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AN ENGEL CONDITION OF GENERALIZED DERIVATIONS
WITH ANNIHILATOR ON LIE IDEAL IN PRIME RINGS

Basudeb Dhara, Sukhendu Kar and Krishna Gopal Pradhan

Abstract. Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) extended
centroid of R, F' a nonzero generalized derivation of R, L a noncentral Lie ideal of R and k > 2
a fixed integer. Suppose that there exists 0 # a € R such that a[F(u™),u"2,... ,u™] = 0 for
all w € L, where ni,ng,... ,ng > 1 are fixed integers. Then either there exists A € C such that
F(z) = Az for all x € R, or R satisfies s4, the standard identity in four variables.

1. Introduction

Let R be an associative ring. For z,y € R, the commutator of z,y is de-
noted by [z,y] and defined by [z,y] = zy — yz. A Lie ideal L of R is an ad-
ditive subgroup of R such that [L,R] C L. The Engel type identity is defined
by [z,y]r = [[*,y]k—1,y] for all ,y € R, where k > 2 is an integer. We denote
[x1,2Z2,...,2,] = [[x1,22, ..., Tn-1], @] for all x1,29,...,2, € R, for every posi-
tive integer n > 2. The standard polynomial identity s4 in four variables is defined
as s4(21,22,73,74) = Y cq, (=1)7To(1)T0(2) T (3)To(a) Where (=1)7 is +1 or —1
according to o being an even or odd permutation in symmetric group Sy.

Throughout this paper, unless specifically stated, R will always represent a
prime ring with center Z(R), extended centroid C and U is its Utumi quotient
ring. For the properties of U and C, we refer the reader to [1]. By d we mean a
derivation of R.

A well known result proved by Posner [14] states that if the commutator
[d(z),z] € Z(R) for all x € R, then either d = 0 or R is commutative. The
result of Posner was generalized in many directions by a number of authors.

Lanski generalized the Posner’s theorem by considering Engel condition in [9].
He proved that if L is a noncommutative Lie ideal of R such that [d(z), z]; = 0 for
all z € L, where k > 1 is a fixed integer, then char (R) = 2 and R C My (K) for a
field K.
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Later in [8], Lanski studied the more general situation [d(z0),z',... z!"] =0
for all x € I, where I is a nonzero left ideal of semiprime ring R and tg,...,t, > 1
are fixed integers. In particular, Lanski proved that if R is prime ring and d is
nonzero, then R must be commutative.

In [5], Dhara et al. generalized the Lanski’s result [8] replacing derivation by a
generalized derivation. An additive map F': R — R is called generalized derivation,
if there exists a derivation d of R such that F(zy) = F(z)y +xd(y) for all z,y € R.
A significant example is a map of the form F(z) = ax + zb, for some a,b € R;
such generalized derivations are called inner. In [5], Dhara et al. proved that if
[F(u™),u™,...,u™] = 0 holds for all w € L, where L is a noncentral Lie ideal
of R, and k > 2, ny,...,n, > 1 are fixed integers, then there exists a € C such
that F'(z) = ax for all x € R, unless R satisfies s4, the standard identity in four
variables.

n [17], Shiue studied the left annihilator of the set {[d(u),u]x = 0,u € L},
where L is a noncentral Lie ideal of R, d # 0 and k > 1. In case the annihilator is
not zero, the conclusion is that R satisfies s4 and char(R) = 2. Moreover, Shiue [18]
obtained the same conclusion in case the left annihilator of the set {[d(u™), u"]x =
0,u € L} is nonzero, where L is a noncentral Lie ideal of R, d #0and k > 1, n > 1.
Recently, in [15] Scudo proved that if for some 0 # a € R, a[F(z),z]|; € Z(R) for
all z € L, where L is a noncentral Lie ideal, F' a generalized derivation of R and
k > 1 fixed integer, then one of the following holds: (1) there exists A € C such
that F'(z) = Az for all x € R; (2) char (R) = 2 and R satisfies s4; (3) R satisfies s4
and there exist ¢ € U and v € C such that F(z) = gz + xq + vz for all x € R.

