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SOME FIXED POINT THEOREMS ON S-METRIC SPACES

Nı́hal Yilmaz Özgür and Nı́hal Taş

Abstract. In this paper, we present some contractive mappings and prove new general-
ized fixed point theorems on S-metric spaces. Also we define the notion of a cluster point and
investigate fixed points of self-mappings using cluster points on S-metric spaces. We obtain new

generalizations of the classical Nemytskii-Edelstein and Ćirić’s fixed point theorems for continuous
self-mappings of compact S-metric spaces.

1. Introduction

Metric spaces are very important in various areas of mathematics such as
analysis, topology, applied mathematics etc. So various generalizations of metric
spaces have been studied and several fixed point results were obtained (for example,
see [4, 7, 8, 11–15]). Recently, Sedghi, Shobe and Aliouche have defined the concept
of an S-metric space as follows:

Definition 1.1. [12] Let X be a nonempty set and S : X3 → [0,∞) be a
function satisfying the following conditions for all x, y, z, a ∈ X:
(1) S(x, y, z) = 0 if and only if x = y = z,
(2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then S is called an S-metric on X and the pair (X, S) is called an S-metric space.

Let (X, d) be a complete metric space and T be a self-mapping on X. In [10],
the following condition was introduced for a self-mapping T : for each x, y ∈ X,
x 6= y:

(R25) d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
(such mappings were later called Rhoades’ mappings). However, no fixed point
theorem was given in [10] for mappings satisfying (R25). Chang presented the
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notion of a C-mapping and obtained some fixed point theorems using such mappings
under (R25) in [1]. Also, Liu, Xu and Cho defined the concept of an L-mapping
and studied some fixed point theorems using such mappings under (R25) in [5].
On the other hand, Park introduced a new contractive mapping using the diameter
of Ux ∪ Uy where Ux = {Tnx : n ∈ N} in [9]. He presented also the relationships
between these contractive mappings and the condition (R25) and then obtained
some fixed point theorems.

Motivated by the above studies, we extend the notion of Rhoades’ mapping
to S-metric spaces and define a new type of contractive mappings. In Section 2,
we introduce new contractive conditions (S25) and (S25a), defining the notions of
a CS-mapping and an LS-mapping on S-metric spaces. Also, we investigate some
relations among them and give some counterexamples. In Section 3, we prove some
fixed point theorems using the notions of a CS-mapping, an LS-mapping, a periodic
point and compactness on S-metric spaces. In Section 4, we present the notion of a
cluster point on an S-metric space and study some properties of cluster points. We
give some fixed point theorems by means of cluster points on S-metric spaces. In
Section 5, we obtain new generalizations of the classical Nemytskii-Edelstein and
Ćirić’s fixed point theorems for continuous self-mappings on a compact S-metric
space.

2. Contractive mappings on S-metric spaces

In this section, we define some new contractive mappings and the notions of a
CS-mapping and an LS-mapping on an S-metric space. Also we investigate their
relationships with each other and give counterexamples.

Now we recall some definitions, lemmas, a remark and a corollary which are
needed in the sequel. The following can be found in the papers referred to.

Definition 2.1. [12] Let (X, S) be an S-metric space and A ⊂ X.
(1) A subset A of X is called S-bounded if there exists r > 0 such that S(x, x, y) <

r for all x, y ∈ A.
(2) A sequence {xn} in X converges to x if and only if S(xn, xn, x) → 0 as n →∞.

That is, there exists n0 ∈ N such that for all n ≥ n0, S(xn, xn, x) < ε for each
ε > 0. We denote this by limn→∞ xn = x or limn→∞ S(xn, xn, x) = 0.

(3) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0
as n,m → ∞. That is, there exists n0 ∈ N such that for all n,m ≥ n0,
S(xn, xn, xm) < ε for each ε > 0.

(4) The S-metric space (X, S) is called complete if every Cauchy sequence is con-
vergent.

Lemma 2.1. [12] Let (X, S) be an S-metric space. Then

S(x, x, y) = S(y, y, x), (2.1)

for all x, y ∈ X.
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Lemma 2.2. [12] Let (X, S) be an S-metric space. If {xn} and {yn} are
sequences in X such that xn → x and yn → y, then S(xn, xn, yn) → S(x, x, y).

