb{R} . Moreover, the set $C(\tau)$ is closed and meager in the space (\mathbb{R}, τ) .

Proof. Let $\tau \in \mathcal{L}$. Firstly we verify that $C(\tau)$ is closed in the space (\mathbb{R}, τ) . (Then, of course, $C(\tau)$ is closed in the Euclidean space automatically.) Assume that $x \in \mathbb{R}$ is a limit point of the set $C(\tau)$ in the space (\mathbb{R}, τ) . Then $U \cap C(\tau) \neq \emptyset$ for every τ -open set U in the filter $\mathcal{N}_{\tau}(x)$ and hence every set in the filter $\mathcal{N}_{\tau}(x)$ lies in the filter $\mathcal{N}_{\tau}(a)$ for some $a \in C(\tau)$. Thus every set in $\mathcal{N}_{\tau}(x)$ is unbounded by Proposition 1. Hence $x \in C(\tau)$ by Proposition 1. Therefore the set $C(\tau)$ is τ -closed. Since [-n, n] is compact and hence closed in the space (\mathbb{R}, τ) for every $n \in \mathbb{N}$, all sets $C(\tau) \cap [-n, n]$ are closed in the space (\mathbb{R}, τ) . No point in $C(\tau) \cap [-n, n]$ is an τ -interior point of $C(\tau) \cap [-n, n]$ because if $a \in C(\tau)$ then $S \not\subset [-n, n]$ for every $S \in \mathcal{N}_{\tau}(a)$ by Proposition 1. Consequently, $C(\tau) \cap [-n, n]$ is nowhere dense in the space (\mathbb{R}, τ) for every $n \in \mathbb{N}$ and hence the set $C(\tau) = \bigcup_{n=1}^{\infty} (C(\tau) \cap [-n, n])$ is meager in the space (\mathbb{R}, τ) .

The following proposition generalizes the special fact that (\mathbb{R}, η) is a Baire space with $C(\eta) = \emptyset$ and will be useful for the proof of the enumeration results in Sections 4 and 5.

PROPOSITION 4. If $\tau \in \mathcal{L}$ such that $C(\tau)$ is a meager set in the space (\mathbb{R}, η) then (\mathbb{R}, τ) is a Baire space.

Proof. For $\tau \in \mathcal{L}$ assume that $C(\tau)$ is a meager subset of Euclidean space \mathbb{R} . Then $C(\tau) \neq \mathbb{R}$ and hence $U := \mathbb{R} \setminus C(\tau)$ is nonempty. By Proposition 3 the set U is Euclidean open (even τ -open). As an open subspace of the Baire space (\mathbb{R}, η) , the space (U, η) is Baire. The spaces (U, η) and (U, τ) are identical in view of $U \cap C(\tau) = \emptyset$ and the definition of the set $C(\tau)$. In particular, the space (U, τ) is Baire. As the complement of a meager set, U is dense in the Euclidean space \mathbb{R} and hence dense in the space (\mathbb{R}, τ) a fortiori. This is enough in view of the well-known fact (cf. [2] 3.9.J.b) that a Hausdorff space must be Baire if some dense subspace is Baire.

The following proposition, which implies that \mathcal{L} contains *c* completely metrizable topologies, demonstrates that the converse of Proposition 4 would be far from being true.

PROPOSITION 5. For every $z \in \mathbb{R}$ there exists a topology $\tau_z \in \mathcal{L}$ with $C(\tau_z) =]-\infty, z]$ such that all spaces (\mathbb{R}, τ_z) are completely metrizable and homeomorphic.

Proof. We work with real arcs and define for every $z \in \mathbb{R}$ an injective and continuous mapping g_z from the Euclidean space \mathbb{R} into the Euclidean plane \mathbb{R}^2 by putting $g_z(t) = (t,0)$ for $t \leq z$ and $g_z(t) = (z + (t-z)(z+1-t), t-z)$ for $z \leq t \leq z+1$ and $g_z(t) = (z + (z+1-t)|\sin(z+1-t)|, e^{z+1-t})$ for $t \geq z+1$. Clearly, $g_z(\mathbb{R})$ is a closed subset of the complete metric space \mathbb{R}^2 . We observe that g_z^{-1} is continuous at $g_z(a)$ if and only if $a \in]z, \infty[$. (Hence $C(\tau_z) =]-\infty, z]$ for $\tau_z \in \mathcal{L}$ corresponding with g_z .) Finally, for every $z \in \mathbb{R}$ the space $g_z(\mathbb{R})$ is homeomorphic to the space $g_0(\mathbb{R})$ since the translation $(x, y) \mapsto (x - z, y)$ of the vector space \mathbb{R}^2 maps $g_z(\mathbb{R})$ onto $g_0(\mathbb{R})$.

3. Selecting non-homeomorphic topologies

LEMMA 2. If $\mathcal{H} \subset \mathcal{L}$ and all topologies in \mathcal{H} are homeomorphic then $|\mathcal{H}| \leq c$.

Proof. Firstly, if $\tau_1, \tau_2 \in \mathcal{L}$ then each continuous function from the space (\mathbb{R}, τ_1) into the space (\mathbb{R}, τ_2) is completely determined by its values at the points in the τ_1 -dense set \mathbb{Q} . Secondly, there are precisely c functions from \mathbb{Q} into \mathbb{R} .

The following lemma makes it very easy to provide mutually non-homeomorphic topologies in certain situations.

LEMMA 3. If the size of a family $\mathcal{K} \subset \mathcal{L}$ is greater than c then \mathcal{K} contains a family \mathcal{K}' equipollent to \mathcal{K} such that all topologies in \mathcal{K} are mutually non-homeomorphic.

Proof. Define an equivalence relation \sim on \mathcal{K} by putting $\tau_1 \sim \tau_2$ for $\tau_i \in \mathcal{K}$ when the spaces (\mathbb{R}, τ_1) and (\mathbb{R}, τ_2) are homeomorphic. By Lemma 2 the size of an equivalence class cannot exceed c. Consequently, from $|\mathcal{K}| > c$ we derive that the total number of the equivalence classes must be $|\mathcal{K}|$. So we are done by choosing for \mathcal{K}' a set of representatives with respect to the equivalence relation \sim .

4. Completely normal Baire topologies

The following lemma is very useful in order to avoid a lengthy verification of complete normality by verifying regularity only.

LEMMA 4. Let $z \in \mathbb{R}$ and $\tau \in \mathcal{L}$ with $C(\tau) = \{z\}$. Then the space (\mathbb{R}, τ) is second countable if and only if some local basis at the point z is countable. And the space (\mathbb{R}, τ) is completely normal if and only if it is regular.

Proof. Clearly, $z \notin V \in \eta$ implies $V \in \tau$. This settles the first statement and has also the consequence that $U \cup V \in \tau$ whenever $z \in U \in \tau$ and $V \in \eta$. Assume that (\mathbb{R}, τ) is regular and that in the space (\mathbb{R}, τ) we have $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ for $A, B \subset \mathbb{R}$. If $z \notin A \cup B$ then A and B can be separated by η -open subsets of $\mathbb{R} \setminus \{z\}$ which must be τ -open. So assume $z \in A \cup B$ and, say, $z \in A$. Then we can find disjoint sets $U_1, V_1 \in \eta$ with $z \notin U_1 \cup V_1$ such that $A \setminus \{z\} \subset U_1$ and $B \subset V_1$. Furthermore, since the space (\mathbb{R}, τ) is regular, we can find disjoint sets $U_2, V_2 \in \tau$ with $z \in U_2$ and $\overline{B} \subset V_2$. Then $U_1 \cup U_2$ and $V_1 \cap V_2$ are disjoint τ -open sets and $A \subset U_1 \cup U_2$ and $B \subset V_1 \cap V_2$.

Our first main result is the following theorem.

THEOREM 1. There exists a family $\mathcal{T} \subset \mathcal{L}$ with $|\mathcal{T}| = 2^c$ such that (\mathbb{R}, τ) is a completely normal Baire space for each $\tau \in \mathcal{T}$ and two spaces (\mathbb{R}, τ) and (\mathbb{R}, τ') are never homeomorphic for distinct topologies $\tau, \tau' \in \mathcal{T}$.

Proof. The cardinal number 2^c indicates that the natural way to define \mathcal{T} is to use ultrafilters on a countably infinite set. It is well-known (see [1]) that an infinite set of size κ carries precisely $2^{2^{\kappa}}$ free ultrafilters. In particular, there are 2^c free ultrafilters on \mathbb{Z} . Note that no free ultrafilter contains a finite set.

For each free ultrafilter \mathcal{F} on \mathbb{Z} define a topology $\tau = \tau[\mathcal{F}]$ on \mathbb{R} by declaring $U \subset \mathbb{R}$ open if and only if U is Euclidean open and satisfies $0 \notin U$ or $U \cap \mathbb{Z} \in \mathcal{F}$. It is plain that τ is a well-defined topology on \mathbb{R} coarser than η . Further, (\mathbb{R}, τ) is a Hausdorff space, whence $\tau \in \mathcal{L}$, because if u < v then the intersection $\mathbb{Z} \setminus [u, v]$ of \mathbb{Z} and the Euclidean open set $\mathbb{R} \setminus [u, v]$ must lie in \mathcal{F} (since $\mathbb{Z} \cap [u, v]$ is a finite set and the ultrafilter \mathcal{F} is free). By Proposition 1 we have $0 \in C(\tau)$ since $M \cap \mathbb{Z} \in \mathcal{F}$ for every $M \in \mathcal{N}_{\tau}(0)$ and every $S \in \mathcal{F}$ is an infinite set. Moreover, $C(\tau) = \{0\}$ since τ and η coincide on the Euclidean open set $\mathbb{R} \setminus \{0\}$. Hence (\mathbb{R}, τ) is a Baire space by Proposition 4.

We claim that (\mathbb{R}, τ) is completely normal. By Lemma 4 it is enough to check the T₃-separation property. Let $A \subset \mathbb{R}$ be τ -closed (and hence η -closed) and let $b \in \mathbb{R} \setminus A$. If $b \neq 0$ then we can find $\epsilon > 0$ and $U \in \eta$ disjoint from $V := |b - \epsilon, b + \epsilon|$ with $0 \notin V$ and $A \subset U$. Then V is τ -open and $U_{\epsilon} := U \cup (\mathbb{R} \setminus [b - \epsilon, b + \epsilon])$ is τ -open and $b \in V$ and $A \subset U_{\epsilon}$ and $U_{\epsilon} \cap V = \emptyset$. (The set $U_{\epsilon} \cap \mathbb{Z}$ lies in the free ultrafilter \mathcal{F} since $\mathbb{Z} \setminus U_{\epsilon}$ is finite.) If b = 0 then $B := \{0\} \cup (\mathbb{Z} \setminus A)$ is η -closed and disjoint from A and hence we can choose disjoint η -open sets U, V with $A \subset U$ and $b \in B \subset V$. The set U is τ -open because $0 \notin U$ since $0 \in V$ and $U \cap V = \emptyset$. The set V is τ -open because $\mathbb{Z} \setminus A \in \mathcal{F}$ (since A is τ -closed) and hence from $V \cap \mathbb{Z} \supset B \cap \mathbb{Z} \supset \mathbb{Z} \setminus A$ we derive $V \cap \mathbb{Z} \in \mathcal{F}$.