Following this line of investigation, in this paper we prove the following theo-
rems.

THEOREM 1.1. Let R be a prime ring with its Utumi ring of quotients U,
C = Z(U) extended centroid of R, F a nonzero generalized derivation of R, L a
noncentral Lie ideal of R and k > 2 a fized integer. Suppose that there exists 0 #
a € R such that a[F(u™),u™, ..., u™] =0 for all u € L, where ny,na,...,n; > 1
are fized integers. Then either there exists X € C such that F(x) = Az for all
x € R, or R satisfies s4, the standard identity in four variables.

THEOREM 1.2. Let R be a prime ring of characteristic different from 2, with
its Utumi ring of quotient U, C' the extended centroid of R, F a nonzero generalized
derivation of R and k > 2 a fized integer. Suppose that there exists 0 # a € R
such that a[F(z™),z™ a™, ... 2™] =0 for all x € R, where ny,ng,...,nx > 1
are fized integers. Then there exists A € C' such that F(z) = Az for all x € R.

In [16], Shiue studied the situation [d(u™)u"™ — uPé(u?),u"], = 0 for all u € L,
where m,n,p,q, k are fixed positive integers and d, § two derivations of R and
obtained that either R satisfies s4 or d = § = 0. Our next theorem investigate the
situation with left annihilator condition.

THEOREM 1.2. Let R be a prime ring with its Utumi ring of quotients U,
C = Z(U) extended centroid of R, d and § two nonzero derivations of R and
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L a noncentral Lie ideal of R. Suppose that there exists 0 # a € R such that
ald(u™)um? — " o(u™),u"s, ..., u™] = 0 for all u € L, where k > 5 and
ni,No,...,N, > 1 are fixed integers. Then either d = § = 0, or R satisfies sq4,
the standard identity in four variables.

We need the following remarks:

REMARK 1. Let R be a prime ring and L a noncentral Lie ideal of R. If
char (R) # 2, by [2, Lemma 1] there exists a nonzero ideal I of R such that
0# [I,R] C L. If char (R) = 2 and dim¢cRC > 4 i.e., char (R) = 2 and R does not
satisfy s4, then by [10, Theorem 13] there exists a nonzero ideal I of R such that
0 # [I,R] C L. Thus if either char (R) # 2 or R does not satisfy s4, then we may
conclude that there exists a nonzero ideal I of R such that [I,I] C L.

REMARK 2. Let R be a prime ring and U be the Utumi quotient ring of R
and C = Z(U), the center of U (see [1] for more details). It is well known that any
derivation of R can be uniquely extended to a derivation of U. In [11, Theorem
3], Lee proved that every generalized derivation g on a dense right ideal of R can
be uniquely extended to a generalized derivation of U. Furthermore, the extended
generalized derivation g has the form g(x) = ax 4 d(z) for all z € U, where a € U
and d is a derivation of U.

REMARK 3. Let R be a prime ring and U be its Utumi quotient ring and
C =Z7ZU). Let X = {x1,...,Zpn,...}, the countable set consisting of the non-
commuting indeterminates x1,...,Zp,... . Consider T = U x¢ C{X}, the free
product over C' of the C-algebra U and the free C-algebra C{X}.

The elements of T' are called the generalized polynomials with coefficients in
U. By a nontrivial generalized polynomial, we mean a nonzero element of T. An
element m € T of the form m = ¢oy1¢1Y292 - . - Ynqn, where {qo,q1,...,q,} C U and
{y1,92,---,yn} C X, is called a monomial. qg,q,...,qg, are called the coefficients
of m. Each f € T can be represented as a finite sum of monomials.

Note that if I is a non-zero ideal of R, then I, R and U satisfy the same
generalized polynomial identities with coefficients in U. For more details about
these objects we refer the reader to [1] and [3].