Remark 2.1. [13] Every S-metric space is topologically equivalent to a B-
metric space.

Corollary 2.1. [13] Let T : X → Y be a map from an S-metric space X to
an S-metric space Y . Then T is continuous at x ∈ X if and only if Txn → Tx
whenever xn → x.

Now we consider the Rhoades’ condition (R25) for S-metric spaces and define
a CS-mapping (or an LS-mapping).

Definition 2.2. Let (X, S) be an S-metric space and T be a self-mapping of
X. We define

(S25) S(Tx, Tx, Ty) < max{S(x, x, y), S(Tx, Tx, x), S(Ty, Ty, y),

S(Ty, Ty, x), S(Tx, Tx, y)},
for each x, y ∈ X, x 6= y.

Definition 2.3. Let (X, S) be an S-metric space and T be a self-mapping
on X. T is called a CS-mapping on X if for each x ∈ X and each positive integer
n ≥ 2 satisfying

T ix 6= T jx, 0 ≤ i < j ≤ n− 1, (2.2)

we have

S(Tnx, Tnx, T ix) < max
1≤j≤n

{S(T jx, T jx, x)}, i = 1, 2, . . . , n− 1. (2.3)

Definition 2.4. Let (X, S) be an S-metric space and T be a self-mapping
on X. T is called an LS-mapping on X if for each x ∈ X and each positive integer
n ≥ 2 with the condition (2.2) we have

S(Tnx, Tnx, T ix) < max
0≤p<q≤n

{S(T px, T px, T qx)}, i = 1, 2, . . . , n− 1. (2.4)

Proposition 2.1. Let (X, S) be an S-metric space and T be a self-mapping
on X. If T satisfies the condition (S25), then T is a CS-mapping.

Proof. Let x ∈ X and the condition (S25) be satisfied by T . We use the
mathematical induction. Assume that the condition (2.2) holds for each n ≥ 2.
For n = 2, by (S25) we have

S(T 2x, T 2x, Tx) < max{S(Tx, Tx, x), S(T 2x, T 2x, Tx), S(Tx, Tx, x),

S(Tx, Tx, Tx), S(T 2x, T 2x, x)} (2.5)

and so
S(T 2x, T 2x, Tx) < max{S(Tx, Tx, x), S(T 2x, T 2x, x)}.

Hence the condition (2.3) is satisfied.
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Suppose that the condition (2.3) is true for n = k − 1, k ≥ 3. Let

α = max
1≤j≤k−1

{S(T jx, T jx, x)}.

We show that the condition (2.3) is satisfied for n = k, k ≥ 2. By the condition
(S25) and the induction hypothesis we find

S(T kx, T kx, T k−1x) < max{S(T k−1x, T k−1x, T k−2x), S(T kx, T kx, T k−1x),

S(T k−1x, T k−1x, T k−2x), S(T k−1x, T k−1x, T k−1x),

S(T kx, T kx, T k−2x)}
and so

S(T kx, T kx, T k−1x) < max{α, S(T kx, T kx, T k−2x)}.
Also it can be shown that

S(T kx, T kx, T k−ix) < max{α, S(T kx, T kx, T k−i−1x)}, i = 1, 2, . . . , k − 1.

For i = k − 1 we obtain

S(T kx, T kx, Tx) < max{α, S(T kx, T kx, x)} = max
1≤j≤k

{S(T kx, T kx, x)}

and
S(T kx, T kx, T ix) < max

1≤j≤k
{S(T kx, T kx, x)}, i = 1, 2, . . . , k − 1.

Hence the condition (2.3) is satisfied. The proof is completed.
The converse of Proposition 2.1 is not always true as we see in the following

example.

Example 2.1. Let R be the real line. Let us consider the usual S-metric on
R defined in [13] as follows

S(x, y, z) = |x− z|+ |y − z|
for all x, y, z ∈ R. Let

Tx =





x, if x ∈ [0, 1]
x− 4, if x = 6, 10
1, if x = 2

Then T is a self-mapping on the S-metric space [0, 1] ∪ {2, 6, 10}.
For x =

1
2
, y =

1
3
∈ [0, 1] we have

S(Tx, Tx, Ty) = S(
1
2
,
1
2
,
1
3
) =

1
3
, S(x, x, y) = S(

1
2
,
1
2
,
1
3
) =

1
3
,

S(Tx, Tx, x) = S(x, x, x) = 0, S(Ty, Ty, y) = S(y, y, y) = 0,

S(Ty, Ty, x) = S(
1
3
,
1
3
,
1
2
) =

1
3
, S(Tx, Tx, y) = S(

1
2
,
1
2
,
1
3
) =

1
3
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and so
S(Tx, Tx, Ty) =

1
3

< max{1
3
, 0, 0,

1
3
,
1
3
} =

1
3
.

