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FINITE GROUPS WHOSE COMMUTING GRAPHS ARE INTEGRAL

Jutirekha Dutta and Rajat Kanti Nath

Abstract. A finite non-abelian group G is called commuting integral if the commuting
graph of G is integral. In this paper, we show that a finite group is commuting integral if
its central quotient is isomorphic to Zp × Zp or D2m, where p is any prime integer and D2m

is the dihedral group of order 2m.

1. Introduction

Let G be a non-abelian group with center Z(G). The commuting graph of G, denoted
by ΓG, is a simple undirected graph whose vertex set is G \ Z(G), and two vertices
x and y are adjacent if and only if xy = yx. In recent years, many mathematicians
have considered commuting graphs of different finite groups and studied various graph
theoretic aspects (see [4,7,11–14]). A finite non-abelian group G is called commuting
integral if the commuting graph of G is integral. It is natural to ask which finite groups
are commuting integral. In this paper, we compute the spectrum of the commuting
graphs of finite groups whose central quotients are isomorphic to Zp × Zp, for any
prime integer p, or D2m, the dihedral group of order 2m. Our computation reveals
that those groups are commuting integral.

Recall that the spectrum of a graph G, denoted by Spec(G), is the multiset
{λk1

1 , λ
k2
2 , . . . , λkn

n }, where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of
G with multiplicities k1, k2, . . . , kn respectively. A graph G is called integral if Spec(G)
contains only integers. It is well known that the complete graph Kn on n vertices is
integral and Spec(Kn) = {(−1)n−1, (n−1)1}. Further, if G = Km1

tKm2
t· · ·tKml

,
where Kmi

’s are complete graphs on mi vertices for 1 ≤ i ≤ l, then

Spec(G) = {(−1)
∑l

i=1 mi−l, (m1 − 1)1, (m2 − 1)1, . . . , (ml − 1)1}.
The notion of integral graph was introduced by Harary and Schwenk [9] in the year
1974. Since then many mathematicians have considered integral graphs, see for ex-
ample [2, 10, 15]. A very impressive survey on integral graphs can be found in [6].
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Ahmadi et alṅoted that integral graphs are of some interest for designing the network
topology of perfect state transfer networks, see [3] and the references therein.

For any element x of a group G, the set CG(x) = {y ∈ G : xy = yx} is called
the centralizer of x in G. Let |Cent(G)| = |{CG(x) : x ∈ G}|, that is the number of
distinct centralizers in G. A group G is called an n-centralizer group if |Cent(G)| =
n. In [8], Belcastro and Sherman characterized finite n-centralizer groups for n =
4, 5. As a consequence of our results, we show that 4-, 5-centralizer finite groups
are commuting integral. Further, we show that a finite (p+ 2)-centralizer p-group is
commuting integral for any prime p.

2. Main results and consequences

We begin this section with the following theorem.

Theorem 2.1. Let G be a finite group such that G
Z(G)

∼= Zp ×Zp, where p is a prime

integer. Then

Spec(ΓG) = {(−1)(p
2−1)|Z(G)|−p−1, ((p− 1)|Z(G)| − 1)p+1}.

Proof. Let |Z(G)| = n. Then since G
Z(G)

∼= Zp × Zp we have G
Z(G) = 〈aZ(G), bZ(G) :

ap, bp, aba−1b−1 ∈ Z(G)〉, where a, b ∈ G with ab 6= ba. Then for any z ∈ Z(G), we
have

CG(a) = CG(aiz) = Z(G) t aZ(G) t · · · t ap−1Z(G) for 1 ≤ i ≤ p− 1,

CG(ajb) = CG(ajbz) = Z(G) t ajbZ(G) t · · · t a(p−1)jbp−1Z(G) for 1 ≤ j ≤ p.
These are the only centralizers of non-central elements of G. Also note that these
centralizers are abelian subgroups of G. Therefore

ΓG = K|CG(a)\Z(G)| t
( p⊔

j=1

K|CG(ajb)\Z(G)|

)
.

Thus ΓG = K(p−1)n t (
⊔p

j=1K(p−1)n), since |CG(a)| = pn and |CG(ajb)| = pn for
1 ≤ j ≤ p where as usual Km denotes the complete graph with m vertices. That is,
ΓG =

⊔p+1
j=1 K(p−1)n. Hence the result follows. �

The above theorem shows that G is commuting integral if the central quotient of
G is isomorphic to Zp × Zp for any prime integer p. Some consequences of Theorem
2.1 are given below.