2. Main Results
We begin with two lemmas.

LEMMA 2.1. Let R be a prime ring with extended centroid C' and a,b,c € R.
If a # 0 such that

al[b, [x1, 2] |[z1, 22]" — [21, 22]"3 [c, [w1, 2] ™, [0, 22", . .. [21,22] ™ | =0

forall x1,x2 € R, whereny,na,...,n, > 1 are fized integers, then either R satisfies
a nontrivial generalized polynomial identity (GPI) or b,c € C.

Proof. Assume that R does not satisfy any nontrivial GPI. Let T = U ¢
C{x1,22}, the free product of U and C{x1, x5}, the free C-algebra in noncom-
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muting indeterminates x1 and zo. If R is commutative, then R satisfies trivially a
nontrivial GPI, a contradiction. So, R must be noncommutative.

Then,

a[[b, (21, 22]™ |[21, Ta)™ — [21, 22]™[c, [0, 22]™], [21, 22]", - . ., [a:l,xg]"k} —0eT.

(1)

If ¢ ¢ C, then ¢ and 1 are linearly independent over C. Thus, (1) implies

a[xl’ xQ]n3+n4+---+nkC =0

in T implying ¢ = 0, since a # 0, a contradiction. Therefore, we conclude that
¢ € C and hence (1) reduces to

a|lb, [x1, 2] [x1, 22]", [21, 22]", ... [0, 22" | =0 (2)

inT. If b ¢ C, then (2) implies

ni+ns+net-+ng b[

afzy, 2] x1,22)" =0

in T again implying b = 0, a contradiction. Therefore, b € C. m

LEMMA 2.2. Let R be a noncommutative prime ring with extended centroid C
and b,c € R. Suppose that there exists 0 # a € R such that

a|[b, [z1,z2)™ |[z1, 22" — [x1, 2] "%, [T1, 22]™], [X1, 22|, ..., [, 22]™"| =0

for all x1,x2 € R, where ny,no,...,ng > 1 are all fived integers. Then either
b,c € C, or R satisfies s4.

Proof. Suppose that R does not satisfy s,. We have that R satisfies generalized
polynomial identity

f(xlaxZ) =
al byl ol el = for, @) e, for, @)™ o, el ™, o, 2™ ] (3)

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain b,¢ € C' and
we are done. So, we assume that R satisfies a nontrivial GPI. Since R and U
satisfy the same generalized polynomial identities (see [3]), U satisfies f(z1,x2). In
case C is infinite, we have f(x1,72) = 0 for all 21,79 € U ®¢ C, where C is the
algebraic closure of C. Moreover, both U and U®¢ C' are prime and centrally closed
algebras [4]. Hence, replacing R by U or U ®¢ C according to C finite or infinite,
without loss of generality we may assume that C = Z(R) and R is C-algebra
centrally closed. By Martindale’s theorem [13], R is then a primitive ring having
nonzero socle soc(R) with C' as the associated division ring. Hence, by Jacobson’s
theorem [6, p. 75], R is isomorphic to a dense ring of linear transformations of a
vector space V over C.

If dimeV = 2, then R = M5(C). This implies that R satisfies s4, a contradic-
tion. So let dimcV > 3.
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We show that for any v € V', v and cv are linearly C-dependent. Suppose that
v and cv are linearly independent for some v € V. Since dimcV > 3, there exists
u € V such that v, cv, u are linearly C-independent set of vectors. By density, there
exist x1,x2 € R such that

r1v=v, x1cv =0, XU =cv; v =0, Tocv =u, xou=>0.
Then
0=a|[b, [or, @] Jlwn, @)™ = w1, @2]" e, [w1, 2] ™) [y, @], . [, @] 0
= acv.