Finally we observe that $\tau[\mathcal{F}_1] \not\subset \tau[\mathcal{F}_2]$ (and hence $\tau[\mathcal{F}_1] \neq \tau[\mathcal{F}_2]$) whenever \mathcal{F}_1 and \mathcal{F}_2 are distinct free ultrafilters on \mathbb{Z} . Indeed, if \mathcal{F}_1 and \mathcal{F}_2 are free ultrafilters on \mathbb{Z} and $\tau[\mathcal{F}_1] \subset \tau[\mathcal{F}_2]$ and $S \in \mathcal{F}_1$ then the $\tau[\mathcal{F}_1]$ -open set $W := \left] -\frac{1}{3}, \frac{1}{3} \right[\cup \bigcup_{s \in S} \left] s - \frac{1}{3}, s + \frac{1}{3} \right[$ is a $\tau[\mathcal{F}_2]$ -open neighborhood of 0 and hence $S \cup \{0\} = W \cap \mathbb{Z}$ lies in \mathcal{F}_2 , whence $S \in \mathcal{F}_2$. (Note that $\mathbb{Z} \setminus \{0\} \in \mathcal{F}_2$ since the ultrafilter \mathcal{F}_2 is free.) Thus $\mathcal{F}_1 \subset \mathcal{F}_2$ and hence $\mathcal{F}_1 = \mathcal{F}_2$ since \mathcal{F}_1 and \mathcal{F}_2 are ultrafilters.

REMARK. Since \mathcal{L} contains only c second countable topologies, there are 2^c free ultrafilters \mathcal{F} on \mathbb{Z} such that the space $(\mathbb{R}, \tau[\mathcal{F}])$ is not second countable or, equivalently, that any local basis at 0 is uncountable. In fact, this is true for every free ultrafilter \mathcal{F} on \mathbb{Z} . Indeed, assume indirectly that the countable family $\{B_1, B_2, B_3, \ldots\}$ is a local basis at 0 in the space $(\mathbb{R}, \tau[\mathcal{F}])$. Then we may choose a sequence a_1, a_2, a_3, \ldots of distinct integers and $0 < \epsilon_n < \frac{1}{3}(n \in \mathbb{N})$ such that $a_n \in B_n \setminus \{a_k | k < n\}$ and $[a_n - \epsilon_n, a_n + \epsilon_n] \subset B_n$ for every $n \in \mathbb{N}$. Then with $S = \mathbb{Z} \setminus \{a_1, a_2, a_3, \ldots\}$ the set

$$U := \bigcup_{n=1}^{\infty} [a_n - \epsilon_n, a_n + \epsilon_n[\cup \bigcup_{s \in S}]s - \frac{1}{3}, s + \frac{1}{3}]$$

is a $\tau[\mathcal{F}]$ -open $\tau[\mathcal{F}]$ -neighborhood of 0 (since $U \cap \mathbb{Z} = \mathbb{Z} \in \mathcal{F}$) with $a_n + \epsilon_n \in B_n \setminus U$ and hence $B_n \not\subset U$ for every $n \in \mathbb{N}$. Thus $\{B_1, B_2, B_3, \dots\}$ is not a local basis at 0.

5. Non-regular Baire topologies

In view of Theorem 1 and Lemma 4 there arises the question whether \mathcal{L} contains also 2^c topologies τ which are Baire because of $C(\tau) = \{0\}$ and where (\mathbb{R}, τ) is not regular. This is indeed true.

THEOREM 2. There exist 2^c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a Baire space which is not regular.

Proof. It is enough to modify the proof of Theorem 1 in the following way. For any free ultrafilter \mathcal{F} on \mathbb{Z} define a topology $\sigma[\mathcal{F}]$ on \mathbb{R} by declaring $U \subset \mathbb{R}$ open if and only if U is Euclidean open and $0 \notin U$ or $U \supset \bigcup_{s \in S}]s - \frac{1}{3}, s + \frac{1}{3}[$ for some $S \in \mathcal{F}$. Certainly, $\sigma[\mathcal{F}]$ is well-defined and Hausdorff. The space $(\mathbb{R}, \sigma[\mathcal{F}])$ is not regular since, for example, the point 0 and the obviously $\sigma[\mathcal{F}]$ -closed set $\bigcup_{k=-\infty}^{k=\infty} [k + \frac{1}{3}, k + \frac{2}{3}]$ cannot be separated by $\sigma[\mathcal{F}]$ -open sets. Finally, similarly as in the proof of Theorem 1, $\sigma[\mathcal{F}] \neq \sigma[\mathcal{F}']$ whenever \mathcal{F} and \mathcal{F}' are distinct free ultrafilters on \mathbb{Z} .

REMARK. In the proof of Theorem 1 or Theorem 2 one cannot avoid an application of Lemma 3 (or a similar transfinite counting argument). Actually, for every free ultrafilter \mathcal{F}_0 on \mathbb{Z} there is an infinite family \mathcal{U} of free ultrafilters on \mathbb{Z} with $\mathcal{F}_0 \in \mathcal{U}$ such that all topologies $\tau[\mathcal{F}](\mathcal{F} \in \mathcal{U})$ are homeomorphic and all topologies $\sigma[\mathcal{F}](\mathcal{F} \in \mathcal{U})$ are homeomorphic. Indeed, put $\mathcal{U} := \{\mathcal{F}_k | k = 0, 1, 2, ...\}$ where

 $\begin{aligned} \mathcal{F}_k &:= \{k+S | S \in \mathcal{F}_0\} \text{ for every integer } k \geq 0. \text{ Clearly, } \mathcal{F}_m = \{(m-n)+S | S \in \mathcal{F}_n\} \\ \text{whenever } n, m \geq 0 \text{ and each family } \mathcal{F}_k \text{ is a free ultrafilter on } \mathbb{Z}. \text{ We have } \mathcal{F}_n \neq \mathcal{F}_m \\ \text{whenever } 0 \leq n < m \text{ because firstly precisely one of the congruence classes modulo} \\ 2m \text{ lies in } \mathcal{F}_n. \text{ (Note that a union of finitely many sets lies in an ultrafilter only if one of these sets lies in the ultrafilter.) And secondly, if a congruence class <math>A \\ \text{modulo } 2m \text{ lies in } \mathcal{F}_n \text{ then the congruence class } (m-n) + A \\ \text{ lies in } \mathcal{F}_m \text{ but not in } \mathcal{F}_n. \text{ (For } A \text{ and } (m-n) + A \text{ are disjoint.) Finally, for each } k \in \mathbb{N} \text{ define an increasing bijection } \varphi_k \text{ from } \mathbb{R} \text{ onto } \mathbb{R} \text{ so that } \varphi_k(0) = 0 \text{ and } \varphi_k(n) = n+k \text{ for every } n \in \mathbb{Z} \setminus [-k, 0]. \text{ Since } \varphi_k \text{ is a homeomorphism from the Euclidean space } \mathbb{R} \setminus \{0\} \text{ onto itself, by considering the open neighborhoods of 0 it is evident that } \varphi_k \\ \text{ is a homeomorphism from the space } (\mathbb{R}, \tau[\mathcal{F}_0]) \text{ onto the space } (\mathbb{R}, \tau[\mathcal{F}_k]) \text{ and also a homeomorphism from the space } (\mathbb{R}, \sigma[\mathcal{F}_0]) \text{ onto the space } (\mathbb{R}, \sigma[\mathcal{F}_k]). \end{aligned}$

6. Counting Polish spaces

For the proof of our second main result in Section 7 we need the following enumeration theorem.

THEOREM 3. There is a family \mathcal{H} of countably infinite G_{δ} -sets in the Euclidean space \mathbb{R} such that the size of \mathcal{H} is c and distinct members of \mathcal{H} are always non-homeomorphic subspaces of \mathbb{R} .

Proof. We work with Cantor derivatives and is enough to consider finite derivatives. (Note in the following that we regard \mathbb{N} to be defined in the classical way, i.e. $0 \notin \mathbb{N}$.) If X is a Hausdorff space and $A \subset X$ then the first derivative A' of A is the set of all limit points of A. Further, with $A^{(1)} := A'$, for every $k = 2, 3, 4, \ldots$ the k-th derivative $A^{(k)}$ of A is given by $A^{(k)} = (A^{k-1})'$. Naturally, the first derivative of any set is closed. Consequently, $A^{(m)} \supset A^{(n)}$ whenever $m \leq n$.

Now, define for each $n \in \mathbb{N}$ a compact and countably infinite subset K_n of the interval [2n, 2n + 1] with min $K_n = 2n$ and max $K_n = 2n + 1$ such that $K_n^{(n)} = \{2n + 1\}$. (Simply take for K_n an appropriate order-isomorphic copy of the well-ordered set of all ordinal numbers $\alpha \leq \omega^n$.) Thus for $m, n \in \mathbb{N}$ the derived set $K_n^{(m)}$ contains the point 2n + 1 if and only if $m \leq n$. Furthermore, define a discrete subset E_n of $[2n + 1, 2n + \frac{7}{4}]$ via $E_n := \{2n + 1 + 2^{-m} + 2^{-m-k} | m, k \in \mathbb{N}\}$. For every nonempty $S \subset \mathbb{N}$ put $G_S := \bigcup_{n \in S} (K_n \cup E_n)$. Since G_S is the union of the closed set $\bigcup_{n \in S} K_n$ and the discrete set $\bigcup_{n \in S} E_n$, the set G_S is a countably infinite G_{δ} -set in \mathbb{R} . Obviously, $G_S^{(m)} = \bigcup_{n \in S} K_n^{(m)}$ for every $m \in \mathbb{N}$.

If $\emptyset \neq S \subset \mathbb{N}$ then let N_S denote the set of all $x \in G_S$ such that no neighborhood of the point x in the space G_S is compact. By construction, $x \in N_S$ if and only if x = 2n + 1 for some $n \in S$. Hence a moment's reflection suffices to see that

$$\left\{m \in \mathbb{N} \mid \left(G_S^{(m)} \setminus G_S^{(m+1)}\right) \cap N_S \neq \emptyset\right\} = S,$$

for each nonempty set $S \subset \mathbb{N}$. Thus the set S can always be recovered from the space G_S purely topologically and hence two spaces G_{S_1} and G_{S_2} are never homeomorphic

for distinct nonempty sets $S_1, S_2 \subset \mathbb{N}$. Thus the family $\mathcal{H} = \{G_S | \emptyset \neq S \subset \mathbb{N}\}$ is as desired and this concludes the proof of Theorem 3.