Hence T does not satisfy the condition (S25).
We now show that T is a CS-mapping. We have the following cases for x ∈

{2, 6, 10}.
Case 1. For x = 2 and n = 2 we have

S(T 22, T 22, T2) = 0 < max{S(T 22, T 22, 2), S(T2, T2, 2)} = 2.

For n > 2 using similar arguments we can see that (2.3) holds.
Case 2. For x = 6 and n ∈ {2, 3} we have

S(T 26, T 26, T6) = 2 < max{S(T 26, T 26, 6), S(T6, T6, 6)} = 10

and

max{S(T 36, T 36, T6), S(T 36, T 36, T 26)} = 2

< max{S(T 36, T 36, 6), S(T 26, T 26, 6), S(T6, T6, 6)} = 10.

For n > 3 using similar arguments we can see that (2.3) holds.
Case 3. For x = 10 and n ∈ {2, 3, 4} we have

S(T 210, T 210, T10) = 8 < max{S(T 210, T 210, 10), S(T10, T10, 10)} = 16,

max{S(T 310, T 310, T10), S(T 310, T 310, T 210)} = 10

< max{S(T 310, T 310, 10), S(T 210, T 210, 10), S(T10, T10, 10)} = 18

and

max{S(T 410, T 410, T10), S(T 410, T 410, T 210), S(T 410, T 410, T 310)} = 10

< max{S(T 410, T 410, 10), S(T 310, T 310, 10), S(T 210, T 210, 10), S(T10, T10, 10)}
= 18.

For n > 4 using similar arguments we can see that (2.3) holds. Hence T is a
CS-mapping.

Proposition 2.2. Let (X,S) be an S-metric space. Then the notions of a
CS-mapping and an LS-mapping are equivalent.

Proof. Let T be an LS-mapping and x ∈ X. Suppose that the condition (2.2)
is satisfied for each positive integer n ≥ 2. Then we have

min{S(T ix, T ix, T jx) : 0 ≤ i < j ≤ k − 1} > 0,

where 2 ≤ k ≤ n. Let

αn = max
1≤i≤n−1

{S(Tnx, Tnx, T ix) and βn = max
1≤i≤n

{S(T ix, T ix, x)}.
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By the conditions (2.1), (2.4) and (2.5) we obtain

S(Tnx, Tnx, T ix) < max
0≤p<q≤n

{S(T px, T px, T qx)},

where i = 1, 2, . . . , n− 1 and

αn = max{S(Tnx, Tnx, T ix) : 1 ≤ i ≤ n− 1}
< max{αn, βn, max{S(T px, T px, T qx) : 1 ≤ p < q ≤ n− 1}}
= max{βn, max{S(T px, T px, T qx) : 1 ≤ p < q ≤ n− 1}}
= max{αn−1, βn,max{S(T px, T px, T qx) : 1 ≤ p < q ≤ n− 2}}
≤ max{βn, βn−1, max{S(T px, T px, T qx) : 1 ≤ p < q ≤ n− 2}}
= max{βn, max{S(T px, T px, T qx) : 1 ≤ p < q ≤ n− 2}}
≤ . . .

≤ max{βn, max{S(T px, T px, T qx) : 1 ≤ p < q ≤ 2}}
= max{βn, S(Tx, Tx, T 2x)} = max{βn, S(T 2x, T 2x, Tx)}
≤ max{βn, max{S(Tx, Tx, x), S(T 2x, T 2x, x)}} = βn.

Hence the condition (2.3) is satisfied. Consequently T is a CS-mapping.
Conversely, let T be a CS-mapping and x ∈ X. Suppose that the condition

(2.2) is satisfied for each positive integer n ≥ 2. We now show that T is an LS-
mapping. From the condition (2.3) we have

S(Tnx, Tnx, T ix) < max
1≤j≤n

{S(T jx, T jx, x)}, i = 1, 2, . . . , n− 1.