This implies that if acv # 0, then by contradiction we may conclude that v and
cv are linearly C-dependent. Now choose v € V such that v and cv are linearly
C-independent. Set W = Spanc{v,cv}. Then acv = 0. Let ac # 0. Then, there
exists w € V such that acw # 0 and then ac(v — w) = acw # 0. By the previous
argument we have that w, cw are linearly C-dependent and (v — w), ¢(v — w) too.
Thus there exist a, 5 € C such that cw = aw and ¢(v — w) = (v — w). Then
cw=pw—-—w)+cw=L0w—-—w)+awie, (a—Llw=co—pFveW. Now a =f
implies that cv = fv, a contradiction. Hence o # (§ and so w € W. Again, if
u € V with acu = 0 then ac(w + u) # 0. So, w+ u € W forcing u € W. Thus it is
observed that w € V with acw # 0 implies w € W and u € V with acu = 0 implies
u € W. This implies that V = W i.e., dim¢V = 2, a contradiction.

Hence, v and cv are linearly C-dependent for all v € V', unless ac = 0. Thus
for each v € V, cv = a,v for some «,, € C. It is very easy to prove that a, is
independent of the choice of v € V. Thus we can write cv = awv for all v € V' and
a € C fixed. Now let r € R, v € V. Since cv = awv,

[e,r]v = (er)v — (re)v = ¢(rv) — r(ev) = a(rv) — r(av) = 0.
Thus [¢,r]Jv =0 for all v € V i.e., [¢,r]V = 0. Since [c, 7] acts faithfully as a linear
transformation on the vector space V', [¢,r] = 0 for all » € R. Therefore, ¢ € Z(R),
unless ac = 0. Now let ac = 0. Since dimgV > 3, there exists w € V such that

v, cv, w are linearly C-independent set of vectors. By density, there exist x1,x2 € R
such that

r1v=v, z1cv =0, r7W=v+cv; 20 =0, x2cV =w, xowW = 0.
Then
0= a[[b, (21, 22]™ ][0, 22]"2 — [21, 2] [c, [21, 22]™], [0, 2], .. ., [xl,xQ]”k}v
= av.
Then by the above argument, since a # 0, ¢ € C.
Now our hypothesis (3) becomes

[ Lo, o)™ Y, 2], for, 2ol 2] | =0

for all x1,29 € R. Let for any v € V, v and bv are linearly C-independent. Since
dimaV > 3, there exists w € V such that v, bv, w are linearly C-independent set of
vectors. By density, there exist x1,x2 € R such that

z1v=0, x1bv =0, 17w =DbV; T2V =Dbv, Tobv=w, zow =0,
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which implies 0 = a[[b, [x1, 2™ ][21, x2]"2, [21, 2]"5, . . ., [xl,xg]”k]v = abv. By
the same argument as earlier we have either b € C' or ab = 0.

Let ab = 0. Again by density, there exist 1,22 € R such that
v =0, Tbv =v, T7W=v+bv; TV =DbV, T2bV =w, x2w = 0.
Then [z1, 22]v = (122 — T2x1)v = v, [T1, T2]bv = (z122 — 221 )bv = v and hence
0 = al[b, [x1, 2] ]|[x1, 22]™2, [x1, 22]™°, . . ., [T1, 22]™* |V = —av.

Again, by the same argument as earlier we conclude either b € C' or ¢ = 0. Since
a%0,beC.m

Proof of Theorem 1.1. Suppose that R does not satisfy s4. Since L is a
noncentral Lie ideal of R, by Remark 1, there exists a nonzero ideal I of R such
that [I,I] C L. Hence, by our assumption, we have,

alF([z1,x2]™), [x1,22]™%, ..., [x1,22]"*] =0

for all 1,29 € I. Since I, R and U satisfy the same generalized polynomial
identities (see [3]) as well as the same differential identities (see [12]), they also
satisfy the same generalized differential identities. Hence,
alF([z1, 22]™), [x1,22]™%, ..., [x1,22]™*] =0
for all x1,z9 € U. By Remark 2, there exist b € U and a derivation d of U such
that F(x) = bz + d(x) for all x € U. Hence, U satisfies
afblxy, za]™ + d([z1, 22]™), [T1, 22]™%, ..., [21, 22]"™*] = 0. (4)

Now we divide the proof into two cases:

CASE I: Let for some p € U, d(z) = [p,«] for all € U that is, d is an inner
derivation of U. Then from (4), we obtain that U satisfies

al(b+p)lz1, z2]™ — [z1, 22| p, [T1, 22|, . . [T1, 22]"] = 0

that is
al[(b+p), [x1, 22]"?][T1, 22" — [21, 22]" [P, [21, 22]"?], [21, 22]™*, . . ., [21, 2] "*] = 0.

