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COMMON FIXED POINTS OF COMMUTING MAPPINGS
IN ULTRAMETRIC SPACES

Zahra Alinejad and Alireza Kamel Mirmostafaee

Abstract. In this paper, we will use implicit functions to obtain a general result about
the existence of a unique common fixed point for commuting mappings in ultrametric spaces.
This result enables us to improve some known fixed point theorems and enables us to obtain a
relation between completeness and the existence of a unique fixed point for self-mappings in non-
Archimedean metric spaces. By presenting some counterexamples, we will show that our results
cannot be extended to general metric spaces.

1. Introduction

The fixed point theory is concerned with the conditions under which a certain
selfmap T of a set X admits fixed points; that is a point x ∈ X such that Tx = x.

The cornerstone of this theory is the Banach’s contraction principle [4]. This
statement turned out to be a basic tool for solving existence problems in many
branches of mathematics. As a consequence many generalizations of it appeared
until now; see [6, 8, 11–13, 16] and the references therein.

In 2008, T. Suzuki [22] proved the following conditional type generalization of
the Banach contraction principle.

Theorem 1.1. [22, Theorem 2] Let (X, d) be a complete metric space and let
T be a mapping on X. Define θ : [0, 1) → ( 1

2 , 1] by

θ(r) =





1, 0 < r <
√

5−1
2

(1− r)r−2,
√

5−1
2 ≤ r < 2−1/2

(1 + r)−1, 2−1/2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that

θ(r)d
(
x, Tx

) ≤ d(x, y) implies d
(
Tx, Ty

) ≤ rd(x, y)
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for all x, y ∈ X. Then there exists a unique fixed point z of T . Moreover
limn→∞ Tnx = z for all x ∈ X.

Using Banach iteration method, Jungck [10] proved a common fixed point
theorem for commuting mappings. The idea of Theorem 1.1 suggests the following
extension of Jungck’s theorem.

Theorem 1.2. [15, Theorem 3] Let (X, d) be a complete metric space and
let θ be as in Theorem 1.1. Suppose that S, T are mappings on X satisfying the
following conditions:
(a) S is continuous,
(b) T (X) ⊂ S(X),
(c) S and T commute.

If there exists r ∈ [0, 1) such that

θ(r)d(Sx, Tx) ≤ d(Sx, Sy) implies d(Tx, Ty) ≤ rd(Sx, Sy)

for all x, y ∈ X, then S and T have a unique common fixed point.

In 2009, Popescu [18] improved the above result as follows.

Theorem 1.3. [18, Theorem 2.1] Let (X, d) be a complete metric space and θ
be as in Theorem 1.1. Let S and T be mappings on X satisfying the following.
(a) S is continuous,
(b) T (X) ⊂ S(X),
(c) S and T commute.

If there exists r ∈ [0, 1) such that

θ(r)d(Sx, Tx) ≤ d(Sx, Sy) implies d(Tx, Ty) ≤ rMS,T (x, y)

for all x, y ∈ X, where

MS,T (x, y) = max
{

d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),
d(Sx, Ty) + d(Sy, Tx)

2

}
,

then S and T have a unique common fixed point.

Recall that a non-Archimedean metric space is a special kind of metric space
in which the triangle inequality is replaced with d(x, y) ≤ max {d(x, z), d(z, y)}.
Sometimes the associated metric is also called a non-Archimedean metric or an
ultra-metric. In a non-Archimedean metric space X, for any sequence {xn}, we
have

d(xn, xm) ≤ max{d(xj+1, xj) : m ≤ j ≤ n− 1} (n > m).

The above inequality implies that a sequence {xn} is Cauchy in a non-Archimedean
metric space if and only if {d(xn+1, xn)} converges to zero.

Several mathematicians studied the existence of a fixed point for self-mapping
on spherically complete non-Archimedean spaces; see for example [7, 14, 19]. The
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aim of this paper is to generalize the above results, when the underling space is
non-Archimedean. More precisely, we generalize the method that was used in [3] to
improve some results in [3, 18, 22] and others. We also show that our results enable
us to characterize completeness in non-Archimedean metric spaces. By presenting
some counterexamples, we will show that our results cannot be extended to general
metric spaces.

2. Results

Implicit relations in metric spaces have been considered by several authors in
connection with the existence of fixed points (see, for instance, [1–3, 17, 21] and the
references therein). We give a new definition of this concept for non-Archimedean
metric space as follows.