If 1 ≤ j ≤ n, then 0 ≤ j − 1 ≤ n− 1. Let q be chosen such that 0 ≤ j − 1 < q ≤ n.
For j − 1 = 0 we have 1 ≤ q ≤ n and

S(Tnx, Tnx, T ix) < max
1≤q≤n

{S(T qx, T qx, x)}.

If we put j − 1 = p then we have

S(Tnx, Tnx, T ix) < max
0≤p<q≤n

{S(T qx, T qx, T px)} = max
0≤p<q≤n

{S(T px, T px, T qx)}.

Consequently T is an LS-mapping. The proof is completed.
Now we give the definition of the notion of diameter on an S-metric space.

Definition 2.5. Let (X,S) be an S-metric space and A be a nonempty subset
of X. We define

diam{A} = sup{S(x, x, y) : x, y ∈ A}.
Then diam{A} is called the diameter of A. If A is an S-bounded set, then we will
write diam{A} < ∞.

Definition 2.6. Let (X, S) be an S-metric space, T be a self-mapping on X,
Ux = {Tnx : n ∈ N}, diam{Ux} < ∞ and diam{Uy} < ∞. We define

(S25a) S(Tx, Tx, Ty) < diam{Ux ∪ Uy},
for each x, y ∈ X with x 6= y.
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Proposition 2.3. Let (X, S) be an S-metric space and T be a self-mapping
on X. If T satisfies the condition (S25), then T satisfies the condition (S25a).

Proof. Assume that T satisfies the condition (S25). Then we have

S(Tx, Tx, Ty) < max{S(x, x, y), S(Tx, Tx, x), S(Ty, Ty, y),

S(Ty, Ty, x), S(Tx, Tx, y)}
< diam{Ux ∪ Uy}.

Consequently T satisfies the condition (S25a).
The converse of Proposition 2.3 is not always true as we can see in the following

example.
Example 2.2. Let the function S : X3 → [0,∞) be the usual S-metric on R

given in Example 2.1. We define

Tx = x, x ∈ (0, 1) and S1(x, y, z) =
S(x, y, z)

2
.

Then clearly S1(x, y, z) is an S-metric on R.

For x =
1
2
, y =

1
4
∈ (0, 1) we have

S1(Tx, Tx, Ty) = S1(
1
2
,
1
2
,
1
4
) =

1
4
, S1(x, x, y) = S1(

1
2
,
1
2
,
1
4
) =

1
4
,

S1(Tx, Tx, x) = S1(x, x, x) = 0, S1(Ty, Ty, y) = S1(y, y, y) = 0,

S1(Ty, Ty, x) = S1(
1
4
,
1
4
,
1
2
) =

1
4
, S1(Tx, Tx, y) = S1(

1
2
,
1
2
,
1
4
) =

1
4

and so we obtain

S1(Tx, Tx, Ty) =
1
4

< max{1
4
, 0, 0,

1
4
,
1
4
} =

1
4
.

Therefore T does not satisfy the condition (S25). It can be easily seen that T
satisfies the condition (S25a) since sup{(0, 1)} = 1.

3. Some fixed point theorems on S-metric spaces

In this section, we present some fixed point theorems using the notions of a
CS-mapping, an LS-mapping, compactness and diameter on S-metric spaces.

Theorem 3.1. Let T be a CS-mapping from an S-metric space (X, S) into
itself. Then T has a fixed point in X if and only if there exist integers p and q,
p > q ≥ 0 and x ∈ X satisfying

T px = T qx. (3.1)

If the condition (3.1) is satisfied, then T qx is a fixed point of T .
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Proof. Let x0 ∈ X be a fixed point of T , that is, Tx0 = x0. For p = 1, q = 0
the condition (3.1) is satisfied.

Conversely, suppose that there exist integers p and q, p > q ≥ 0 and x ∈ X
satisfying (3.1). Let p be the minimal integer such that T kx = T px, k > q. If we
put T qx = y, n = p− q we have

Tny = TnT qx = T p−q+qx = T px = T qx = y

and n is the minimal integer such that Tny = y, n ≥ 1.
We now show that y is a fixed point of T . Assume that y is not a fixed point

of T . Then n ≥ 2, and
T iy 6= T jy

for 0 ≤ i < j ≤ n− 1. Since T is a CS-mapping we have

S(T iy, T iy, y) = S(T iy, T iy, Tny) = S(Tny, Tny, T iy) < max
1≤j≤n

{S(T jy, T jy, y)}

= max
1≤j≤n−1

{S(T jy, T jy, y)}, i = 1, 2, . . . , n− 1.