By Lemma 2.2, since R and so U does not satisfy s4, we have b+ p,p € C. This
implies F'(z) = bx for all x € U and so for all x € R, where b € C. Thus the
conclusion is obtained.

CAsE II: Next assume that d is not inner derivation of U. Then by Kharchen-
ko’s theorem [7], we have from (4) that U satisfies

a[blxy, zo]™ +

nlfl

1;0 [z1, z2] ([y1, 2] + [1, y2])[21, 2]

M= ey ae]™2 L [y, 2] ] = 0. ()

Since R and so U is noncommutative, there exists some ¢ € U such that ¢ ¢ C.
Now replacing y; with [g, 2] and yo with [g, 22] in (5), where ¢ ¢ C, we can write
that U satisfies

a[(b + q)[xlu (EZ}nl - [$17x2]7L1Q7 [x1>x2]n27 ey [xth]nk] =0.
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Then by same argument as earlier of inner derivation case, we have ¢ € C, a
contradiction. Thus the proof of theorem is complete. m

Proof of Theorem 1.2. By Theorem 1.1, we consider only the case when R
satisfies s4. In this case R is a PI-ring, and so there exists a field K such that R C
M5(K) and both R and My (K) satisfy the same GPI. Let F' be inner generalized
derivation on R. Then F(x) = bx + zc for all z € R. So our hypothesis becomes

albz™ 4+ ™,z 2™ L 2™ = 0.

Here R is a dense ring of K-linear transformations over a vector space V. Our
first aim is to show that for any v € V, cv and v are linearly K-dependent. If not,
Assume there exists v # 0, such that {v,cv} is linearly K-independent. By the
density of R, there exists z € R such that zv =0 and xcv = cv. So we have

0 =a[bz™ + a™c,x™, 2™, ..., 2" ]v = acv.

Of course for any u € V, {u,v} linearly K-dependent implies acu = 0. Let ac #
0. Then there exists w € V such that acw # 0 and so {w,v} are linearly K-
independent. Also ac(w + v) = acw # 0 and ac(w — v) = acw # 0. By the above
argument, it follows that w and cw are linearly K-dependent, as are {w+v, c(w+v)}
and {w — v, c(w —v)}. Therefore, there exist a, Qy4v, Xy—rn € K such that

cw = apw, c(w+v) = ayro(w+v), c(w—2v)=ay_,(w—20).
In other words, we have
QW + CU = QW + Q¥ (6)
and
QW — CU = Qlyy—pW — Qlgy—p V. (7)
By comparing (6) with (7) we get both
(200 — Qv — Q)W + (Qy—1y — Quytp)V =0 (8)

and

2cv = (Quptv — Q)W + (Qypy + Qy—y). 9)
By (8), and since {w,v} are K-independent and char(K) # 2, we have «,, =
Qv = Quy—y. Thus by (9) it follows 2cv = 2a,,v. This leads to a contradiction
with the fact that {v, cv} is linear K-independent. Therefore, v and cv are linearly
K-dependent for all v € V, unless ac = 0.

Now let ac = 0. By the density of R, there exists z € R such that zv = 0 and
xev = v 4 cv. Then we have 0 = a[bz™ + z™ ¢, 22, 2™, ..., 2™ |v = av. By the
same argument as above, since a # 0, v and cv are linearly K-dependent for all
v € V. Thus in any case we have v and cv are linearly K-dependent for all v € V.
Then for each v € V', cv = «a,,v for some «, € K. It is very easy to prove that a,
is independent of the choice of v € V. Thus we can write cv = av for all v € V|
where o € K is fixed. Now let r € R, v € V. Since cv = aw,

[e,r]v = (er)v — (re)v = e(rv) — r(ev) = a(rv) — r(av) = 0.
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Thus [¢, R]V = 0. Since [¢, R] acts faithfully as a linear transformation on the
vector space V, [¢, R] = 0. Therefore, ¢ € Z(R).