Let Φ denote the set of all continuous functions g : [0,∞)6 → R satisfying the
following conditions.
(a) For each (t1, t2, t3, t4) ∈ [0,∞)4 and 0 ≤ t ≤ t′,

g(t1, t2, t3, t4, t′, 0) ≤ g(t1, t2, t3, t4, t, 0) and

g(t1, t2, 0, t′, t3, t4) ≤ g(t1, t2, 0, t, t3, t4),

(b) there exists r ∈ [0, 1) such that

g(u, v, v, u, max{u, v}, 0) ≤ 0 or g(u, v, 0, max{u, v}, u, v) ≤ 0

or g(u, v, v, v, v, v) ≤ 0

implies u ≤ rv,
(c) g(u, u, 0, 0, u, u) > 0, for all u > 0.

Example 2.1. Let r ∈ [0, 1) and 0 ≤ α + 2β + 2γ < 1. Define
(i) g1(t1, t2, t3, t4, t5, t6) = t1 − rt2,

(ii) g2(t1, t2, t3, t4, t5, t6) = t1 − r max{t2, t3, t4, t5, t6},
(iii) g3(t1, t2, t3, t4, t5, t6) = t1 − αt2 − β(t3 + t4)− γ(t5 + t6),
where 0 ≤ ti < ∞, 1 ≤ i ≤ 6. A straightforward computation shows that
g1, g2, g3 ∈ Φ.

Now, we are ready to state one of the main results of this section.

Theorem 2.2. Let (X, d) be a complete ultrametric space and let T and S be
mappings on X satisfying the following:
(i) S is continuous,
(ii) T (X) ⊂ S(X),
(iii) S and T commute.
Assume that there exists g ∈ Φ such that d(Sx, Tx) ≤ d(Sx, Sy) implies that

g
(
d(Tx, Ty), d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)

) ≤ 0

for all x, y ∈ X. Then S and T have a unique common fixed point.
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Proof. Since T (X) ⊂ S(X), we can define a mapping f on X such that
Sfx = Tx for all x ∈ X. Therefore d(Sx, Tx) = d(Sx, Sfx) ≤ d(Sx, Sfx) and
hence by assumption,

g(d(Tx, Tfx), d(Sx, Sfx), d(Sx, Tx), d(Sfx, Tfx), d(Sx, Tfx), d(Tx, Sfx)) ≤ 0.

Thanks to the property (a),

g(d(Sfx, Sffx), d(Sx, Sfx), d(Sx, Sfx), d(Sfx, Sffx),

max{d(Sx, Sfx), d(Sfx, Sffx)}, 0) ≤ 0.

By (b), there is some r ∈ [0, 1) such that d(Sfx, Sffx) ≤ rd(Sx, Sfx). Fix some
u ∈ X and define un = fnu for all n ∈ N and u0 = u. Then un+1 = fun and
Sun+1 = Tun. Therefore

d(Sun, Sun+1) = d(Sfun−1, Sffun−1) ≤ rd(Sun−1, Sfun−1)

= rd(Sun−1, Sun) ≤ · · · ≤ rnd(Su0, Su1).

Thus limn→∞ d(Sun, Sun+1) = 0, that is, {Sun} is a Cauchy sequence. Since X is
complete, there is some z ∈ X such that Sun → z. We will show that z is a fixed
point of S. Two alternatives are possible.
(1) ]{n : d(Sxn, Txn) > d(Sxn, SSxn)} = ∞ or
(2) ]{n : d(Sxn, Txn) > d(Sxn, SSxn)} < ∞.

In the first case, there exists a subsequence {unj} of {un} such that

d(Sxnj , Txnj ) > d(Sxnj , SSxnj ) (j ∈ N).

Since S is continuous,

d(Sz, z) = lim
j→∞

d(SSunj , z) ≤ lim
j→∞

(
max{d(SSunj , Sunj ), d(Sunj , z)})

≤ lim
j→∞

(
max{d(Sunj , Tunj ), d(Sunj , z)})

= lim
j→∞

(
max{d(Sunj , Sunj+1), d(Sunj , z)}) = 0.

Therefore Sz = z. In the second case, there exists l ∈ N such that for each n ≥ l
we have d(Sun, Tun) ≤ d(Sun, SSun). Thus

g(d(Tun, TSun), d(Sun, SSun), d(Sun, Tun), d(SSun, TSun),

d(Sun, TSun), d(SSun, Tun)) ≤ 0.

Since S and T commute and Sun+1 = Tun,

g(d(Sun+1, SSun+1), d(Sun, SSun), d(Sun, Sun+1), d(SSun, SSun+1),

d(Sun, SSun+1), d(SSun, Sun+1)) ≤ 0.

By letting n →∞, we have

g(d(z, Sz), d(z, Sz), 0, 0, d(z, Sz), d(Sz, z)) ≤ 0.