Then we obtain

max
1≤i≤n−1

{S(T iy, T iy, y)} < max
1≤j≤n−1

{S(T jy, T jy, y)}.

This is a contradiction. Consequently T qx = y is a fixed point of T .

Corollary 3.1. Let (X, S) be an S-metric space and T be a self-mapping
of X satisfying the condition (S25). Then T has a fixed point in X if and only if
there exist integers p and q, p > q ≥ 0 and x ∈ X satisfying (3.1). If the condition
(3.1) is satisfied, then T qx is a fixed point of T .

Theorem 3.2. Let T be an LS-mapping from an S-metric space (X, S) into
itself. Then T has a fixed point in X if and only if there exist integers p and q,
p > q ≥ 0 and x ∈ X satisfying (3.1). If the condition (3.1) is satisfied, then T qx
is a fixed point of T .

Proof. It is obvious from Proposition 2.2 and Theorem 3.1.
Now we obtain another fixed point theorem using the notion of periodic index.

Definition 3.1. [2] Let (X,S) be an S-metric space, T be a self-mapping on
X and x ∈ X. A point x is called a periodic point of T , if there exists a positive
integer n such that

Tnx = x. (3.2)

The least positive integer satisfying the condition (3.2) is called the periodic index
of x.

Theorem 3.3. Let T be an LS-mapping from an S-metric space (X, S) into
itself. Then T has a fixed point in X if and only if T has a periodic point in X.
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Proof. Let x0 ∈ X be a fixed point of T , that is, Tx0 = x0. For n = 1, the
condition (3.2) is satisfied. Therefore T has a periodic point x0 in X.

Conversely, suppose that x0 ∈ X is a periodic point of T , that is, there exists
a positive integer n such that

Tnx0 = x0.

We now show that x0 is a fixed point of T . To the contrary, assume that x0 is not
a fixed point of T . Then n ≥ 2, and

T ix0 6= T jx0

for 0 ≤ i < j ≤ n− 1. Since T is an LS-mapping,

S(Tnx0, T
nx0, T

ix0) < max
0≤p<q≤n

{S(T px0, T
px0, T

qx0)}, i = 1, 2, . . . , n− 1.

For q = n we have

max
1≤i≤n−1

{S(T ix0, T
ix0, T

nx0)} < max
0≤p≤n−1

{S(T px0, T
px0, T

nx0)},

which is a contradiction. Consequently x0 is a fixed point of T .

Corollary 3.2. Let (X, S) be an S-metric space, T be a self-mapping on X
and T satisfies the condition (S25). Then the following are equivalent:
(1) T has a fixed point in X,
(2) T has a periodic point in X,
(3) There exist integers p and q, p > q ≥ 0 and x ∈ X satisfying T px = T qx.
If the condition (3) is satisfied, then T qx is a fixed point of T .

The S-metric space (X, S) is said to be compact if every sequence in X has a
convergent subsequence. Now we give a fixed point theorem for compact S-metric
spaces.

Theorem 3.4. Let T be a continuous self-mapping from a compact S-metric
space (X,S) into itself and T satisfies the condition (S25a). Then T has a unique
fixed point.

Proof. Since T is a continuous self-map and X is compact, there exist a
compact subset Y of X such that TX ⊂ Y . Then TY ⊂ Y and A =

⋂∞
n=1 TnY is

a nonempty compact subset of X which is mapped by T onto itself. We now show
that A is a singleton consisting of the unique fixed point x0 of T . Assume that A
is not a singleton. Then we have diam{A} > 0. Since A is a compact subset, there
exist x, y ∈ A with S(x, x, y) = diam{A}. Also there exist x′, y′ ∈ A with Tx′ = x,
Ty′ = y since T maps A onto itself. Since T satisfies the condition (S25a) we have

diam{A} = S(x, x, y) = S(Tx′, Tx′, T y′) < diam{A},
which is a contradiction. Consequently T has a unique fixed point.
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Corollary 3.3. Let T be a continuous self-mapping from a compact S-metric
space (X,S) into itself and T satisfies the condition (S25). Then T has a unique
fixed point.

