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AN ENGEL CONDITION OF GENERALIZED DERIVATIONS
WITH ANNIHILATOR ON LIE IDEAL IN PRIME RINGS

Basudeb Dhara, Sukhendu Kar and Krishna Gopal Pradhan

Abstract. Let R be a prime ring with its Utumi ring of quotients U , C = Z(U) extended
centroid of R, F a nonzero generalized derivation of R, L a noncentral Lie ideal of R and k ≥ 2
a fixed integer. Suppose that there exists 0 6= a ∈ R such that a[F (un1 ), un2 , . . . , unk ] = 0 for
all u ∈ L, where n1, n2, . . . , nk ≥ 1 are fixed integers. Then either there exists λ ∈ C such that
F (x) = λx for all x ∈ R, or R satisfies s4, the standard identity in four variables.

1. Introduction

Let R be an associative ring. For x, y ∈ R, the commutator of x, y is de-
noted by [x, y] and defined by [x, y] = xy − yx. A Lie ideal L of R is an ad-
ditive subgroup of R such that [L,R] ⊆ L. The Engel type identity is defined
by [x, y]k = [[x, y]k−1, y] for all x, y ∈ R, where k ≥ 2 is an integer. We denote
[x1, x2, . . . , xn] = [[x1, x2, . . . , xn−1], xn] for all x1, x2, . . . , xn ∈ R, for every posi-
tive integer n ≥ 2. The standard polynomial identity s4 in four variables is defined
as s4(x1, x2, x3, x4) =

∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4) where (−1)σ is +1 or −1
according to σ being an even or odd permutation in symmetric group S4.

Throughout this paper, unless specifically stated, R will always represent a
prime ring with center Z(R), extended centroid C and U is its Utumi quotient
ring. For the properties of U and C, we refer the reader to [1]. By d we mean a
derivation of R.

A well known result proved by Posner [14] states that if the commutator
[d(x), x] ∈ Z(R) for all x ∈ R, then either d = 0 or R is commutative. The
result of Posner was generalized in many directions by a number of authors.

Lanski generalized the Posner’s theorem by considering Engel condition in [9].
He proved that if L is a noncommutative Lie ideal of R such that [d(x), x]k = 0 for
all x ∈ L, where k ≥ 1 is a fixed integer, then char (R) = 2 and R ⊆ M2(K) for a
field K.
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Later in [8], Lanski studied the more general situation [d(xt0), xt1 , . . . , xtn ] = 0
for all x ∈ I, where I is a nonzero left ideal of semiprime ring R and t0, . . . , tn ≥ 1
are fixed integers. In particular, Lanski proved that if R is prime ring and d is
nonzero, then R must be commutative.

In [5], Dhara et al. generalized the Lanski’s result [8] replacing derivation by a
generalized derivation. An additive map F : R → R is called generalized derivation,
if there exists a derivation d of R such that F (xy) = F (x)y +xd(y) for all x, y ∈ R.
A significant example is a map of the form F (x) = ax + xb, for some a, b ∈ R;
such generalized derivations are called inner. In [5], Dhara et al. proved that if
[F (un1), un2 , . . . , unk ] = 0 holds for all u ∈ L, where L is a noncentral Lie ideal
of R, and k ≥ 2, n1, . . . , nk ≥ 1 are fixed integers, then there exists α ∈ C such
that F (x) = αx for all x ∈ R, unless R satisfies s4, the standard identity in four
variables.

In [17], Shiue studied the left annihilator of the set {[d(u), u]k = 0, u ∈ L},
where L is a noncentral Lie ideal of R, d 6= 0 and k ≥ 1. In case the annihilator is
not zero, the conclusion is that R satisfies s4 and char(R) = 2. Moreover, Shiue [18]
obtained the same conclusion in case the left annihilator of the set {[d(un), un]k =
0, u ∈ L} is nonzero, where L is a noncentral Lie ideal of R, d 6= 0 and k ≥ 1, n ≥ 1.
Recently, in [15] Scudo proved that if for some 0 6= a ∈ R, a[F (x), x]k ∈ Z(R) for
all x ∈ L, where L is a noncentral Lie ideal, F a generalized derivation of R and
k ≥ 1 fixed integer, then one of the following holds: (1) there exists λ ∈ C such
that F (x) = λx for all x ∈ R; (2) char (R) = 2 and R satisfies s4; (3) R satisfies s4

and there exist q ∈ U and γ ∈ C such that F (x) = qx + xq + γx for all x ∈ R.
Following this line of investigation, in this paper we prove the following theo-

rems.