By (c), d(z, Sz) = 0. That is, z is a fixed point of S. Next, we will prove that

d(Tnz, Tn+1z) ≤ rnd(Tz, z) (n ∈ N). (2.1)
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Since for each n > 1,

d(STn−1z, Tnz) ≤ d(STn−1z, Tnz) = d(STn−1z, TnSz) = d(STn−1z, STnz),

we have

g
(
d(Tnz, Tn+1z), d(STn−1z, STnz), d(STn−1z, Tnz), d(STnz, Tn+1z),

d(STn−1z, Tn+1z), d(STnz, Tnz)
) ≤ 0.

Hence from (iii),

g(d(Tnz, Tn+1z), d(Tn−1z, Tnz), d(Tn−1z, Tnz), d(Tnz, Tn+1z),

d(Tn−1z, Tn+1z), 0) ≤ 0.

According to (a),

g(d(Tnz, Tn+1z), d(Tn−1z, Tnz), d(Tn−1z, Tnz), d(Tnz, Tn+1z),

max{d(Tn−1z, Tnz), d(Tnz, Tn+1z)}, 0) ≤ 0.

By (b), we have d(Tnz, Tn+1z) ≤ rd(Tn−1z, Tnz). So that (2.1) is proved.
Next, we will show that

d(Tx, z) ≤ rd(Sx, z) (Sx 6= z). (2.2)

For x ∈ X with Sx 6= z, there exists n0 ∈ N such that d(Sun, z) <
1
3
d(z, Sx) for

all n ≥ n0. If n ≥ n0, we have

d(Sun, Tun) = d(Sun, Sun+1) ≤ max{d(Sun, z), d(Sun+1, z)}
<

2
3
d(Sx, z) = d(Sx, z)− 1

3
d(Sx, z)

≤ d(Sx, z)− d(Sun, z) ≤ d(Sun, Sx).

By assumption,

g
(
d(Tun, Tx), d(Sun, Sx), d(Sun, Tun), d(Sx, Tx),

d(Sun, Tx), d(Sx, Tun)
) ≤ 0.

for all n ≥ n0. That is,

g
(
d(Sun+1, Tx), d(Sun, Sx), d(Sun, Sun+1), d(Sx, Tx),

d(Sun, Tx), d(Sx, Sun+1)
) ≤ 0.

By continuity of g, it follows that

g
(
d(z, Tx), d(z, Sx), 0, d(Sx, Tx), d(z, Tx), d(Sx, z)

) ≤ 0.

The property (a) implies that

g
(
d(z, Tx), d(z, Sx), 0, max{d(Sx, z), d(z, Tx)}, d(z, Tx), d(Sx, z)

) ≤ 0.

It follows from the property (b)and the above inequality that (2.2) holds.
By induction we will show that

d(Tnz, Tz) ≤ rd(Tz, z) (2.3)
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for n ≥ 2. For n = 2, by (2.1), we obtain d(T 2z, Tz) ≤ rd(Tz, z). Assume that
(2.3) holds for some n ≥ 2. Then

d(Tn+1z, Tz) ≤ max{d(Tnz, Tz), d(Tnz, Tn+1z)}
≤ max{rd(z, Tz), rnd(z, Tz)} = rd(z, Tz).

Hence (2.3) is true.
According to (2.1), {Tnz} is a Cauchy sequence in (X, d). If Tnz = z for some

n, then by (2.3), Tz = z in this case. Otherwise, we can assume that Tmz 6= z for
all m ∈ N. In the latter case, by (2.2) we have

d(Tm+1z, z) ≤ rmd(Tz, z) (m ∈ N). (2.4)

Therefore {Tnz} converges to z. Since d(Tnz, Tz) ≤ rd(Tz, z), by letting n →∞,
we obtain d(z, Tz) ≤ rd(Tz, z). This is a contradiction. Therefore Tz = z.

We will prove that z is a unique common fixed point. Suppose that y is
another common fixed point of S and T . Then d(Sz, Tz) = 0 ≤ d(Sz, Sy). By our
hypothesis,

g(d(Tz, Ty), d(Sz, Sy), d(Sz, Tz), d(Sy, Ty), d(Sz, Ty), d(Sy, Tz)) ≤ 0.

That is,
g(d(z, y), d(z, y), d(z, z), d(y, y), d(z, y), d(y, z)) ≤ 0.

Hence
g(d(z, y), d(z, y), 0, 0, d(z, y), d(y, z)) ≤ 0.

By (c), we have d(y, z) = 0. Therefore y = z.
The following result generalizes [3, Theorem 3.1], when the metric is non-

Archimedean.