4. Fixed point theorems via cluster points

In this section, we obtain new fixed point theorems by means of cluster points
on an S-metric space.

Definition 4.1. [12] Let (X, S) be an S-metric space. For r > 0 and x ∈ X,
the open ball BS(x, r) is defined as follows:

BS(x, r) = {y ∈ X : S(y, y, x) < r}.

Definition 4.2. Let (X, S) be an S-metric space and A ⊂ X be any subset.
A point x ∈ X is a cluster point of A if

(BS(x, r)− {x}) ∩A 6= ∅,
for every r > 0.

Theorem 4.1. Let (X,S) be an S-metric space and A ⊂ X. Then x is a
cluster point of A if and only if there exist xi ∈ S (i = 1, 2, . . . , n, . . . ) such that
xi 6= xj for each i 6= j and limn→∞ S(xn, xn, x) = 0.

Proof. Assume that there exist xi ∈ S (i = 1, 2, 3, . . . , n, . . . ) such that xi 6= xj

for each i 6= j and limn→∞ S(xn, xn, x) = 0. Then the sequence {xn} converges to
x in A − {x}. Hence for any r > 0, there is n0 ∈ N such that xn ∈ BS(x, r) for
n ≥ n0. So we obtain (BS(x, r)− {A}) ∩A 6= ∅. Consequently x is a cluster point
of A.

Conversely, let x be a cluster point of A. We choose x1 ∈ A such that x1 ∈
BS(x, 1) and x1 6= x. Now we choose x2 ∈ A such that x2 ∈ BS(x, 1

2 ) and x2 6= x,
x2 6= x1. If we continue in this way, we choose xn ∈ A such that xn ∈ BS(x, 1

n ) and
xn 6= x1, xn 6= x2, . . . , xn 6= xn−1, . . . . Consequently we obtain a sequence {xn}
consisting distinct element of A such that limn→∞ S(xn, xn, x) = 0. The proof is
completed.

Theorem 4.2. Let (X, S) be an S-metric space, T be a continuous CS -
mapping on X and x be a point in X for which {Tnx}∞n=0 has a cluster point x0.
Then Tnx0, n = 0, 1, 2, . . . are cluster points of {Tnx}∞n=0.

Proof. Let x0 be a cluster point of {Tnx}∞n=0. Then there exists a subsequence
{Tnix} which converges to x0, that is,

lim
ni→∞

S(Tnix, Tnix, x0) = 0.

We now show that Tnx0, n = 0, 1, 2, . . . are cluster points of {Tnx}∞n=0.
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Since T is a continuous CS-mapping on X,

lim
ni→∞

S(Tnix, Tnix, Tnx0) ≤ lim
ni→∞

max{S(Tnix, Tnix, x0)} = 0.

Consequently Tnx0, n = 0, 1, 2, . . . are cluster points of {Tnx}∞n=0.

Theorem 4.3. Let (X, S) be an S-metric space, T be a continuous CS-
mapping on X and x be a point in X for which {Tnx}∞n=0 has a cluster point
x0. Then T has a fixed point in {Tnx0}∞n=0 if and only if one of the following is
satisfied:
(1) {Tnx}∞n=0 is a convergent sequence.
(2) There exists a positive integer q such that T qz = z, where z is some point in

{Tnx0}∞n=0.

Proof. If {Tnx0} = {x0}, then it can be easily seen that {Tnx} is convergent
and the condition (1) is satisfied. Let {Tnx0} 6= {x0} and z ∈ {Tnx0} be a fixed
point of T . Since z is a cluster point of {Tnx}, there exists a subsequence {Tnix}
which converges to z. Thus by Theorem 4.2 we obtain

lim
ni→∞

S(Tnix, Tnix, z) = lim
ni→∞

S(Tnix, Tnix, Tnz).

Then we have Tnz = z and so the condition (2) is satisfied.
Conversely, if the condition (1) is satisfied, then {Tnx0} = {x0} and x0 is a

fixed point. If the condition (2) is satisfied, then T has a fixed point by Theorem
3.1.