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U ,
C = Z(U) extended centroid of R, F a nonzero generalized derivation of R, L a
noncentral Lie ideal of R and k ≥ 2 a fixed integer. Suppose that there exists 0 6=
a ∈ R such that a[F (un1), un2 , . . . , unk ] = 0 for all u ∈ L, where n1, n2, . . . , nk ≥ 1
are fixed integers. Then either there exists λ ∈ C such that F (x) = λx for all
x ∈ R, or R satisfies s4, the standard identity in four variables.

Theorem 1.2. Let R be a prime ring of characteristic different from 2, with
its Utumi ring of quotient U , C the extended centroid of R, F a nonzero generalized
derivation of R and k ≥ 2 a fixed integer. Suppose that there exists 0 6= a ∈ R
such that a[F (xn1), xn2 , xn3 , . . . , xnk ] = 0 for all x ∈ R, where n1, n2, . . . , nk ≥ 1
are fixed integers. Then there exists λ ∈ C such that F (x) = λx for all x ∈ R.

In [16], Shiue studied the situation [d(um)un − upδ(uq), ur]k = 0 for all u ∈ L,
where m,n, p, q, k are fixed positive integers and d, δ two derivations of R and
obtained that either R satisfies s4 or d = δ = 0. Our next theorem investigate the
situation with left annihilator condition.

Theorem 1.2. Let R be a prime ring with its Utumi ring of quotients U ,
C = Z(U) extended centroid of R, d and δ two nonzero derivations of R and
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L a noncentral Lie ideal of R. Suppose that there exists 0 6= a ∈ R such that
a[d(un1)un2 − un3δ(un4), un5 , . . . , unk ] = 0 for all u ∈ L, where k ≥ 5 and
n1, n2, . . . , nk ≥ 1 are fixed integers. Then either d = δ = 0, or R satisfies s4,
the standard identity in four variables.

We need the following remarks:
Remark 1. Let R be a prime ring and L a noncentral Lie ideal of R. If

char (R) 6= 2, by [2, Lemma 1] there exists a nonzero ideal I of R such that
0 6= [I,R] ⊆ L. If char (R) = 2 and dimCRC > 4 i.e., char (R) = 2 and R does not
satisfy s4, then by [10, Theorem 13] there exists a nonzero ideal I of R such that
0 6= [I, R] ⊆ L. Thus if either char (R) 6= 2 or R does not satisfy s4, then we may
conclude that there exists a nonzero ideal I of R such that [I, I] ⊆ L.

Remark 2. Let R be a prime ring and U be the Utumi quotient ring of R
and C = Z(U), the center of U (see [1] for more details). It is well known that any
derivation of R can be uniquely extended to a derivation of U . In [11, Theorem
3], Lee proved that every generalized derivation g on a dense right ideal of R can
be uniquely extended to a generalized derivation of U . Furthermore, the extended
generalized derivation g has the form g(x) = ax + d(x) for all x ∈ U , where a ∈ U
and d is a derivation of U .

Remark 3. Let R be a prime ring and U be its Utumi quotient ring and
C = Z(U). Let X = {x1, . . . , xn, . . . }, the countable set consisting of the non-
commuting indeterminates x1, . . . , xn, . . . . Consider T = U ∗C C{X}, the free
product over C of the C-algebra U and the free C-algebra C{X}.

The elements of T are called the generalized polynomials with coefficients in
U . By a nontrivial generalized polynomial, we mean a nonzero element of T . An
element m ∈ T of the form m = q0y1q1y2q2 . . . ynqn, where {q0, q1, . . . , qn} ⊆ U and
{y1, y2, . . . , yn} ⊆ X, is called a monomial. q0, q1, . . . , qn are called the coefficients
of m. Each f ∈ T can be represented as a finite sum of monomials.