Therefore our identity reduces to
alb,z™?, 2" ... x™]z™ =0 (10)

for all z € R. Let us assume that there exists 0 # v € V such that bv and v
are linearly K-independent. By density of R there exists x € R such that zv =

v,abv = 0. Then we have 0 = a[b,z™, 2™, ... 2™ ]|2™ = abv. By the same
argument, either b € Z(R) or ab = 0.

Now let ab = 0. In this case we put x = ej; in (10). Then we have
0 = alb,err,e11,...,e11]enn = alb,err]err = aeprber, since ab = 0. This im-

plies ag1byn = 0 = a11b11.  Similarly, by putting © = ess in (10), we get
aggbgg =0= a12b22. MOI‘GOVGI‘, ab=0 implies

aiibii + aizba =0,

airbiz + aiz2bas =0,

az1b11 + azzba =0,

az1b12 + azzbaz = 0.
USiIlg these facts we get from above that a12b21 = a11b12 = ag2be1 = as1b12 = 0.
Now we assert that b is diagonal. If not, then at least one of non-diagonal elements
of b must be nonzero. Without loss of generality, let us assume that b5 # 0.
Then a1; = as; = 0. For any automorphism 6 of R, 6(a) and 6(b) satisfy the same
property of @ and b. Let 6(x) = (14+e21)z(1—e21). Denote by 6(a);; the (4, j)-entry
of 6(a) and by 6(b);; the (i,7)-entry of §(b). Now 6(b)12 = b1z # 0 implies that
9((1)11 = 9(@)21 = O, thatis 0 = 0((1)11 = —ai2 and 0 = 0(&)21 = —a12—0a22 = —Aa99.
Thus a = 0, a contradiction. Therefore, b is a diagonal matrix.

Now since we have
0(a)[0(b),x"2,z™, ..., ]|z™ =0

with 6(a) # 0 and 0(a)0(b) = 0(ab) = 0, 0(b) is also diagonal that is, 0 = 0(b)a; =
b11 — bog implying b1; = bes. Therefore b € Z(R). Moreover, in this case b = 0,

since if b # 0 then ab = 0 implies a = 0, which is a contradiction. Therefore,
F(z) = cx for all z € R, where c € C.

Next assume that F(z) = bx + d(x), where d is not inner derivation of R. In
this case our hypothesis reduces to

albx™ +d(z™),z"2, 2™, ... 2™ ] =0
that is
ni—1 )
albz™ + > zid(z)z™ i gn2 g L 2] =0
i=0

for all x € R. By Kharchenko’s theorem [7], R satisfies

n1—1 . .
albz™ + > alyxmiTitl gne gns L pte] = 0.
i=0
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Now replacing y by [g, z], where ¢ ¢ C, we have
albz™ + [q,x™ ], 2™, 2™, ... 2] =0
that is
al(b+ q)z™ —z™q,x™, 2™, ..., 2™ =0
for all x € R. Then by above arguments, ¢ € C, which is a contradiction. m
Proof of Theorem 1.3. Suppose that R does not satisfy s4. Since L is a

noncentral Lie ideal of R, by Remark 1, there exists a nonzero ideal I of R such
that [I,I] C L. Hence, by our assumption, we have,

ald([x1, z2]™)[z1, 22]™? — (21, 2] 0([21, 22]™), [X1, 2], . .., [X1,22]™*] =0
for all z1, 22 € I. Since I, R and U satisfy the same differential identities (see [12]),
ald([x1, x2]™)[x1, z2]"? — [x1, 2] ([1, x2]™), [X1, 2], . . ., [x1, 22]"*] = 0 (11)
for all x1,z € U.