Corollary 2.3. Let (X, d) be a complete ultrametric space and let T be a
mapping on X. Assume that there exists g ∈ Φ such that d(x, Tx) ≤ d(x, y) implies

g(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Let S be the identity function on X. Then the result follows from
Theorem 2.2.

We are also able to extend Theorem 1.2 in ultrametric spaces.

Corollary 2.4. Let (X, d) be a complete ultrametric space and let T and S
be mappings on X satisfying the following:
(i) S is continuous,
(ii) T (X) ⊂ S(X),
(iii) S and T commute.
Assume that d(Sx, Tx) ≤ d(Sx, Sy) implies d(Tx, Ty) ≤ rd(Sx, Sy) for all x, y ∈
X. Then S and T have a unique common fixed point.
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Proof. Let g = g1 in Example 2.1. Then g satisfies the above condition. So
that the result follows from Theorem 2.2.

The following example shows that the conditions of Theorem 2.2 cannot be
weakened, that is ≤ cannot be replaced by <.

Example 2.5. Let X = {±1} with discrete metric and 0 < r < 1. Define
T : X → X by Tx = −x and Sx = x on X. Clearly, (X, d) is a complete ultrametric
space. We have d(x, Tx) = 1 ≥ d(x, y) = d(Sx, Sy) for all x, y ∈ X. Hence

d(x, Tx) < d(Sx, Sy) implies d(Tx, Ty) ≤ rd(Sx, Sy)

for all x, y ∈ X. But T does not have a fixed point. That is, S and T do not have
a common fixed point.

The following example is due to Suzuki [22, Theorem 3] which shows that in
general metric spaces, Corollary 2.4 and hence Theorem 2.2 is not true.

Example 2.6. Define a complete subset X of the Euclidean space R as follows:
X = {0, 1} ∪ {

xn : n ∈ N ∪ {0}}, where xn = ( 1
4 )(− 3

4 )n for n ∈ N ∪ {0}. Define a
mapping T on X by T0 = 1, T1 = x0 and Txn = xn+1 for all n ∈ N∪{0}. Clearly,
T does not have a fixed point. We claim that

d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ 3
4
d(x, y).

for all x, y ∈ X. Indeed,
• d(T0, T1) = 3

4d(0, 1),

• d(Txm, Txn) = 3
4d(xm, xn) for m,n ∈ N ∪ {0},

• d(0, T0) > d(0, xn) for n ∈ N ∪ {0}.
Also, we have

d(T1, Txn)− 3
4
d(1, xn) =

1
4
− 1

4

(
−3

4

)n+1

− 3
4

(
1− 1

4

(
−3

4

)n)

= −1
2
− 1

2

(
−3

4

)n+1

< 0,

for each n ∈ N.
We are also able to give the following generalization of Ćirić fixed point theorem

[5] in ultrametric spaces.

Corollary 2.7. Let (X, d) be a complete ultrametric space and let T and S
be mappings on X satisfying the following:
(i) S is continuous,
(ii) T (X) ⊂ S(X),
(iii) S and T commute.
Assume that there exists r ∈ [0, 1) such that d(Sx, Tx) ≤ d(Sx, Sy) implies

d(Tx, Ty) ≤ r max{d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}
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for all x, y ∈ X. Then S and T have a unique common fixed point.
Proof. Let g = g2 in Example 2.1. By Theorem 2.2, S and T have a common

fixed point.
Theorem 2.2 also enables us to extend Hardy-Rogers fixed point theorem [9]

for ultrametric spaces.

Corollary 2.8. Let (X, d) be a complete ultrametric space and let T and S
be mappings on X satisfying the following:
(i) S is continuous,
(ii) T (X) ⊂ S(X),
(iii) S and T commute.

Let
∑5

i=1 αi < 1 and αi ≥ 0 for 1 ≤ i ≤ 5. Suppose that for all x, y ∈ X,

d(Tx, Ty) ≤ α1d(Sx, Sy) + α2d(Sx, Tx) + α3d(Sy, Ty)

+ α4d(Sx, Ty) + α5d(Sy, Tx). (2.5)

Then S and T have a unique common fixed point.

Proof. By symmetry, we have

d(Tx, Ty) ≤ α1d(Sx, Sy) + α2d(Sy, Ty) + α3d(Sx, Tx)

+ α4d(Sy, Tx) + α5d(Sx, Ty). (2.6)

It follows from (2.5) and (2.6) that

d(Tx, Ty) ≤ α1d(Sx, Sy) +
α2 + α3

2
(
d(Sx, Tx)

+ d(Sy, Ty)
)

+
α4 + α5

2
(
d(Sx, Ty) + d(Sy, Tx)

)
.