Note that if I is a non-zero ideal of R, then I, R and U satisfy the same
generalized polynomial identities with coefficients in U . For more details about
these objects we refer the reader to [1] and [3].

2. Main Results

We begin with two lemmas.

Lemma 2.1. Let R be a prime ring with extended centroid C and a, b, c ∈ R.
If a 6= 0 such that

a
[
[b, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [c, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk

]
= 0

for all x1, x2 ∈ R, where n1, n2, . . . , nk ≥ 1 are fixed integers, then either R satisfies
a nontrivial generalized polynomial identity (GPI) or b, c ∈ C.

Proof. Assume that R does not satisfy any nontrivial GPI. Let T = U ∗C

C{x1, x2}, the free product of U and C{x1, x2}, the free C-algebra in noncom-
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muting indeterminates x1 and x2. If R is commutative, then R satisfies trivially a
nontrivial GPI, a contradiction. So, R must be noncommutative.

Then,

a
[
[b, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [c, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk

]
= 0 ∈ T.

(1)
If c /∈ C, then c and 1 are linearly independent over C. Thus, (1) implies

a[x1, x2]n3+n4+···+nkc = 0

in T implying c = 0, since a 6= 0, a contradiction. Therefore, we conclude that
c ∈ C and hence (1) reduces to

a
[
[b, [x1, x2]n1 ][x1, x2]n2 , [x1, x2]n5 , . . . , [x1, x2]nk

]
= 0 (2)

in T . If b /∈ C, then (2) implies

a[x1, x2]n1+n5+n6+···+nkb[x1, x2]n2 = 0

in T again implying b = 0, a contradiction. Therefore, b ∈ C.

Lemma 2.2. Let R be a noncommutative prime ring with extended centroid C
and b, c ∈ R. Suppose that there exists 0 6= a ∈ R such that

a
[
[b, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [c, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk

]
= 0

for all x1, x2 ∈ R, where n1, n2, . . . , nk ≥ 1 are all fixed integers. Then either
b, c ∈ C, or R satisfies s4.

Proof. Suppose that R does not satisfy s4. We have that R satisfies generalized
polynomial identity

f(x1, x2) =

a
[
[b, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [c, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk

]
. (3)

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain b, c ∈ C and
we are done. So, we assume that R satisfies a nontrivial GPI. Since R and U
satisfy the same generalized polynomial identities (see [3]), U satisfies f(x1, x2). In
case C is infinite, we have f(x1, x2) = 0 for all x1, x2 ∈ U ⊗C C, where C is the
algebraic closure of C. Moreover, both U and U⊗C C are prime and centrally closed
algebras [4]. Hence, replacing R by U or U ⊗C C according to C finite or infinite,
without loss of generality we may assume that C = Z(R) and R is C-algebra
centrally closed. By Martindale’s theorem [13], R is then a primitive ring having
nonzero socle soc(R) with C as the associated division ring. Hence, by Jacobson’s
theorem [6, p. 75], R is isomorphic to a dense ring of linear transformations of a
vector space V over C.

If dimCV = 2, then R ∼= M2(C). This implies that R satisfies s4, a contradic-
tion. So let dimCV ≥ 3.
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We show that for any v ∈ V , v and cv are linearly C-dependent. Suppose that
v and cv are linearly independent for some v ∈ V . Since dimCV ≥ 3, there exists
u ∈ V such that v, cv, u are linearly C-independent set of vectors. By density, there
exist x1, x2 ∈ R such that

x1v = v, x1cv = 0, x1u = cv; x2v = 0, x2cv = u, x2u = 0.

Then

0 = a
[
[b, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [c, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk

]
v

= acv.