REMARK. Every Polish space is homeomorphic to a closed subspace of the product of countably infinitely many copies of the real line (cf. [3] 4.3.25). As a consequence, every uncountable Polish space is of size c and the size of a family of mutually non-homeomorphic Polish spaces cannot exceed c. Therefore, by virtue of Theorem 3, there exist precisely c countably infinite Polish spaces up to homeomorphism. In comparison, by [4] Theorem 1.3 there exist precisely c uncountable Polish spaces up to homeomorphism.

7. Completely metrizable topologies

THEOREM 4. There exist c mutually non-homeomorphic topologies τ on \mathbb{R} coarser than the Euclidean topology such that (\mathbb{R}, τ) is completely metrizable (and hence Polish).

Proof. Let \mathcal{H} be a family as in Theorem 3. Our goal is to construct for each $H \in \mathcal{H}$ a real arc A_H which is a G_{δ} -subset of the Euclidean space \mathbb{R}^3 (and hence completely metrizable) so that $H \times \{0\} \times \{0\} \subset A_H$ and A_H and $A_{H'}$ are never homeomorphic for distinct $H, H' \in \mathcal{H}$.

For two points P, Q in the vector space \mathbb{R}^3 let [P, Q] denote the closed straight segment which connects the points P and Q, $[P, Q] = \{\lambda P + (1-\lambda)Q | 0 \le \lambda \le 1\}$. Furthermore, for abbreviation, put $y(n) := 2^{-n} \cos 2^{-n}$ and $z(n) := 2^{-n} \sin 2^{-n}$ for $n \in \mathbb{N}$.

For every set $H = \{a_1, a_2, a_3, \dots\}$ in the family \mathcal{H} with $a_i \neq a_j$ for $i \neq j$ we define an injective and continuous mapping $g = g_H$ from \mathbb{R} into \mathbb{R}^3 by

$$g(t) = (t \sin t, -e^t, 0)$$
 for every real $t \le 0$

and so that g([k, k+1]) = [g(k), g(k+1)] for every integer $k \ge 0$ where

$$g(0) = (0, -1, 0)$$
 and $g((1) = (0, -1, 1)$ and
 $g(2m) = (a_m, 0, 0)$ and $g(2m + 1) = (a_m, y(m), z(m))$ for every $m \in \mathbb{N}$.

The injectivity of g is feasible because if E_m is the plane through the three points g(2m), g(2m+1), g(2m+2) then $E_m \neq \mathbb{R} \times \mathbb{R} \times \{0\}$ and $E_m \cap E_n = \mathbb{R} \times \{0\} \times \{0\}$ whenever $m, n \in \mathbb{N}$ and $m \neq n$.

Let $H \in \mathcal{H}$ and put $A_H := g_H(\mathbb{R})$ and let $\overline{A_H}$ denote the closure of A_H in the Euclidean space \mathbb{R}^3 . Trivially, $H \times \{0\} \times \{0\}$ is a \mathcal{G}_{δ} -set in the space \mathbb{R}^3 and a subspace of \mathbb{R}^3 homeomorphic with H. Obviously, $\overline{A_H} = B \times \{0\} \times \{0\} \cup A_H$ for some $B \subset \mathbb{R}$. Hence $A_H = H \times \{0\} \times \{0\} \cup (\overline{A_H} \cap (\mathbb{R}^3 \setminus \mathbb{R} \times \{0\} \times \{0\}))$ is the union of a \mathcal{G}_{δ} -set and a set which is the intersection of a closed set with an open set. Thus A_H is a \mathcal{G}_{δ} -set in the space \mathbb{R}^3 and hence the Euclidean space A_H is completely metrizable.

A moment's reflection is sufficient to see that $H \times \{0\} \times \{0\}$ equals the set of all points a in the space A_H where no local basis at a contains only arcwise connected

sets. Therefore, the space H can essentially be recovered from the space A_H and this finishes the proof. \blacksquare

REMARK. In the previous proof one cannot replace \mathcal{H} with a family \mathcal{H}' of mutually non-homeomorphic countably infinite and *closed* subspaces of the Euclidean space \mathbb{R} . Because in view of [4] Theorem 8.1 we have $|\mathcal{H}'| \leq \aleph_1$ for any such family \mathcal{H}' and it is widely known (cf. [3]) that $\aleph_1 < c$ (i.e. the negation of the Continuum Hypothesis) is irrefutable. However, by applying a theorem not proved in this paper and with a bit greater effort concerning the notations it is not difficult to modify the previous proof starting with a family \mathcal{H}^* of mutually non-homeomorphic closed subspaces of \mathbb{R} such that $|\mathcal{H}^*| = c$ and every member of \mathcal{H}^* is the union of infinitely many mutually exclusive intervals [a, b] with a < b. (Such a family \mathcal{H}^* exists by [6] Theorem 1.)

8. Completely normal spaces of first category

THEOREM 5. There exist 2^c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a completely normal space of first category.

Proof. Let B be an injective mapping from \mathbb{Z} into the power set of \mathbb{R}^3 such that B(k) is always a nonempty open ball in the Euclidean metric space \mathbb{R}^3 and that $\{B(k)|k \in \mathbb{Z}\}$ is a basis of the Euclidean topology of \mathbb{R}^3 . We define a double sequence of distinct points

$$\dots, P_{-3}, P_{-2}, P_{-1}, P_0, P_1, P_2, P_3, \dots$$

in \mathbb{R}^3 by induction. Start with three distinct points P_{-1}, P_0, P_1 where P_{-1} does not lie in the straight line through P_0 and P_1 . Suppose that for $n \in \mathbb{N}$ we have already chosen 2n+1 distinct points P_k with $k \in \mathbb{Z}$ and $|k| \leq n$. Then choose $P_{n+1} \in B(n+1)$ and $P_{-n-1} \in B(-n-1)$ so that:

(i) three distinct points in $\{P_k | |k| \le n+1\}$ never lie in one straight line,

(ii) four distinct points in $\{P_k | |k| \le n+1\}$ never lie in one plane.

Such a choice is always possible since neither finitely many straight lines nor finitely many planes can cover any ball B(k).

In this way we obtain a countable, dense subset $\{P_k | k \in \mathbb{Z}\}$ of the Euclidean space \mathbb{R}^3 (with $P_k \neq P_{k'}$ whenever $k \neq k'$) such that $[P_m, P_{m+1}]$ and $[P_n, P_{n+1}] \setminus \{P_n, P_{n+1}\}$ are disjoint whenever $m, n \in \mathbb{Z}$ and $m \neq n$.

Now define a mapping g from \mathbb{R} into \mathbb{R}^3 so that $g(k) = P_k$ and g is a continuous bijection from [k, k+1] into \mathbb{R}^3 with $g([k, k+1]) = [P_k, P_{k+1}]$ for every $k \in \mathbb{Z}$. Then $g : \mathbb{R} \to \mathbb{R}^3$ is injective and continuous and hence $g(\mathbb{R})$ is a real arc within \mathbb{R}^3 such that $g(\mathbb{Z})$ is dense in \mathbb{R}^3 . Therefore the Euclidean compact spaces $[P_k, P_{k+1}]$ are closed subsets of the space $g(\mathbb{R})$ whose interior in the space $g(\mathbb{R})$ is empty and hence the space $g(\mathbb{R})$ is of first category. By construction, for any nonempty open set Uin the Euclidean space \mathbb{R}^3 the set $g^{-1}(U)$ is an unbounded subset of \mathbb{R} . Thus the topology in \mathcal{L} corresponding with $g(\mathbb{R})$ is one that satisfies the desired properties of Theorem 5. (Moreover, the topology is metrizable.) The first step is done and now we are going to track down 2^c topologies as desired. Since $g(\mathbb{Z})$ is dense in \mathbb{R}^3 we may fix an infinite set $Z \subset g(\mathbb{Z})$ such that $g(0) \in Z$ and the Euclidean distance between any two points in Z is always greater than 1. (In particular, Z is an unbounded, countable subset of \mathbb{R}^3 .) Similarly as in the proof of Theorem 1, for each of the 2^c free ultrafilters \mathcal{F} on Z define a topology $\tilde{\tau}[\mathcal{F}]$ on \mathbb{R}^3 such that $U \subset \mathbb{R}^3$ lies in the family $\tilde{\tau}[\mathcal{F}]$ if and only if U is Euclidean open and satisfies $g(0) \notin U$ or $U \cap Z \in \mathcal{F}$.

Of course, by exactly the same arguments as in the proof of Theorem 1, for every free ultrafilter \mathcal{F} on Z the topology $\tilde{\tau}[\mathcal{F}]$ is completely normal and coarser than the Euclidean topology on \mathbb{R}^3 (and strictly coarser precisely at the point g(0)).

Now let $\tau = \tilde{\tau}[\mathcal{F}]$ be any such topology on \mathbb{R}^3 . Then the set $g(\mathbb{R})$ equipped with the subspace topology of (\mathbb{R}^3, τ) is completely normal. (Here it is essential that the property *completely normal* is, other than the property *normal*, hereditary.) Since g is a continuous one-to-one mapping from (\mathbb{R}, η) into (\mathbb{R}^3, τ) a fortiori, the family $g^{-1}(\tau) := \{g^{-1}(V) | V \in \tau\}$ is a topology in the family \mathcal{L} and g is a homeomorphism from the space $(\mathbb{R}, g^{-1}(\tau))$ onto the space $(g(\mathbb{R}), \tau)$. In particular, the space $(\mathbb{R}, g^{-1}(\tau))$ is completely normal. Furthermore, every nonempty open set in the space $(\mathbb{R}, g^{-1}(\tau))$ is unbounded in \mathbb{R} , whence $(\mathbb{R}, g^{-1}(\tau))$ is a space of first category by Proposition 2.

Trivially, $U \cap Z = (U \cap g(\mathbb{R})) \cap Z$ for every Euclidean open set $U \subset \mathbb{R}^3$. Therefore, by a similar argument as in the proof of Theorem 1, for distinct free ultrafilters $\mathcal{F}_1, \mathcal{F}_2$ on Z the relative topologies of $\tilde{\tau}[\mathcal{F}_1]$ and $\tilde{\tau}[\mathcal{F}_2]$ on the set $g(\mathbb{R})$ must be distinct. (We even have $\tau_1 \not\subset \tau_2$ for such distinct relative topologies τ_1, τ_2 on $g(\mathbb{R})$.) Thus by Lemma 3 we can track down a family \mathcal{U} of free ultrafilters on Z such that $|\mathcal{U}| = 2^c$ and two spaces $(g(\mathbb{R}), \tilde{\tau}[\mathcal{F}_1])$ and $(g(\mathbb{R}), \tilde{\tau}[\mathcal{F}_2])$ are never homeomorphic for distinct $\mathcal{F}_1, \mathcal{F}_2 \in \mathcal{U}$. Hence the topologies $g^{-1}(\tilde{\tau}[\mathcal{F}_1])$ and $g^{-1}(\tilde{\tau}[\mathcal{F}_2])$ in the family \mathcal{L} are never homeomorphic for distinct $\mathcal{F}_1, \mathcal{F}_2 \in \mathcal{U}$ since g is a homeomorphism from the space $(\mathbb{R}, g^{-1}(\tilde{\tau}[\mathcal{F}]))$ onto the space $(g(\mathbb{R}), \tilde{\tau}[\mathcal{F}])$ for every $\mathcal{F} \in \mathcal{U}$. This concludes the proof. \blacksquare

9. Metrizable spaces of first category

THEOREM 6. There exist c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a metrizable space of first category.