Now we divide the proof into two following cases:

CASE I: Let d(z) = [b,z] for all z € U and §(x) = [c, z] for all x € U, are two
inner derivations of U, where b,c € U. Then from (11), we have

a[[b, [z1, x| ][w1, 2] — [21, 22]"[c, [21, 22]™)], (21, 22", .. [0, 22]"*] = 0
for all x1,z9 € U. By Lemma 2.2, we conclude that b,c € C, implying d = 6 = 0.

CASE II: Let d and 6 are not both inner derivations of U.

SUB-CASE I: Let d and § be C-dependent modulo inner derivations of U. Then
there exist a, 8 € C such that ad + 36 = ad,, where ad,(z) = [p,z] for all x € U.

If a # 0, then d = A\d +ad,, where A = —Ba~! and ¢ = pa~!. Then (11) gives

alAd([z1, z2]™ )21, 22| + (g, [21, 22| " |[21, 22"

— [x1, 2] 0 ([, x2]™), [x1, 22]"0, ..., [21, 22]"*] = 0

for all 21,29 € U. Applying Kharchenko’s theorem [7], we can write

oIS vl () + o, o, 1=, 3] + o o, ] )
— 21, 2] (7:_21[331, :Eg]i([y, x| + [x1, 2])[x1, :cg]"‘*_i_l), [x1,x2]™5, .., 21, 22]™F]

—0 (12)

for all 1,29 € U. Since L is noncentral, U must be noncommutative and hence
there exits ¢’ € U such that ¢’ ¢ C. Now replacing y with [¢/, z1] and z with [¢/, 2]
in (12), we get

al[A\' + ¢, [z1, 2] |[x1, 22]™
- [xth]ng [qlv [:L‘1, $2}n4]7 [:L‘l, xﬂns» BRRE) [mlﬂxQ]nk] =0

for all x1,22 € U. By Lemma 2.2, we get ¢ € C, a contradiction.
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If a =0, then § = ad,/, where p’ = p3~!. Then (11) becomes
ald([z1, z2]™)[w1, 22]"? — w1, 22| [P, [21, 22]™], [0, 22]"%, . . ., [0, 22] "] = O
for all 1,22 € U. Since § is inner, d can not be inner. Hence by Kharchenko’s
theorem [7], we can write

n1—1

al( E) (21, 22] " ([y, w2l + w1, 2])[w1, w2]™ 771 [21, 2] "2

— w1, o] [P, [w1, wa|™], [0, 2] "0, . [0, 2] ] = 0 (13)
for all 21, x9,y,2 € U. Now replacing y with [¢/, z1] and 2z with [¢/, z5] in (13), for
some ¢’ ¢ C, we get

allg’, [z1, w2]™][w1, 22]"™ — w1, 22| [P, [w1, w2]™], [21, 22]™, .., 1, 2] ] = 0
for all x1,22 € U. Then by Lemma 2.2, we get ¢’ € C, a contradiction.

SUB-CASE 1I: Let d and ¢ be C-independent modulo inner derivations of U.
Then applying Kharchenko’s theorem [7] to (11), we have

a[(n:z_:ol[l'h l‘g]i([% 1‘2} + [3717 Z])[%, xﬂm—z’—l)[xl7 x2]n2
— [z1, 20]™ (iél[mhxz]i([u,xg] ¥ 1, o) s, @) L), [e1, 2], - 1, 2] 7]

—0 (14)

for all 21,x9,y, z,u,v € U. Then again replacing y and u with [¢/, 2] and z and v
with [¢/, 23] in (12), for some ¢’ ¢ C, (14) becomes

alld, [z, mo])™][z1, 2] — w1, 22]™ ¢, [x1, 22]™], [x1, 2], ..., [0, 22]™*] = 0

for all 1,z € U. Then again by Lemma 2.2, we get ¢’ € C, a contradiction. m
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