This implies that if acv 6= 0, then by contradiction we may conclude that v and
cv are linearly C-dependent. Now choose v ∈ V such that v and cv are linearly
C-independent. Set W = SpanC{v, cv}. Then acv = 0. Let ac 6= 0. Then, there
exists w ∈ V such that acw 6= 0 and then ac(v − w) = acw 6= 0. By the previous
argument we have that w, cw are linearly C-dependent and (v − w), c(v − w) too.
Thus there exist α, β ∈ C such that cw = αw and c(v − w) = β(v − w). Then
cv = β(v − w) + cw = β(v − w) + αw i.e., (α − β)w = cv − βv ∈ W . Now α = β
implies that cv = βv, a contradiction. Hence α 6= β and so w ∈ W . Again, if
u ∈ V with acu = 0 then ac(w + u) 6= 0. So, w + u ∈ W forcing u ∈ W . Thus it is
observed that w ∈ V with acw 6= 0 implies w ∈ W and u ∈ V with acu = 0 implies
u ∈ W . This implies that V = W i.e., dimCV = 2, a contradiction.

Hence, v and cv are linearly C-dependent for all v ∈ V , unless ac = 0. Thus
for each v ∈ V , cv = αvv for some αv ∈ C. It is very easy to prove that αv is
independent of the choice of v ∈ V . Thus we can write cv = αv for all v ∈ V and
α ∈ C fixed. Now let r ∈ R, v ∈ V . Since cv = αv,

[c, r]v = (cr)v − (rc)v = c(rv)− r(cv) = α(rv)− r(αv) = 0.

Thus [c, r]v = 0 for all v ∈ V i.e., [c, r]V = 0. Since [c, r] acts faithfully as a linear
transformation on the vector space V , [c, r] = 0 for all r ∈ R. Therefore, c ∈ Z(R),
unless ac = 0. Now let ac = 0. Since dimCV ≥ 3, there exists w ∈ V such that
v, cv, w are linearly C-independent set of vectors. By density, there exist x1, x2 ∈ R
such that

x1v = v, x1cv = 0, x1w = v + cv; x2v = 0, x2cv = w, x2w = 0.

Then

0 = a
[
[b, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [c, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk

]
v

= av.

Then by the above argument, since a 6= 0, c ∈ C.
Now our hypothesis (3) becomes

a
[
[b, [x1, x2]n1 ][x1, x2]n2 , [x1, x2]n5 , . . . , [x1, x2]nk

]
= 0

for all x1, x2 ∈ R. Let for any v ∈ V , v and bv are linearly C-independent. Since
dimCV ≥ 3, there exists w ∈ V such that v, bv, w are linearly C-independent set of
vectors. By density, there exist x1, x2 ∈ R such that

x1v = 0, x1bv = v, x1w = bv; x2v = bv, x2bv = w, x2w = 0,
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which implies 0 = a
[
[b, [x1, x2]n1 ][x1, x2]n2 , [x1, x2]n5 , . . . , [x1, x2]nk

]
v = abv. By

the same argument as earlier we have either b ∈ C or ab = 0.
Let ab = 0. Again by density, there exist x1, x2 ∈ R such that

x1v = 0, x1bv = v, x1w = v + bv; x2v = bv, x2bv = w, x2w = 0.

Then [x1, x2]v = (x1x2 − x2x1)v = v, [x1, x2]bv = (x1x2 − x2x1)bv = v and hence

0 = a
[
[b, [x1, x2]n1 ][x1, x2]n2 , [x1, x2]n5 , . . . , [x1, x2]nk

]
v = −av.

Again, by the same argument as earlier we conclude either b ∈ C or a = 0. Since
a 6= 0, b ∈ C.

Proof of Theorem 1.1. Suppose that R does not satisfy s4. Since L is a
noncentral Lie ideal of R, by Remark 1, there exists a nonzero ideal I of R such
that [I, I] ⊆ L. Hence, by our assumption, we have,

a[F ([x1, x2]n1), [x1, x2]n2 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ I. Since I, R and U satisfy the same generalized polynomial
identities (see [3]) as well as the same differential identities (see [12]), they also
satisfy the same generalized differential identities. Hence,

a[F ([x1, x2]n1), [x1, x2]n2 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ U . By Remark 2, there exist b ∈ U and a derivation d of U such
that F (x) = bx + d(x) for all x ∈ U . Hence, U satisfies

a[b[x1, x2]n1 + d([x1, x2]n1), [x1, x2]n2 , . . . , [x1, x2]nk ] = 0. (4)

Now we divide the proof into two cases:
Case I: Let for some p ∈ U , d(x) = [p, x] for all x ∈ U that is, d is an inner

derivation of U . Then from (4), we obtain that U satisfies

a[(b + p)[x1, x2]n1 − [x1, x2]n1p, [x1, x2]n2 , . . . , [x1, x2]nk ] = 0

that is

a[[(b+p), [x1, x2]n2 ][x1, x2]n1− [x1, x2]n1 [p, [x1, x2]n2 ], [x1, x2]n3 , . . . , [x1, x2]nk ] = 0.