Proof. Let η_3 denote the Euclidean topology on \mathbb{R}^3 and for any continuous oneto-one mapping $g : \mathbb{R} \to \mathbb{R}^3$ let $g^{-1}(\eta_3) := \{g^{-1}(V) | V \in \eta_3\}$ denote the topology in \mathcal{L} corresponding with the real arc $g(\mathbb{R})$. Let \mathcal{H} be a family as in Theorem 3. Our goal is to construct a real arc $h_H(\mathbb{R})$ within the metrizable space (\mathbb{R}^3, η_3) for every $H \in \mathcal{H}$ such that firstly $h_H(\mathbb{Z})$ is dense in \mathbb{R}^3 , whence every nonempty open set in the space $(\mathbb{R}, h_H^{-1}(\eta_3))$ is unbounded, and secondly two real arcs $h_{H_1}(\mathbb{R})$ and $h_{H_2}(\mathbb{R})$ are never homeomorphic for distinct sets $H_1, H_2 \in \mathcal{H}$.

Let $H = \{a_1, a_3, a_5, \dots\}$ be a set in the family \mathcal{H} where $a_i \neq a_j$ for distinct (and always odd) indices i, j. Again let $y(n) := 2^{-n} \cos 2^{-n}$ and $z(n) := 2^{-n} \sin 2^{-n}$ for $n \in \mathbb{N}$. We firstly define $h = h_H$ on the domain $[0, \infty]$. Choose an injective and

continuous mapping h from $[0, \infty[$ into \mathbb{R}^3 so that h([k, k+1]) = [h(k), h(k+1)]for every integer $k \geq 0$ where $h(k) = ((-2)^{k/2}, y(k), z(k))$ when k is even and $h(k) = (a_k, 0, 0)$ when k is odd. (Such a choice is clearly possible because if E_m is the plane through the three points h(m-1), h(m), h(m+1) for any even $m \geq 2$ then $E_m \cap E_n = \mathbb{R} \times \{0\} \times \{0\}$ whenever $2 \leq m < n$.) Clearly, $H \times \{0\} \times \{0\}$ is the intersection of $h([0, \infty[) \text{ with the } x\text{-axis } \mathbb{R} \times \{0\} \times \{0\}, \text{ and } h([0, \infty[) \cup \mathbb{R} \times \{0\} \times \{0\}$ is the closure of $h([0, \infty[) \text{ in } \mathbb{R}^3$.

For any Hausdorff space X let W(X) denote the set of all points x in X such that no local basis at x contains only arcwise connected sets. By construction we have

$$W(h([0,\infty[)) = H \times \{0\} \times \{0\})$$

In view of the definition of g in the proof of Theorem 5 it is plain to expand h to a continuous and injective mapping from \mathbb{R} into \mathbb{R}^3 such that $h(\mathbb{Z} \setminus \mathbb{N})$ is a dense subset of the Euclidean space \mathbb{R}^3 . As a consequence we have $W(h(\mathbb{R})) = h(\mathbb{R})$ and $(\mathbb{R}, h^{-1}(\eta_3))$ is a space of first category. Moreover, $W(h([t, \infty[)) = H \times \{0\} \times \{0\}$ for every real $t \leq 0$ and $W(h([t, \infty[)) \subset H \times \{0\} \times \{0\}$ and $W(h(]-\infty, t])) =$ $h(]-\infty, t])$ for every $t \in \mathbb{R}$. In particular, for every $t \in \mathbb{R}$ the set $W(h([t, \infty[)))$ is countable and the set $W(h(]-\infty, t]))$ is uncountable and we have $H \times \{0\} \times \{0\} =$ $\bigcup \{W(h([t, \infty[))|t \in \mathbb{R}\}.$

We finish the proof by verifying that $H \times \{0\} \times \{0\}$ can be recovered from the space $h(\mathbb{R})$. (Note, again, that $H \times \{0\} \times \{0\}$ and H are homeomorphic.)

For any arcwise connected metrizable space X let $\mathcal{Y}(X)$ be the family of all sets $Y \subset X$ such that Y and $X \setminus Y$ are arcwise connected and $Y \setminus \{y\}$ is arcwise connected for some $y \in Y$. For the Euclidean space \mathbb{R} we clearly have $Y \in \mathcal{Y}(\mathbb{R})$ if and only if $Y =]-\infty, t]$ or $Y = [t, \infty[$ for some $t \in \mathbb{R}$. While for an arbitrary real arc $g(\mathbb{R})$ it is not necessary that $\mathcal{Y}(g(\mathbb{R})) = \{g(Y) | Y \in \mathcal{Y}(\mathbb{R})\}$ (see the remark below), we observe that $Y \in \mathcal{Y}(h(\mathbb{R}))$ if and only if $Y = h(]-\infty, t]$) or $Y = h([t, \infty[)$ for some $t \in \mathbb{R}$. Therefore, $H \times \{0\} \times \{0\}$ equals the union of all sets W(Y) where $Y \in \mathcal{Y}(h(\mathbb{R}))$ and W(Y) is countable.

REMARK. If $g(\mathbb{R}) \subset \mathbb{R}^3$ is a real arc and $a \in \mathbb{R}$ such that $g(x_n)$ converges to g(a) whenever (x_n) is an unbounded and increasing sequence of reals then $g(\mathbb{R}) \setminus \{g(x)\}$ is arcwise connected for every x > a and $g([u, v]) \in \mathcal{Y}(g(\mathbb{R}))$ whenever a < u < v.

10. A complete lattice of topologies

As any family of topologies on a fixed set, the family \mathcal{L} is partially ordered by the relation \subset . A family $\mathcal{K} \subset \mathcal{L}$ is a *chain* if and only if $\tau_1 \subset \tau_2$ or $\tau_2 \subset \tau_1$ whenever $\tau_1, \tau_2 \in \mathcal{K}$. The extreme opposite of chains of topologies are families of mutually incomparable topologies. (Two topologies τ_1, τ_2 are incomparable if and only if neither $\tau_1 \subset \tau_2$ nor $\tau_2 \subset \tau_1$.)

In order to prove Theorem 1 we considered topologies in \mathcal{L} which are coarse at precisely one point $a \in \mathbb{R}$ (with a = 0). Let $\mathcal{L}_0 := \{\tau \in \mathcal{L} | C(\tau) \subset \{0\}\}$ be the family of all topologies in \mathcal{L} which are either coarse precisely at the point 0 or equal to the Euclidean topology η . We have $|\mathcal{L}_0| = |\mathcal{L}| = 2^c$ by the proof of Theorem 1. Whereas, naturally, the family of all topologies on the set \mathbb{R} coarser than η is a lattice with respect to the partial ordering \subset , the partially ordered family (\mathcal{L}, \subset) is not a lattice. (See the remark below.) However, the partially ordered family (\mathcal{L}_0, \subset) is a lattice. Moreover, (\mathcal{L}_0, \subset) is a complete lattice (with η as its maximum) in view of the following proposition which also shows that for the minimum θ of the complete lattice \mathcal{L}_0 the space (\mathbb{R}, θ) has interesting properties. (Recall that a partially ordered set L is a complete lattice if and only if every nonempty subset of L has an infimum and a supremum.)

PROPOSITION 6. If $\emptyset \neq S \subset \mathcal{L}_0$ then $\bigcap S \in \mathcal{L}_0$. If $\mathcal{K} \neq \emptyset$ is a chain in \mathcal{L}_0 then $\bigcup \mathcal{K}$ is a topology in \mathcal{L}_0 , and $\bigcup \mathcal{K} \neq \eta$ when $\eta \notin \mathcal{K}$. If $\theta = \bigcap \mathcal{L}_0$ then the Hausdorff space (\mathbb{R}, θ) is compact and any locally connected, compact real arc with precisely one cut point is homeomorphic to the space (\mathbb{R}, θ) .

Proof. Let $\emptyset \neq S \subset \mathcal{L}_0$. The family $\sigma := \bigcap S$ is a topology on \mathbb{R} coarser than η since, generally, the lattice of all topologies on any set is closed under arbitrary intersections. The topology σ is Hausdorff because σ and η coincide on $\mathbb{R} \setminus \{0\}$ and if, say, x > 0 then 0 and x can be separated by the σ -open sets $\mathbb{R} \setminus [\frac{x}{3}, 3x]$ and $]\frac{x}{2}, 2x[$. (Since $[\frac{x}{3}, 3x]$ is τ -compact for every $\tau \in \mathcal{L}$, the set $\mathbb{R} \setminus [\frac{x}{3}, 3x]$ is τ -open for every $\tau \in \mathcal{S}$.) If $\mathcal{S} \neq \{\eta\}$ then $C(\sigma) = \{0\}$ by Proposition 1. Hence, $\sigma \in \mathcal{L}_0$. Recall that if $\tau \in \mathcal{L}_0$ and $0 \in U \in \tau$ and $V \in \eta$ then $U \cup V \in \tau$. And, by Proposition 1, $]-1, 1[\in \tau \text{ for } \tau \in \mathcal{L}_0 \text{ only if } \tau = \eta$. Consequently, the family $\bigcup \mathcal{S}$ is closed under arbitrary unions and we have $\bigcup \mathcal{S} \neq \eta$ when $\eta \notin \mathcal{S}$. And if \mathcal{S} is a chain then $\bigcup \mathcal{S}$ is closed under finite intersections and hence $\bigcup \mathcal{S}$ is a topology on \mathbb{R} coarser than η and finer than the Hausdorff topology $\bigcap \mathcal{S}$, whence $\bigcup \mathcal{S} \in \mathcal{L}_0$.