Let α = α1, β = α2+α3
2 , γ = α4+α5

2 and g = g3 in Example 2.1. Then the result
follows from Theorem 2.2.

The following result shows that when the underling space is non-Archimedean,
we may assume θ ≡ 1 in Theorem 1.1.

Corollary 2.9. Let (X, d) be a complete non-Archimedean metric space and
T : X → X. Let for some 0 < r < 1,

d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X. (∗)
Then T has a unique fixed point z and for every x ∈ X, limn→∞ Tn(x) = z.

Proof. Let S be the identity function on X. Then the result follows from
Corollary 2.4.

The following example shows that our results are genuine generalization of
Suzuki’s fixed point theorem provided that the underling space is non-Archimedean.
In fact, we give an example of a mapping on a complete ultrametric space which
satisfies the conditions of Corollary 2.9 but Theorem 1.1 cannot be applied.
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Example 2.10. Let X = {a, b, c, e} and d(a, c) = d(a, e) = d(b, c) = d(b, e) =
1 and d(a, b) = d(c, e) = 3

4 . It is easy to verify that X is a complete ultrametric
space. Define T : X → X by T (a) = T (b) = T (c) = a and T (e) = b. For r = 3

4 ,
we have θ(r) = 4

7 . Since θ(r)d(c, T c) = 4
7 ≤ 3

4 = d(c, e) and d(Tc, Te) = 3
4 > 9

16 =
rd(c, e), T does not satisfy in assumption of Theorem 1.1. We will show that

d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ 3
4
d(x, y).

for all x, y ∈ X. Since d(Ta, Tb) = d(Ta, Tc) = d(Tb, Tc) = 0, we have d(Tx, Ty) ≤
3
4d(x, y) for x, y ∈ {a, b, c}. Also,

d(Ta, Te) =
3
4
≤ 3

4
=

3
4
d(a, e), d(Tb, Te) =

3
4
≤ 3

4
=

3
4
d(b, e).

Since d(e, Te) = 1 > 3
4 = d(c, e), the proof is completed.

The next result gives a characterization for completeness in non-Archimedean
metric spaces.

Theorem 2.11. Suppose that (X, d) is a non-Archimedean metric space such
that for some 0 < r < 1, every self mapping T : X → X with the property (∗) has
a fixed point. Then (X, d) is complete.

Proof. Let (X, d) be incomplete non-Archimedean metric space and 0 < r <
1. Then there is a Cauchy sequence {xn} in X which is not convergent. Define
f : X → [0,∞) by f(x) = limn→∞ d(x, xn) for all x ∈ X. Since {d(xn, x)} is a
Cauchy sequence in R, it is convergent. Hence f is well-defined. It follows from
the definition that
(i) f(x)− f(y) ≤ d(x, y) ≤ max{f(x), f(y)} for all x, y ∈ X.
(ii) f(x) > 0 for all x ∈ X and
(iii) limn→∞ f(xn) = 0.
It follows from (ii) and (iii) that for each x ∈ X, there is some nx ∈ X such
that f(xnx) < r

4f(x). Define T : X → X by Tx = xnx for all x ∈ X. Then
f(Tx) ≤ r

4f(x) for all x ∈ X. Hence Tx 6= x for all x ∈ X. We will show that (∗)
holds. Let for some x, y ∈ X, d(x, Tx) ≤ d(x, y). Two cases may happen.

(a) f(y) > 2f(x). In this case by (i) we have,

d(Tx, Ty) ≤ max
{
f(Tx), f(Ty)

}

≤ max
{r

4
f(x),

r

4
f(y)

} ≤ r

2
f(y) ≤ r

(
f(y)− f(x)

) ≤ rd(x, y).

(b) f(y) ≤ 2f(x). We have

d(x, y) ≥ d(x, Tx) ≥ f(x)− f(Tx) ≥ (1− r

4
)f(x) ≥ 1

2
f(x).

Since

d(Tx, Ty) ≤ max
{
f(Tx), f(Ty)

}

≤ max
{r

4
f(x),

r

4
f(y)

} ≤ r

2
f(x),

(∗) also holds in this case. This completes our proof.
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The following result follows immediately from Corollary 2.9 and Theorem 2.11.

Corollary 2.12. Let (X, d) be a non-Archimedean metric space. Then the
following are equivalent:
(a) (X, d) is complete.
(b) There is some 0 < r < 1 such that every self mapping T : X → X which

satisfies (∗) has a unique fixed point.
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