By Lemma 2.2, since R and so U does not satisfy s4, we have b + p, p ∈ C. This
implies F (x) = bx for all x ∈ U and so for all x ∈ R, where b ∈ C. Thus the
conclusion is obtained.

Case II: Next assume that d is not inner derivation of U . Then by Kharchen-
ko’s theorem [7], we have from (4) that U satisfies

a[b[x1, x2]n1+
n1−1∑
i=0

[x1, x2]i([y1, x2] + [x1, y2])[x1, x2]n1−1−i, [x1, x2]n2 , . . . , [x1, x2]nk ] = 0. (5)

Since R and so U is noncommutative, there exists some q ∈ U such that q /∈ C.
Now replacing y1 with [q, x1] and y2 with [q, x2] in (5), where q /∈ C, we can write
that U satisfies

a[(b + q)[x1, x2]n1 − [x1, x2]n1q, [x1, x2]n2 , . . . , [x1, x2]nk ] = 0.
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Then by same argument as earlier of inner derivation case, we have q ∈ C, a
contradiction. Thus the proof of theorem is complete.

Proof of Theorem 1.2. By Theorem 1.1, we consider only the case when R
satisfies s4. In this case R is a PI-ring, and so there exists a field K such that R ⊆
M2(K) and both R and M2(K) satisfy the same GPI. Let F be inner generalized
derivation on R. Then F (x) = bx + xc for all x ∈ R. So our hypothesis becomes

a[bxn1 + xn1c, xn2 , xn3 , . . . , xnk ] = 0.

Here R is a dense ring of K-linear transformations over a vector space V . Our
first aim is to show that for any v ∈ V , cv and v are linearly K-dependent. If not,
Assume there exists v 6= 0, such that {v, cv} is linearly K-independent. By the
density of R, there exists x ∈ R such that xv = 0 and xcv = cv. So we have

0 = a[bxn1 + xn1c, xn2 , xn3 , . . . , xnk ]v = acv.

Of course for any u ∈ V , {u, v} linearly K-dependent implies acu = 0. Let ac 6=
0. Then there exists w ∈ V such that acw 6= 0 and so {w, v} are linearly K-
independent. Also ac(w + v) = acw 6= 0 and ac(w − v) = acw 6= 0. By the above
argument, it follows that w and cw are linearly K-dependent, as are {w+v, c(w+v)}
and {w − v, c(w − v)}. Therefore, there exist αw, αw+v, αw−v ∈ K such that

cw = αww, c(w + v) = αw+v(w + v), c(w − v) = αw−v(w − v).

In other words, we have

αww + cv = αw+vw + αw+vv (6)

and
αww − cv = αw−vw − αw−vv. (7)

By comparing (6) with (7) we get both

(2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0 (8)

and
2cv = (αw+v − αw−v)w + (αw+v + αw−v)v. (9)

By (8), and since {w, v} are K-independent and char(K) 6= 2, we have αw =
αw+v = αw−v. Thus by (9) it follows 2cv = 2αwv. This leads to a contradiction
with the fact that {v, cv} is linear K-independent. Therefore, v and cv are linearly
K-dependent for all v ∈ V , unless ac = 0.