Define a topology $\tau_0 \in \mathcal{L}$ by declaring a set $U \subset \mathbb{R}$ τ_0 -open if and only if the set U is η -open and either $0 \notin U$ or $U \supset \{0\} \cup (\mathbb{R} \setminus [-t, t])$ for some t > 0. Then $C(\tau_0) = \{0\}$ and hence $\tau_0 \in \mathcal{L}_0$. Let K be the union of two congruent circles in the plane \mathbb{R}^2 which meet in precisely one point. Then K (which looks like the digit 8 or the symbol ∞) is an arcwise connected and locally arcwise connected compact subspace of the Euclidean plane \mathbb{R}^2 with precisely one cut point. (Recall that xis a cut point of a connected space X if and only if $X \setminus \{x\}$ is not connected.) It is immediately obvious that K is a real arc which is homeomorphic to the space (\mathbb{R}, τ_0) . (Of course, 0 is the unique cut point in the arcwise connected space (\mathbb{R}, τ_0) .) It is well-known that any locally connected, compact real arc with precisely one cut point is homeomorphic to K (cf. [7]). Finally, the topologies τ_0 and $\bigcap \mathcal{L}_0$ must be identical because $\tau_0 \in \mathcal{L}_0$ and $\tau_0 \subset \tau$ for every $\tau \in \mathcal{L}_0$ since if $0 \in U \in \tau_0$ then $\mathbb{R} \setminus U$ is Euclidean compact and hence τ -closed for every $\tau \in \mathcal{L}_0$.

REMARK. If $a \in \mathbb{R}$ and $\varphi_a(x) = x + a$ for every $x \in \mathbb{R}$ and $\tau_0 \in \mathcal{L}_0$ is compact then $\tau_a := \{\varphi_a(U) | U \in \tau_0\}$ is a topology in \mathcal{L} with $C(\tau_a) = \{a\}$ and hence $\tau_a \neq \tau_{a'}$ whenever $a \neq a'$. Each topology τ_a is compact since φ_a is a homeomorphism from (\mathbb{R}, τ_0) onto (\mathbb{R}, τ_a) . Thus by Proposition 6, \mathcal{L} contains c (homeomorphic) compact topologies. Therefore, the partially ordered family (\mathcal{L}, \subset) is not a lattice because if τ, τ' are distinct compact topologies in \mathcal{L} then $\{\tau, \tau'\}$ has no infimum in (\mathcal{L}, \subset)

since a topology cannot be T_2 if it is strictly coarser than a T_2 -compact topology. (In particular, every nonempty chain of compact topologies in \mathcal{L} is a singleton.) It is also worth mentioning that if for $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is compact then it must be second countable. Because, naturally, the sets $]r_1, r_2[$ with $r_1, r_2 \in \mathbb{Q}$ form a network of τ and (cf. [2] 3.3.5.) any compact Hausdorff space has a countable basis if it has a countable network.

11. Long chains of homeomorphic topologies

The topologies in the family $\mathcal{T} \subset \mathcal{L}$ constructed in the proof of Theorem 1 are mutually non-homeomorphic and mutually incomparable. If $\tau_z \in \mathcal{L}$ are the completely metrizable topologies defined by the real arcs $g_z(\mathbb{R})$ in the proof of Proposition 5 then $\{\tau_z | z \in \mathbb{R}\}$ is a family of homeomorphic and mutually incomparable topologies. (They are mutually incomparable because if $r, s \in \mathbb{R}$ and $r \neq s$ then the sequence $(1 + r + \pi n)$ converges to r in the space (\mathbb{R}, τ_r) , whereas in the space (\mathbb{R}, τ_s) the same sequence converges to s when $\frac{r-s}{\pi} \in \mathbb{Z}$ and diverges when $\frac{r-s}{\pi} \notin \mathbb{Z}$.) However, a simple modification of the real arc $g_z(\mathbb{R})$ makes it possible to track down a chain of homeomorphic topologies in \mathcal{L} .

PROPOSITION 7. There exists a chain $\mathcal{J} \subset \mathcal{L}$ such that $|\mathcal{J}| = c$ and all spaces (\mathbb{R}, τ) with $\tau \in \mathcal{J}$ are completely metrizable and homeomorphic.

Proof. For $z \in \mathbb{R}$ consider the mapping $g_z : \mathbb{R} \to \mathbb{R}^2$ from the proof of Proposition 5 and for -1 < a < 0 put $\tilde{g}_a(t) = g_0(t)$ when $t \ge 0$ and $\tilde{g}_a(t) = (0, -t)$ when $a \le t \le 0$ and $\tilde{g}_a(t) = (t - a, -a)$ when $t \le a$. For -1 < a < 0 let $\tilde{\tau}_a$ be the topology in \mathcal{L} corresponding with the Euclidean continuous injective mapping $\tilde{g}_a : \mathbb{R} \to \mathbb{R}^2$. Then $C(\tilde{\tau}_a) = [a, 0]$ and $(\mathbb{R}, \tilde{\tau}_a)$ is completely metrizable since $\tilde{g}_a(\mathbb{R})$ is a G_{δ} -subset of \mathbb{R}^2 . Obviously, $\tilde{\tau}_r$ is a proper subset of $\tilde{\tau}_s$ whenever -1 < r < s < 0. All spaces $(\mathbb{R}, \tilde{\tau}_a)$ with -1 < a < 0 are homeomorphic because a moment's reflection suffices to see that if -1 < r < s < 0 then there is a homeomorphism from the Euclidean plane \mathbb{R}^2 onto itself which maps $\tilde{g}_r(\mathbb{R})$ onto $\tilde{g}_s(\mathbb{R})$.

The chain \mathcal{J} of homeomorphic topologies constructed in the previous proof is disjoint from the lattice \mathcal{L}_0 . If \mathcal{T} is a family as in Theorem 1 then $\mathcal{T} \subset \mathcal{L}_0$ but there is no chain $\mathcal{K} \subset \mathcal{T}$ with $|\mathcal{K}| > 1$. Nevertheless, the following theorem shows that the lattice \mathcal{L}_0 contains very long chains of homeomorphic topologies. (In the following, as usual, if \mathcal{K}_2 is a \subset -chain and $\mathcal{K}_1 \subset \mathcal{K}_2$ then \mathcal{K}_1 is dense in \mathcal{K}_2 if and only if for every pair $X, Y \in \mathcal{K}_2$ with $X \subset Y$ and $X \neq Y$ there exists a set Z in $\mathcal{K}_1 \setminus \{X, Y\}$ such that $X \subset Z \subset Y$.)

THEOREM 7. The lattice \mathcal{L}_0 contains four chains $\mathcal{K}_0, \mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_3$ of (the maximal possible) size c such that for $i \in \{0, 1, 2, 3\}$ all spaces (\mathbb{R}, τ) with $\tau \in \mathcal{K}_i$ are homeomorphic, and

- (i) if $\tau \in \mathcal{K}_0$ then the space (R, τ) is second countable but not regular,
- (ii) if $\tau \in \mathcal{K}_1$ then the space (R, τ) is neither regular nor first countable,
- (iii) if $\tau \in \mathcal{K}_2$ then the space (R, τ) is completely normal but not first countable,

- (iv) if $\tau \in \mathcal{K}_3$ then the space (R, τ) is completely metrizable,
- (v) $\mathcal{K}_0 \cup \mathcal{K}_1 \cup \mathcal{K}_2$ is a chain and \mathcal{K}_i is dense in $\mathcal{K}_0 \cup \mathcal{K}_1 \cup \mathcal{K}_2$ for every $i \in \{0, 1, 2\}$,
- (vi) every topology in $\mathcal{K}_0 \cup \mathcal{K}_1 \cup \mathcal{K}_2$ is coarser than every topology in \mathcal{K}_3 .

Proof. The size of \mathcal{K}_i cannot exceed c by Lemma 2. In order to obtain a chain \mathcal{K}_3 as desired, for real $\alpha \geq 0$ define an injective and Euclidean continuous mapping h_α from \mathbb{R} into \mathbb{R}^2 by $h_\alpha(t) = (t, -t)$ for $t \leq 1$ and $h_\alpha(t) = (1, t-2)$ for $1 \leq t \leq 2$ and $h_\alpha(t) = (2t^{-1}, t^{\alpha} |\sin(\pi t)|)$ for $t \geq 2$.

Obviously $h_{\alpha}(\mathbb{R})$ is a G_{δ} -subset of \mathbb{R}^2 for every $\alpha \geq 0$. All sets $h_{\alpha}(\mathbb{R})$ with $\alpha \geq 0$ are homeomorphic subspaces of \mathbb{R}^2 because for every $\alpha \geq 0$ the mapping $(t, h_0(t)) \mapsto (t, h_{\alpha}(t))$ with t running through \mathbb{R} is clearly a homeomorphism from the real arc $h_0(\mathbb{R})$ onto the real arc $h_{\alpha}(\mathbb{R})$. Let $\mu[\alpha]$ be the topology in \mathcal{L} corresponding with h_{α} . Thus $\mu[\alpha] \in \mathcal{L}_0$ and in the space $(\mathbb{R}, \mu[\alpha])$ the family $\{B(\alpha, \varepsilon) | \varepsilon > 0\}$ is a local basis at the point 0 where

$$B(\alpha,\varepsilon) :=]-\varepsilon, \varepsilon[\cup \{t \in \mathbb{R} \mid t > \frac{2}{\varepsilon} \wedge t^{\alpha} | \sin(\pi t) | < \varepsilon \}$$

(Obviously, $h_{\alpha}^{-1}(]-\varepsilon, \varepsilon[^2 \cap h_{\alpha}(\mathbb{R})) = B(\alpha, \varepsilon)$ for every positive $\varepsilon < 1$.) If $0 \le \alpha_1 \le \alpha_2$ then $B(\alpha_1, \varepsilon) \supset B(\alpha_2, \varepsilon)$ for every $\varepsilon > 0$ and hence $\mu[\alpha_1] \subset \mu[\alpha_2]$. If $0 \le \alpha_1 < \alpha_2$ then $\mu[\alpha_1] \ne \mu[\alpha_2]$ because the $\mu[\alpha_2]$ -open set $B(\alpha_2, 1)$ cannot be $\mu[\alpha_1]$ -open since it is plain that $B(\alpha_1, \varepsilon) \not\subset B(\alpha_2, 1)$ for every $\varepsilon > 0$. So we define $\mathcal{K}_3 := \{\mu[\alpha] | \alpha \ge 0\}$.

In order to find appropriate chains $\mathcal{K}_0, \mathcal{K}_1, \mathcal{K}_2$ we define a family $\mathcal{D} \subset \mathcal{L}_0$ so that the partially ordered set (\mathcal{D}, \subset) is a Boolean algebra isomorphic with the power set of \mathbb{R} . Write $x + Y := \{x + y | y \in Y\}$ for $x \in \mathbb{R}$ and $Y \subset \mathbb{R}$. For any set $D \subset [-\frac{1}{2}, \frac{1}{2}[$ define a topology $\tau(D) \in \mathcal{L}$ by declaring $U \subset \mathbb{R}$ open if and only if Uis Euclidean open and either $0 \notin U$ or $U \supset \{0\} \cup \bigcup_{k=n}^{\infty} k + D$ for some $n \in \mathbb{N}$. It is plain that $\tau(D)$ is a well-defined topology on \mathbb{R} and that $\tau(D) \in \mathcal{L}_0$.