Corollary 4.1. Let (X,S) be an S-metric space, T be a continuous LS-
mapping (or T satisfies the condition (S25)) on X and x be a point in X for which
{Tnx}∞n=0 has a cluster point x0. Then T has a fixed point in {Tnx0}∞n=0 if and
only if one of the following is satisfied:
(1) {Tnx}∞n=0 is a convergent sequence.
(2) There exists a positive integer q such that T qz = z, where z is some point in

{Tnx0}∞n=0.

5. Some generalizations of Nemytskii-Edelstein’s
and Ćirić’s fixed point results

In this section, we give new generalizations of the classical Nemytskii-Edelstein
and Ćirić’s fixed point theorems for continuous self-mappings of a compact S-metric
space. At first we recall the following contractive condition:

d(Tx, Ty) < d(x, y),

for all x, y ∈ X with x 6= y, where (X, d) is a metric space and T a self-mapping
on X.

We note that the completeness of a metric space is not sufficient to guaran-
tee the existence of a fixed point if the contractive condition in Banach fixed point
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theorem is replaced by the above contractive condition. Nemytskii [6] and (indepen-
dently) Edelstein [3] proved a fixed point theorem using the above contractive con-
dition. Hence, the following theorem is known as the classical Nemytskii-Edelstein
fixed point theorem.

Theorem 5.1. [3, 6] Let T be a mapping from a compact metric space (X, d)
into itself satisfying

d(Tx, Ty) < d(x, y),

for all x, y ∈ X with x 6= y. Then T has a unique fixed point.

In [12], a generalization of the above classical theorem was given as follows:

Theorem 5.2. [12] Let (X, S) be a compact S-metric space with T : X → X
satisfying

S(Tx, Tx, Ty) < S(x, x, y), (5.1)

for all x, y ∈ X with x 6= y. Then T has a unique fixed point.

As a result of Theorem 3.4, we give now two new generalizations of Nemytskii-
Edelstein theorem for continuous self-mappings on a compact S-metric space. No-
tice that if T satisfies the inequality (5.1) then T satisfies the condition (S25).
Indeed we have

S(Tx, Tx, Ty) < S(x, x, y)

< max{S(x, x, y), S(Tx, Tx, x), S(Ty, Ty, y), S(Ty, Ty, x), S(Tx, Tx, y)},
for all x, y ∈ X with x 6= y. Therefore we can deduce the following:
(1) Corollary 3.3 is a generalization of Theorem 5.2.
(2) Using Proposition 2.3 it follows that Theorem 3.4 is another generalization of

Theorem 5.2.
Now we give an example of a continuous self-mapping which satisfies the con-

ditions (S25) and (S25a) but does not satisfy the inequality (5.1).
Example 5.1. Let X = [0, 1] with the usual S-metric given in Example 2.1.

Let us define the function T : X → X as

Tx =
{

x + 1
2 , x ∈ [

0, 1
2

)

1, x ∈ [
1
2 , 1

]

for all x ∈ X. Then T is a continuous self-mapping on the compact S-metric space
([0, 1] , S).

For x, y ∈ [
0, 1

2

)
we have

S(Tx, Tx, Ty) = 2 |x− y| < S(x, x, y) = 2 |x− y| .
This shows that the inequality (5.1) is not satisfied. It can be easily seen that T
satisfies the conditions (S25) and (S25a). Consequently, T has a unique fixed point
x = 1 in [0, 1].
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Recently, Ćirić’s fixed point result was also generalized by Sedghi and Dung
as seen in the following corollary.

Corollary 5.1. [13] Let (X, S) be a complete S-metric space and T be a self-
mapping on X satisfying

S(Tx, Tx, Ty) ≤ h max{S(x, x, y), S(Tx, Tx, x), S(Ty, Ty, y),

S(Ty, Ty, x), S(Tx, Tx, y)}, (5.2)

for all x, y ∈ X and some h ∈ [
0, 1

3

)
. Then T has a unique fixed point in X and T

is continuous at the fixed point.

Finally, we note that Corollary 3.3 is also a generalization of Corollary 5.1. In
[8], the present authors called the inequality (5.2) as (Q25) and then gave another
generalization of Corollary 5.1 for continuous self-mappings on a compact S-metric
space. Also, this last generalization coincides with Corollary 3.3. If we consider
the self mapping defined in Example 5.1 then it can be easily checked that the
inequality (5.2) is not satisfied.
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