Now let ac = 0. By the density of R, there exists x ∈ R such that xv = 0 and
xcv = v + cv. Then we have 0 = a[bxn1 + xn1c, xn2 , xn3 , . . . , xnk ]v = av. By the
same argument as above, since a 6= 0, v and cv are linearly K-dependent for all
v ∈ V . Thus in any case we have v and cv are linearly K-dependent for all v ∈ V .
Then for each v ∈ V , cv = αvv for some αv ∈ K. It is very easy to prove that αv

is independent of the choice of v ∈ V . Thus we can write cv = αv for all v ∈ V ,
where α ∈ K is fixed. Now let r ∈ R, v ∈ V . Since cv = αv,

[c, r]v = (cr)v − (rc)v = c(rv)− r(cv) = α(rv)− r(αv) = 0.
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Thus [c, R]V = 0. Since [c,R] acts faithfully as a linear transformation on the
vector space V , [c,R] = 0. Therefore, c ∈ Z(R).

Therefore our identity reduces to

a[b, xn2 , xn3 , . . . , xnk ]xn1 = 0 (10)

for all x ∈ R. Let us assume that there exists 0 6= v ∈ V such that bv and v
are linearly K-independent. By density of R there exists x ∈ R such that xv =
v, xbv = 0. Then we have 0 = a[b, xn2 , xn3 , . . . , xnk ]xn1 = abv. By the same
argument, either b ∈ Z(R) or ab = 0.

Now let ab = 0. In this case we put x = e11 in (10). Then we have
0 = a[b, e11, e11, . . . , e11]e11 = a[b, e11]e11 = ae11be11, since ab = 0. This im-
plies a21b11 = 0 = a11b11. Similarly, by putting x = e22 in (10), we get
a22b22 = 0 = a12b22. Moreover, ab = 0 implies

a11b11 + a12b21 = 0,

a11b12 + a12b22 = 0,

a21b11 + a22b21 = 0,

a21b12 + a22b22 = 0.

Using these facts we get from above that a12b21 = a11b12 = a22b21 = a21b12 = 0.
Now we assert that b is diagonal. If not, then at least one of non-diagonal elements
of b must be nonzero. Without loss of generality, let us assume that b12 6= 0.
Then a11 = a21 = 0. For any automorphism θ of R, θ(a) and θ(b) satisfy the same
property of a and b. Let θ(x) = (1+e21)x(1−e21). Denote by θ(a)ij the (i, j)-entry
of θ(a) and by θ(b)ij the (i, j)-entry of θ(b). Now θ(b)12 = b12 6= 0 implies that
θ(a)11 = θ(a)21 = 0, that is 0 = θ(a)11 = −a12 and 0 = θ(a)21 = −a12−a22 = −a22.
Thus a = 0, a contradiction. Therefore, b is a diagonal matrix.

Now since we have

θ(a)[θ(b), xn2 , xn3 , . . . , xnk ]xn1 = 0

with θ(a) 6= 0 and θ(a)θ(b) = θ(ab) = 0, θ(b) is also diagonal that is, 0 = θ(b)21 =
b11 − b22 implying b11 = b22. Therefore b ∈ Z(R). Moreover, in this case b = 0,
since if b 6= 0 then ab = 0 implies a = 0, which is a contradiction. Therefore,
F (x) = cx for all x ∈ R, where c ∈ C.

Next assume that F (x) = bx + d(x), where d is not inner derivation of R. In
this case our hypothesis reduces to

a[bxn1 + d(xn1), xn2 , xn3 , . . . , xnk ] = 0

that is

a[bxn1 +
n1−1∑
i=0

xid(x)xn1−i−1, xn2 , xn3 , . . . , xnk ] = 0

for all x ∈ R. By Kharchenko’s theorem [7], R satisfies

a[bxn1 +
n1−1∑
i=0

xiyxn1−i−1, xn2 , xn3 , . . . , xnk ] = 0.
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Now replacing y by [q, x], where q /∈ C, we have

a[bxn1 + [q, xn1 ], xn2 , xn3 , . . . , xnk ] = 0

that is
a[(b + q)xn1 − xn1q, xn2 , xn3 , . . . , xnk ] = 0

for all x ∈ R. Then by above arguments, q ∈ C, which is a contradiction.