Obviously, $\tau(\emptyset) = \eta$ and $\tau(B) \subset \tau(A)$ whenever $A \subset B \subset [-\frac{1}{2}, \frac{1}{2}[$. Furthermore $\tau(A) \neq \tau(B)$ when A, B are distinct subsets of $[-\frac{1}{2}, \frac{1}{2}[$. Moreover, if $B \not\subset A$ then $\tau(A) \not\subset \tau(B)$. Because if $z \in B \setminus A$ then it is clear that the Euclidean open set $\mathbb{R} \setminus (z + \mathbb{N})$ lies in $\tau(A)$ but not in $\tau(B)$. Therefore, if

$$\mathcal{D} := \{ \tau(D) | D \subset [-\frac{1}{2}, \frac{1}{2}] \}$$

and g is a bijection from \mathbb{R} onto $\left[-\frac{1}{2}, \frac{1}{2}\right]$ then $X \mapsto \tau\left(\left[-\frac{1}{2}, \frac{1}{2}\right] \setminus g(X)\right)$ is an isomorphism from the Boolean algebra of all subsets of \mathbb{R} onto the partially ordered set (\mathcal{D}, \subset) .

A moment's reflection suffices to see that $\tau(D) \subset \mu[\alpha]$ for every $\alpha \geq 0$ if $D \subset [-\frac{1}{2}, \frac{1}{2}[$ and 0 is an interior point of D in the Euclidean space \mathbb{R} . Therefore, in order to achieve (vi) we choose mutually disjoint sets $\Lambda_0, \Lambda_1, \Lambda_2 \subset]0, \frac{1}{3}[$ of size c which are dense in $]0, \frac{1}{3}[$ and define $\mathcal{K}_0 := \{\tau([-\lambda, \lambda]) | \lambda \in \Lambda_0\}$ and $\mathcal{K}_1 := \{\tau([-\lambda, \lambda]) | \lambda \in \Lambda_1\}$ and $\mathcal{K}_2 := \{\tau([-\lambda, \lambda]) | \lambda \in \Lambda_2\}$. The specific choice of $\Lambda_0, \Lambda_1, \Lambda_2$ is made for saving the density condition (v) because if $A \subset B \subset [-\frac{1}{2}, \frac{1}{2}[$ and $|B \setminus A| = 1$ then no topology from \mathcal{D} lies strictly between $\tau(B)$ and $\tau(A)$. Clearly, if $0 < \lambda, \lambda' < \frac{1}{3}$ and f is any strictly increasing function from \mathbb{R} onto \mathbb{R} with f(0) = 0 and $f(n \pm \lambda) = n \pm \lambda'$ for every $n \in \mathbb{N}$ then f is a homeomorphism from

 $(\mathbb{R}, \tau([-\lambda, \lambda]))$ onto $(\mathbb{R}, \tau([-\lambda', \lambda']))$ and from $(\mathbb{R}, \tau([-\lambda, \lambda[)))$ onto $(\mathbb{R}, \tau([-\lambda', \lambda']))$ and from $(\mathbb{R}, \tau(]-\lambda, \lambda[))$ onto $(\mathbb{R}, \tau(]-\lambda', \lambda'[))$. So the definitions of the four chains \mathcal{K}_i do the job provided that (i) and (ii) and (iii) hold.

For $T \subset \mathbb{R}$ put $\Gamma(T) := \{e^{2\pi i t} | t \in T\}$. So $\Gamma(\mathbb{R}) = \Gamma([-\frac{1}{2}, \frac{1}{2}[)$ is the unit circle $x^2 + y^2 = 1$ in \mathbb{R}^2 and $\Gamma(D) \subset \Gamma(\mathbb{R})$ for $D \subset [-\frac{1}{2}, \frac{1}{2}[$. We finish the proof by verifying the nice observation that for every $D \subset [-\frac{1}{2}, \frac{1}{2}]$,

- (1) $(\mathbb{R}, \tau(D))$ is second countable if and only if $\Gamma(D)$ is open in $\Gamma(\mathbb{R})$,
- (2) $(\mathbb{R}, \tau(D))$ is regular if and only if $\Gamma(D)$ is closed in $\Gamma(\mathbb{R})$.

Note that by Lemma 4 the space $(\mathbb{R}, \tau(D))$ is regular if and only if $(\mathbb{R}, \tau(D))$ is completely normal.

If $\Gamma(D)$ is open in $\Gamma(\mathbb{R})$ then $\{]-n^{-1}, n^{-1}[\bigcup \bigcup_{k=n}^{\infty} k+D | n \in \mathbb{N}\}$ is clearly a local basis at 0 in the space $(\mathbb{R}, \tau(D))$, whence $(\mathbb{R}, \tau(D))$ is second countable by Lemma 4. If $\Gamma(D)$ is not closed in $\Gamma(\mathbb{R})$ then for some $b \in [-\frac{1}{2}, \frac{1}{2}] \setminus D$ the point $e^{2\pi i b}$ is a limit point of $\Gamma(D)$ in $\Gamma(\mathbb{R})$. So the Euclidean closed set $b + \mathbb{N}$ is $\tau(D)$ -closed and, obviously, the point 0 and the set $b + \mathbb{N}$ can not be separated by $\tau(D)$ -open sets, whence $\tau(D)$ is not regular. If $\Gamma(D)$ is closed in $\Gamma(\mathbb{R})$ then, by the same arguments as in the proof of Theorem 1, the space $(\mathbb{R}, \tau(D))$ is regular. (One can adopt the proof line by line with the only modification that the set $B = \{0\} \cup (\mathbb{Z} \setminus A)$ is replaced by $B = \{0\} \cup \bigcup_{n=k}^{\infty} n + D$ where $k \in \mathbb{N}$ is chosen so that $A \cap (n+D) = \emptyset$ whenever $n \geq k$.)

Finally, assume that $\Gamma(D)$ is not open in $\Gamma(\mathbb{R})$ and choose $d \in D$ so that $e^{2\pi i d}$ is not an interior point of $\Gamma(D)$ in $\Gamma(\mathbb{R})$. Suppose that a countable family $\{B_1, B_2, B_3, \ldots\}$ of Euclidean open sets is a local basis at 0 in the space $(\mathbb{R}, \tau(D))$. Let k_1 be the least positive integer n such that $B_1 \supset n + D$. If k_m is already defined then let k_{m+1} be the least integer $n > k_m$ such that $B_{m+1} \supset n + D$. For every $m \in \mathbb{N}$ choose a small $\epsilon_m > 0$ such that $\Gamma(]d - \epsilon_m, d + \epsilon_m[) \not\subset \Gamma(D)$ and $]k_m + d - \epsilon_m, k_m + d + \epsilon_m[\subset B_m$. Then for every $m \in \mathbb{N}$ we can choose a point x_m in $]k_m + d - \epsilon_m, k_m + d + \epsilon_m[\setminus (k_m + D)$. Then the set $V := \mathbb{R} \setminus \{x_m | m \in \mathbb{N}\}$ is $\tau(D)$ -open and hence $V \supset B_n$ for some $n \in \mathbb{N}$. So we obtain the contradiction that $x_n \in B_n \subset V$ and $x_n \notin V$ for some $n \in \mathbb{N}$. Thus the assumption on $\{B_1, B_2, B_3, \ldots\}$ is false and hence $\tau(D)$ is not first countable. This concludes the proof of Theorem 7.

REMARK. The maximum of the Boolean algebra (\mathcal{D}, \subset) is $\tau(\emptyset) = \eta$. The topology $\tau([-\frac{1}{2}, \frac{1}{2}[)$ is the minimum of \mathcal{D} and it is plain that $(\mathbb{R}, \tau([-\frac{1}{2}, \frac{1}{2}[))$ is homeomorphic to the subspace $\Gamma^* := \Gamma(\mathbb{R}) \cup \{0\} \times [1, \infty[$ of the Euclidean plane \mathbb{R}^2 . It is well-known that any locally connected, locally compact but not compact real arc is homeomorphic either to Γ^* or to the real line (cf. [7]). In view of (1) and (2), the maximum and the minimum of the Boolean algebra \mathcal{D} are the only metrizable topologies in \mathcal{D} . In view of (2) and Lemma 4 and $|\eta| = c$, precisely c topologies in \mathcal{D} are completely normal, whence the proof of Theorem 1 is not dispensable. On the contrary, in view of Lemma 3 and Proposition 4 and the well-known fact that \mathbb{R}^2 has only c Euclidean closed subsets (and the trivial fact that $\Gamma(\mathbb{R})$ has 2^c subsets), an alternative proof of Theorem 2 (which does not use ultrafilters) is provided by (2).

114

Coarse topologies on the real line

12. Countably generated topologies

Only *c* topologies in the Boolean algebra \mathcal{D} are first countable. But all topologies in \mathcal{D} satisfy an interesting countability condition weaker than first countability. Let \mathcal{L}_0^* denote the family of all topologies in \mathcal{L}_0 such that $\mathcal{N}_{\tau}(0) = \mathcal{N}_{\eta}(0) \cap \mathcal{F}$ for some filter \mathcal{F} on \mathbb{R} which is generated by a countable filter base. In other words, there is a countable filter base \mathcal{B} of subsets of \mathbb{R} such that $\eta \cap \mathcal{N}_{\tau}(0) = \{U \in \eta | \exists B \in \mathcal{B} : U \supset \{0\} \cup B\}$. So if $\tau \in \mathcal{L}_0$ is first countable then $\tau \in \mathcal{L}_0^*$. The converse is not true since $\mathcal{D} \subset \mathcal{L}_0^*$. In particular, $|\mathcal{L}_0^*| = |\mathcal{D}| = 2^c$. Whereas for $A \subset B \subset [-\frac{1}{2}, \frac{1}{2}[$ with $|B \setminus A| = 1$ there is no topology $\tau \in \mathcal{D}$ strictly between $\tau(B)$ and $\tau(A)$, the following theorem implies that between $\tau(B)$ and $\tau(A)$ there lie *c* comparable and *c* incomparable topologies from \mathcal{L}_0^* and also 2^c incomparable topologies from $\mathcal{L}_0 \setminus \mathcal{L}_0^*$.

THEOREM 8. If $\tau_1 \in \mathcal{L}_0^*$ is strictly coarser than $\tau_2 \in \mathcal{L}_0$ then there are a chain $\mathcal{R} \subset \mathcal{L}_0$ with $|\mathcal{R}| = c$ and two families $\mathcal{S} \subset \mathcal{L}_0$ and $\mathcal{T} \subset \mathcal{L}_0 \setminus \mathcal{L}_0^*$ of mutually incomparable topologies with $|\mathcal{S}| = c$ and $|\mathcal{T}| = 2^c$ such that $\tau_1 \subset \tau \subset \tau_2$ for every $\tau \in \mathcal{R} \cup \mathcal{S} \cup \mathcal{T}$. Additionally $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_0^*$ can be achieved if $\tau_2 \in \mathcal{L}_0^*$. For $\tau_2 = \eta$ it can be achieved that $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_0^*$ and all topologies in $\mathcal{R} \cup \mathcal{S}$ are homeomorphic.