Proof of Theorem 1.3. Suppose that R does not satisfy s4. Since L is a
noncentral Lie ideal of R, by Remark 1, there exists a nonzero ideal I of R such
that [I, I] ⊆ L. Hence, by our assumption, we have,

a[d([x1, x2]n1)[x1, x2]n2 − [x1, x2]n3δ([x1, x2]n4), [x1, x2]n5 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ I. Since I, R and U satisfy the same differential identities (see [12]),

a[d([x1, x2]n1)[x1, x2]n2 − [x1, x2]n3δ([x1, x2]n4), [x1, x2]n5 , . . . , [x1, x2]nk ] = 0 (11)

for all x1, x2 ∈ U .
Now we divide the proof into two following cases:
Case I: Let d(x) = [b, x] for all x ∈ U and δ(x) = [c, x] for all x ∈ U , are two

inner derivations of U , where b, c ∈ U . Then from (11), we have

a[[b, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [c, [x1, x2]n4)], [x1, x2]n5 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ U . By Lemma 2.2, we conclude that b, c ∈ C, implying d = δ = 0.
Case II: Let d and δ are not both inner derivations of U .
Sub-case i: Let d and δ be C-dependent modulo inner derivations of U . Then

there exist α, β ∈ C such that αd + βδ = adp, where adp(x) = [p, x] for all x ∈ U .
If α 6= 0, then d = λδ +adq, where λ = −βα−1 and q = pα−1. Then (11) gives

a[λδ([x1, x2]n1)[x1, x2]n2 + [q, [x1, x2]n1 ][x1, x2]n2

− [x1, x2]n3δ([x1, x2]n4), [x1, x2]n5 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ U . Applying Kharchenko’s theorem [7], we can write

a[λ(
n1−1∑
i=0

[x1, x2]i([y, x2] + [x1, z])[x1, x2]n1−i−1)[x1, x2]n2 + [q, [x1, x2]n1 ][x1, x2]n2

− [x1, x2]n3(
n4−1∑
i=0

[x1, x2]i([y, x2] + [x1, z])[x1, x2]n4−i−1), [x1, x2]n5 , . . . , [x1, x2]nk ]

= 0 (12)

for all x1, x2 ∈ U . Since L is noncentral, U must be noncommutative and hence
there exits q′ ∈ U such that q′ /∈ C. Now replacing y with [q′, x1] and z with [q′, x2]
in (12), we get

a[[λq′ + q, [x1, x2]n1 ][x1, x2]n2

− [x1, x2]n3 [q′, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ U . By Lemma 2.2, we get q′ ∈ C, a contradiction.
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If α = 0, then δ = adp′ , where p′ = pβ−1. Then (11) becomes

a[d([x1, x2]n1)[x1, x2]n2 − [x1, x2]n3 [p′, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ U . Since δ is inner, d can not be inner. Hence by Kharchenko’s
theorem [7], we can write

a[(
n1−1∑
i=0

[x1, x2]i([y, x2] + [x1, z])[x1, x2]n1−i−1)[x1, x2]n2

− [x1, x2]n3 [p′, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk ] = 0 (13)

for all x1, x2, y, z ∈ U . Now replacing y with [q′, x1] and z with [q′, x2] in (13), for
some q′ /∈ C, we get

a[[q′, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [p′, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ U . Then by Lemma 2.2, we get q′ ∈ C, a contradiction.
Sub-case ii: Let d and δ be C-independent modulo inner derivations of U .

Then applying Kharchenko’s theorem [7] to (11), we have

a[(
n1−1∑
i=0

[x1, x2]i([y, x2] + [x1, z])[x1, x2]n1−i−1)[x1, x2]n2

− [x1, x2]n3(
n4−1∑
i=0

[x1, x2]i([u, x2] + [x1, v])[x1, x2]n4−i−1), [x1, x2]n5 , . . . , [x1, x2]nk ]

= 0 (14)

for all x1, x2, y, z, u, v ∈ U . Then again replacing y and u with [q′, x1] and z and v
with [q′, x2] in (12), for some q′ /∈ C, (14) becomes

a[[q′, [x1, x2]n1 ][x1, x2]n2 − [x1, x2]n3 [q′, [x1, x2]n4 ], [x1, x2]n5 , . . . , [x1, x2]nk ] = 0

for all x1, x2 ∈ U . Then again by Lemma 2.2, we get q′ ∈ C, a contradiction.
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