Proof. First of all, if $\eta \cap \mathcal{N}_{\tau}(0) = \{U \in \eta | \exists B \in \mathcal{B} : U \supset \{0\} \cup B\}$ for $\tau \in \mathcal{L}_0$ and a filter base \mathcal{B} then $\eta \cap \mathcal{N}_{\tau}(0) = \{U \in \eta | \exists B \in \mathcal{B} : U \supset \{0\} \cup (B \setminus [-1, 1])\}$. Indeed, if $U \in \eta$ contains $\{0\} \cup (B_1 \setminus [-1, 1])$ for some $B_1 \in \mathcal{B}$ then U contains $]-k^{-1}, k^{-1}[\cup(B_1 \setminus [-1, 1]))$ for some k > 1. Since $V_k := \mathbb{R} \setminus ([-k, -k^{-1}] \cup [k^{-1}, k]))$ lies in $\eta \cap \mathcal{N}_{\tau}(0)$, we have $B_2 \subset V_k$ for some $B_2 \in \mathcal{B}$ and hence $U \supset B_1 \cap B_2$. Thus, since \mathcal{B} is a filter base, we have $B \subset B_1 \cap B_2 \subset U$ for some $B \in \mathcal{B}$. There is an important consequence of the two representations of $\eta \cap \mathcal{N}_{\tau}(0)$. If $\eta \neq \tau \in \mathcal{L}_0$ and a filter base \mathcal{B} generates a filter \mathcal{F} with $\mathcal{N}_{\tau}(0) = \mathcal{N}_{\eta}(0) \cap \mathcal{F}$ then the family $\mathcal{B}' := \{B \setminus [-1,1] | B \in \mathcal{B}\}$ does not contain \emptyset and hence \mathcal{B}' is a filter base which generates a filter \mathcal{F}' with $\mathcal{N}_{\tau}(0) = \mathcal{N}_{\eta}(0) \cap \mathcal{F}'$.

Let $\tau_1 \in \mathcal{L}_0^*$ be a proper subset of $\tau_2 \in \mathcal{L}_0$. Let \mathcal{B}_1 and \mathcal{B}_2 be families of subsets of $\mathbb{R} \setminus [-1,1]$ such that \mathcal{B}_1 is a countable filter base and \mathcal{B}_2 is a filter base when $\tau_2 \neq \eta$ and $\mathcal{B}_2 = \{\emptyset\}$ when $\tau_2 = \eta$ and $\eta \cap \mathcal{N}_{\tau_i}(0) = \{U \in \eta | \exists B \in \mathcal{B}_i : U \supset \{0\} \cup B\}$ for $i \in \{1,2\}$. We may assume that $\mathcal{B}_1 = \{A_1, A_2, A_3, \ldots\}$ where A_n is a proper subset of A_m whenever m < n. Since τ_1 is strictly coarser than τ_2 , we can fix $D \in \mathcal{B}_2$ such that $A_n \not\subset D$ for every $n \in \mathbb{N}$. Since for every $k \in \mathbb{N}$ we have $A_n \subset V_k$ and hence $A_n \subset \mathbb{R} \setminus [-k, k]$ for some $n \in \mathbb{N}$, we can choose a sequence a_1, a_2, a_3, \ldots of distinct reals such that always $a_n \in A_n \setminus D$ and either $a_n > n$ for every $n \in \mathbb{N}$ or $a_n < -n$ for every $n \in \mathbb{N}$. Then $\{a_1, a_2, a_3, \ldots\}$ is disjoint from $D \cup [-1, 1]$ and Euclidean closed and discrete. Consequently, every subset of $\{a_1, a_2, a_3, \ldots\}$ is τ_2 -closed.

For every infinite set $S \subset \mathbb{N}$ define a topology $\rho[S] \in \mathcal{L}_0$ with $\rho[S] \subset \tau_2$ so that an τ_2 -open neighborhood U of 0 is $\rho[S]$ -open if and only if $U \supset \{a_n | k \leq n \in S\}$ for some $k \in \mathbb{N}$. We have $\tau_1 \subset \rho[S]$ since $\{a_n | n \geq k\} \subset A_k$ for every $k \in \mathbb{N}$. Obviously, $\rho[S_1] \subset \rho[S_2]$ when $S_1 \supset S_2$. Furthermore, if $S_2 \setminus S_1$ is an infinite set then $\rho[S_1] \not\subset \rho[S_2]$ because the τ_2 -open set $\mathbb{R} \setminus \{a_n | n \notin S_1\}$ is $\rho[S_1]$ -open but not

 $\rho[S_2]$ -open. Therefore, we define $\mathcal{R} := \{\rho[R_z] | z \in \mathbb{R}\}$ and $\mathcal{S} := \{\rho[S_z] | z \in \mathbb{R}\}$ where for every $z \in \mathbb{R}$ infinite sets $R_z, S_z \subset \mathbb{N}$ are defined so that if x < y then on the one hand $R_x \supset R_y$ and $R_x \setminus R_y$ is an infinite set, and on the other hand $S_x \cap S_y$ is a finite set. (For example, choose a bijection φ from \mathbb{N} onto \mathbb{Q} and put $R_x := \{n \in \mathbb{N} | x \leq \varphi(n)\}$ for every $x \in \mathbb{R}$. Furthermore, for every $x \in \mathbb{R}$ choose a set $T_x \subset \mathbb{Q} \cap [x-1,x]$ with $T'_x = \{x\}$ and put $S_x := \varphi^{-1}(T_x)$.) Clearly, for every infinite set $S \subset \mathbb{N}$ the family $\{B \cup \{a_n | k \leq n \in S\} | B \in \mathcal{B}_2 \land k \in \mathbb{N}\}$ is a filter base which generates a filter \mathcal{F} such that $\mathcal{N}_\eta(0) \cap \mathcal{F} = \mathcal{N}_{\rho[S]}(0)$. Thus $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_0^*$ if \mathcal{B}_2 is countable. (So $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_0^*$ can be achieved if $\tau_2 \in \mathcal{L}_0^*$.) If $\tau_2 = \eta$ (and hence $\mathcal{B}_2 = \{\emptyset\}$) then the topologies in $\mathcal{R} \cup \mathcal{S}$ are homeomorphic. Because if $S \subset \mathbb{N}$ is infinite then any increasing bijection from \mathbb{R} onto \mathbb{R} which maps 0 to 0 and $\{a_1, a_2, a_3, \ldots\}$ onto $\{a_n | n \in S\}$ is clearly a homeomorphism from the space ($\mathbb{R}, \rho[\mathbb{N}]$) onto ($\mathbb{R}, \rho[S]$). So in order to conclude the proof it remains to define a family \mathcal{T} as desired.

For every free ultrafilter \mathcal{F} on \mathbb{N} put $\rho[\mathcal{F}] := \bigcup_{S \in \mathcal{F}} \rho[S]$. Clearly, $\tau_1 \subset \rho[\mathcal{F}] \subset \tau_2$. We claim that $\rho[\mathcal{F}]$ is a topology in the lattice \mathcal{L}_0 . Firstly, let $U_1, U_2 \in \rho[\mathcal{F}]$. Then $U_i \in \rho[S_i]$ for $S_i \in \mathcal{F}$. Since $S_1 \cap S_2$ is an infinite set in the ultrafilter \mathcal{F} and $\rho[S_1 \cap S_2]$ is a topology containing $\rho[S_1]$ and $\rho[S_2]$, the intersection $U_1 \cap U_2$ lies in $\rho[\mathcal{F}_1 \cap S_2]$ and hence in $\rho[\mathcal{F}]$. Since $U \in \rho[S]$ whenever $0 \notin U \in \eta$ and $S \in \mathcal{F}$, it is plain that the family $\rho[\mathcal{F}]$ is closed under arbitrary unions and furthermore that $\rho[\mathcal{F}] \in \mathcal{L}_0$. We also observe that for $U \in \eta \cap \mathcal{N}_\eta(0)$ we have $U \in \rho[\mathcal{F}]$ if and only if $U \supset B$ for some $B \in \mathcal{B}_2$ and $\{n \in \mathbb{N} | a_n \in U\} \in \mathcal{F}$. Let $\mathcal{F}_1, \mathcal{F}_2$ be free ultrafilters on \mathbb{N} and $S \in \mathcal{F}_1$ and assume $\rho[\mathcal{F}_1] \subset \rho[\mathcal{F}_2]$. The set $V := \mathbb{R} \setminus \{a_n | n \notin S\}$ is τ_2 -open and $\{n \in \mathbb{N} | a_n \in V\} = S$. Thus V is $\rho[\mathcal{F}_1]$ -open and hence $\rho[\mathcal{F}_2]$ -open and this implies $S \in \mathcal{F}_2$. So we derive $\mathcal{F}_1 \subset \mathcal{F}_2$ and hence $\mathcal{F}_1 = \mathcal{F}_2$. Thus the topologies $\rho[\mathcal{F}]$ are mutually incomparable and hence a family \mathcal{T} as desired exists provided that we always have $\rho[\mathcal{F}] \notin \mathcal{L}_0^*$.

Assume indirectly that $\rho[\mathcal{F}] \in \mathcal{L}_0^*$ for a free ultrafilter \mathcal{F} on \mathbb{N} . Then we can choose a countable filter base $\{B_1, B_2, B_3, \ldots\}$ of subsets of $\mathbb{R} \setminus [-1, 1]$ such that $B_n \supset B_{n+1}$ for every $n \in \mathbb{N}$ and $\eta \cap \mathcal{N}_{\rho[\mathcal{F}]}(0) = \{U \in \eta | \exists n \in \mathbb{N} : U \supset \{0\} \cup B_n\}$. Put $S_m := \{n \in \mathbb{N} | a_n \in B_m\}$ for every $m \in \mathbb{N}$. Trivially, $S_m \supset S_{m+1}$ for every $m \in \mathbb{N}$. Let S be any set in the ultrafilter \mathcal{F} . Then the set $\mathbb{R} \setminus \{a_n | n \notin S\}$ is $\rho[\mathcal{F}]$ -open and hence it contains B_m for some $m \in \mathbb{N}$. So for some $m \in \mathbb{N}$ we have $B_m \cap \{a_n | n \notin S\} = \emptyset$ and hence $S_m \subset S$. Therefore, $\{S_m | m \in \mathbb{N}\}$ is a filter base for the filter \mathcal{F} . But this is impossible because a filter base for a free ultrafilter on \mathbb{N} must be uncountable (cf. [1] 7.8.a). This concludes the proof of Theorem 8.

REMARK. For achieving $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_0^*$, the additional assumption $\tau_2 \in \mathcal{L}_0^*$ is essential in view of the following counterexample (τ_1, τ_2) . Consider the topologies $\tau_1 := \tau(\{0\})$ and $\tau'_1 := \tau(]0, \frac{1}{2}[)$ in the Boolean algebra $\mathcal{D} \subset \mathcal{L}_0^*$. Let τ_2 be the supremum of $\{\tau_1, \tau'_1\}$ in the lattice \mathcal{L}_0 . We observe that if $\tau_1 \neq \tau \in \mathcal{L}_0$ and $\tau_1 \subset \tau \subset \tau_2$ then $\tau \notin \mathcal{L}_0^*$. (Because for every $k \in \mathbb{N}$ and every sequence (u_n) with $0 < u_n \leq \frac{1}{2}$ the set $]-1, 1[\cup \bigcup_{n=k}^{\infty}]n, n + u_n[$ lies in $\tau \setminus \tau_1$.) In particular, $\tau_2 \notin \mathcal{L}_0^*$. Furthermore, this counterexample demonstrates that neither \mathcal{D} nor \mathcal{L}_0^* is a sublattice of \mathcal{L}_0 . The minimum $\theta = \bigcap \mathcal{L}_0$ of the complete lattice \mathcal{L}_0 lies in \mathcal{L}_0^* . Thus by Theorem 8 and since it is clear that $\mathcal{L}_0 = \{\tau \in \mathcal{L} | \tau \supset \theta\}$, the topology θ has no immediate successor in the lattice \mathcal{L}_0 or in the partially ordered set (\mathcal{L}, \subset) . On the other hand, the following proposition shows that the maximum $\eta = \bigcup \mathcal{L}_0$ of the lattice \mathcal{L}_0 has 2^c immediate predecessors in the lattice \mathcal{L}_0 which are also immediate predecessors of η in the partially ordered family (\mathcal{L}, \subset) .

PROPOSITION 8. There exist 2^c (mutually non-homeomorphic) topologies $\vartheta \in \mathcal{L}_0$ such that no topology from \mathcal{L} lies strictly between ϑ and η .

Proof. For a free ultrafilter \mathcal{F} on \mathbb{Z} let $\tau[\mathcal{F}]$ denote the topology as defined in the proof of Theorem 1. If $\mathcal{K} \subset \mathcal{L}_0 \setminus \{\eta\}$ is a chain with $\tau[\mathcal{F}] \in \mathcal{K}$ then $\eta \neq \bigcup \mathcal{K} \in \mathcal{L}_0$ by Proposition 6. Therefore, by applying Zorn's lemma, for every free ultrafilter \mathcal{F} on \mathbb{Z} we can choose a maximal element $\vartheta[\mathcal{F}]$ in the partially ordered set $(\mathcal{L}_0 \setminus \{\eta\}, \subset)$ such that $\tau[\mathcal{F}] \subset \vartheta[\mathcal{F}]$. For distinct free ultrafilters $\mathcal{F}_1, \mathcal{F}_2$ we have $\vartheta[\mathcal{F}_1] \neq \vartheta[\mathcal{F}_2]$ because $\tau[\mathcal{F}_1] \neq \tau[\mathcal{F}_2]$ and η is the supremum of $\{\tau[\mathcal{F}_1], \tau[\mathcal{F}_2]\}$ in the lattice \mathcal{L}_0 in view of Proposition 1 since there are sets $U_i \in \tau[\mathcal{F}_i]$ with $U_1 \cap U_2 =]-1, 1[$. (For example, choose $S_1 \in \mathcal{F}_1 \setminus \mathcal{F}_2$ and with $S_2 := \mathbb{Z} \setminus S_1$ put $U_i =]-1, 1[\cup \bigcup_{n \in S_i}]n - \frac{1}{2}, n + \frac{1}{2}[$ for $i \in \{1, 2\}$.) Finally, if $\eta \neq \tau \in \mathcal{L}$ and $\tau \supset \vartheta[\mathcal{F}]$ then $\tau = \vartheta[\mathcal{F}]$ since $\mathcal{L}_0 = \{\tau \in \mathcal{L} | \tau \supset \theta\}$ and $\vartheta[\mathcal{F}]$ is maximal in $\mathcal{L}_0 \setminus \{\eta\}$.

REMARK. By virtue of Theorem 8 every immediate predecessor of η in \mathcal{L}_0 must lie in $\mathcal{L}_0 \setminus \mathcal{L}_0^*$. This observation has two consequences in view of Proposition 8. Firstly we can be sure that $|\mathcal{L}_0 \setminus \mathcal{L}_0^*| = |\mathcal{L}_0^*| = 2^c$. Secondly, the central assumption $\tau_1 \in \mathcal{L}_0^*$ in Theorem 8 cannot be replaced with the weaker assumption $\tau_1 \in \mathcal{L}_0$.

13. Extremely long chains of topologies

Since both the existence of free ultrafilters and the existence of the topologies $\vartheta[\mathcal{F}]$ in the proof of Proposition 8 are based on a maximality principle equivalent with the Axiom of Choice, one might ask whether in the proof of Proposition 8 the topology $\tau[\mathcal{F}]$ is maximal in $\mathcal{L}_0 \setminus \{\eta\}$ already, whence $\vartheta[\mathcal{F}] = \tau[\mathcal{F}]$. This would be far from being true in view of the following theorem which affirmatively answers the interesting question whether the lattice \mathcal{L}_0 contains chains of size greater than c. Define $\lambda := \log(c^+)$, i.e. λ is the smallest cardinal number κ satisfying $2^{\kappa} > c$, whence $\aleph_1 \leq \lambda \leq c$ and $2^{\lambda} > c$.

THEOREM 9. For every free ultrafilter \mathcal{F} on \mathbb{Z} there is a chain $\mathcal{K} \subset \mathcal{L}_0$ such that $|\mathcal{K}| = 2^{\lambda}$ and $\tau \supset \tau[\mathcal{F}]$ for every $\tau \in \mathcal{K}$.

Proof. For $n \in \mathbb{N}$ define a strictly increasing real function φ_n by $\varphi_n(x) = 3^{-n}(x+1)$, whence φ_n maps [0,1] onto $[3^{-n}, 2 \cdot 3^{-n}]$. For every set $A \subset [0,1]$ define

$$\Phi(A) := \{0\} \cup \bigcup_{k \in \mathbb{Z}} \left(k + \bigcup_{n=1}^{\infty} \varphi_n(A)\right).$$

Let \mathcal{F} be a free ultrafilter \mathcal{F} on \mathbb{Z} . For $A \subset [0,1]$ let $\tau[\mathcal{F}, A]$ denote the coarsest topology in the lattice \mathcal{L}_0 which is finer than $\tau[\mathcal{F}]$ and contains all Euclidean open

sets $U \supset \Phi(A)$. (In particular, $\tau[\mathcal{F}, \emptyset] = \eta$.) Since $\tau[\mathcal{F}, A] \in \mathcal{L}_0$, it is plain that $W \in \eta$ is an open neighborhood of 0 in the space $(\mathbb{R}, \tau[\mathcal{F}, A])$ if and only if $W = U \cap V$ for some $U, V \in \eta$ with $U \supset \Phi(A)$ and $0 \in V$ and $V \cap \mathbb{Z} \in \mathcal{F}$.

Obviously, $\tau[\mathcal{F}, B] \subset \tau[\mathcal{F}, A]$ if $\emptyset \neq A \subset B \subset [0, 1]$. Moreover, $\tau[\mathcal{F}, B]$ is strictly coarser than $\tau[\mathcal{F}, A]$ if $\emptyset \neq A \subset B \subset [0, 1]$ and $A \neq B$. Because if $b \in B \setminus A$ then the Euclidean open set $Y :=]-1, 1[\cup(\mathbb{R} \setminus (\mathbb{Z} \cup \Phi(\{b\})))$ is $\tau[\mathcal{F}, A]$ -open since $Y \supset \Phi(A)$. But Y is not $\tau[\mathcal{F}, B]$ -open because if $k \in \mathbb{Z}$ and $|k| \ge 2$ and $\varepsilon > 0$ then Y does not contain $]k, k + \varepsilon[\cap \Phi(B).$

Therefore, $\mathcal{K} = \{\tau[\mathcal{F}, A] | A \in \mathcal{A}\}$ is a chain as desired if \mathcal{A} is a chain of subsets of [0, 1] with $|\mathcal{A}| = 2^{\lambda}$.

Such a chain \mathcal{A} can easily be defined as follows. Choose a linearly ordered set (L, \preceq) such that $|L| = 2^{\lambda}$ and L has a dense subset D with |D| = c. (This choice is possible in view of [1] Theorems 5.7.c and 5.8.b.) Define a bijection g from D onto [0, 1] and put $A_x := \{g(y) | x \prec y \in D\}$ for every $x \in L$. Finally define $\mathcal{A} := \{A_x | x \in L\}$.

REMARK. One does not need Theorem 9 to track down chains in \mathcal{L}_0 of size 2^{λ} , it is enough to define \mathcal{A} as above and to take into consideration that our Boolean algebra $\mathcal{D} \subset \mathcal{L}_0^*$ is isomorphic with the power set of [0, 1]. The lattice \mathcal{L}_0 contains chains of the maximal possible size 2^c provided that $2^{\lambda} = 2^c$. Of course, $2^{\lambda} = 2^c$ trivially follows from the irrefutable hypothesis $\lambda = c$. (Conversely, $2^{\lambda} = 2^c$ does not imply $\lambda = c$.) The hypothesis $\lambda = c$ is irrefutable because $\lambda = c$ is obviously a consequence of the Continuum Hypothesis $\aleph_1 = c$. However, the hypothesis $\lambda = c$ is much weaker than the very restrictive hypothesis $\aleph_1 = c$ because it is consistent with ZFC set theory that $\lambda = c$ and $\aleph_1 < \mu < c$ for infinitely many cardinal numbers μ . Even more, roughly speaking, $\lambda = c$ cannot prevent an arbitrarily large deviation of c from \aleph_1 . (Precisely, in view of [3] 16.13 and 16.20, if $\kappa > \aleph_1$ is an arbitrary regular cardinal in Gödel's Universe L then there is a generic extension \mathbb{E}_{κ} of L preserving all cardinals such that $\lambda = c = \kappa$ holds in the ZFC-model \mathbb{E}_{κ} .)

REFERENCES

- [1] W.W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer 1974.
- [2] R. Engelking, General Topology, revised and completed edition. Heldermann 1989.
- [3] T. Jech, Set Theory, 3rd ed. Springer 2002.
- [4] G. Kuba, Counting metric spaces, Arch. Math. 97 (2011), 569–578.
- [5] G. Kuba, On certain separable and connected refinements of the Euclidean topology. Mat. Vesnik 64 (2012) (2), 125–137.
- [6] G. Kuba, On the variety of Euclidean point sets, Internat. Math. News 228 (2015), 23–32.
- [7] A. Lelek and L.F. McAuley, On hereditarily locally connected spaces and one-to-one continuous images of a line, Coll. Math. 17 (1967), 319–324.

(received 14.04.2015; in revised form 19.01.2016; available online 01.03.2016)

Institute of Mathematics, University of Natural Resources and Life Sciences, Vienna, Austria. *E-mail*: gerald.kuba@boku.ac.at