Corollary 2.2. Let G be a non-abelian group of order p3, for any prime p. Then

Spec(ΓG) = {(−1)p
3−2p−1, (p2 − p− 1)p+1}.

Hence, G is commuting integral.

Proof. Note that |Z(G)| = p and G
Z(G)

∼= Zp × Zp. Hence the result follows from

Theorem 2.1. �
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Corollary 2.3. If G is a finite 4-centralizer group then G is commuting integral.

Proof. If G is a finite 4-centralizer group then by Theorem 2 of [8] we have G
Z(G)

∼=
Z2 × Z2. Therefore, by Theorem 2.1,

Spec(ΓG) = {(−1)3(|Z(G)|−1), (|Z(G)| − 1)3}.
This shows that G is commuting integral. �

Further, we have the following result.

Corollary 2.4. If G is a finite (p+ 2)-centralizer p-group, for any prime p, then

Spec(ΓG) = {(−1)(p
2−1)|Z(G)|−p−1, ((p− 1)|Z(G)| − 1)p+1}.

Hence, G is commuting integral.

Proof. If G is a finite (p + 2)-centralizer p-group then by Lemma 2.7 of [5] we have
G

Z(G)
∼= Zp × Zp. Now the result follows from Theorem 2.1. �

The following theorem shows that G is commuting integral if the central quotient
of G is isomorphic to the dihedral group D2m = 〈a, b : am = b2 = 1, bab−1 = a−1〉.

Theorem 2.5. Let G be a finite group such that G
Z(G)

∼= D2m, for m ≥ 2. Then

Spec(ΓG) = {(−1)(2m−1)|Z(G)|−m−1, (|Z(G)| − 1)m, ((m− 1)|Z(G)| − 1)1}.

Proof. Since G
Z(G)

∼= D2m we have G
Z(G) = 〈xZ(G), yZ(G) : x2, ym, xyx−1y ∈ Z(G)〉,

where x, y ∈ G with xy 6= yx. It is not difficult to see that for any z ∈ Z(G),

CG(y) = CG(yiz) = Z(G) t yZ(G) t · · · t ym−1Z(G), 1 ≤ i ≤ m− 1

and

CG(xyj) = CG(xyjz) = Z(G) t xyjZ(G), 1 ≤ j ≤ m
are the only centralizers of non-central elements of G. Also note that these centralizers
are abelian subgroups of G. Therefore

ΓG = K|CG(y)\Z(G)| t
( m⊔

j=1

K|CG(xyj)\Z(G)|

)
.

Thus ΓG = K(m−1)n t (
⊔m

j=1Kn), since |CG(y)| = mn and |CG(xjy)| = 2n for

1 ≤ j ≤ m, where |Z(G)| = n. Hence the result follows. �
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Corollary 2.6. If G is a finite 5-centralizer group then G is commuting integral.

Proof. If G is a finite 5-centralizer group then by Theorem 4 of [8] we have G
Z(G)

∼=
Z3 × Z3 or D6. Now, if G

Z(G)
∼= Z3 × Z3 then by Theorem 2.1 we have

Spec(ΓG) = {(−1)8|Z(G)|−4, (2|Z(G)| − 1)4}.
Again, if G

Z(G)
∼= D6 then by Theorem 2.5 we have

Spec(ΓG) = {(−1)5|Z(G)|−4, (|Z(G)| − 1)3, (2|Z(G)| − 1)1}.
In both cases ΓG is integral. Hence G is commuting integral. �

We also have the following result.

Corollary 2.7. Let G be a finite non-abelian group and {x1, x2, . . . , xr} be a set of
pairwise non-commuting elements of G having maximal size. Then G is commuting
integral if r = 3, 4.

Proof. By Lemma 2.4 of [1], we have that G is a 4-centralizer or a 5-centralizer group
according as r = 3 or 4. Hence the result follows from Corollaries 2.3 and 2.6. �

We now compute the spectrum of the commuting graphs of some well-known
groups, using Theorem 2.5.

Proposition 2.8. Let M2mn = 〈a, b : am = b2n = 1, bab−1 = a−1〉 be a metacyclic
group, where m > 2. Then

Spec(ΓM2mn
) =

{
{(−1)2mn−m−n−1, (n− 1)m, (mn− n− 1)1}, if m is odd

{(−1)2mn−2n−m
2 −1, (2n− 1)

m
2 , (mn− 2n− 1)1}, if m is even.

Proof. Observe that Z(M2mn) = 〈b2〉 or 〈b2〉 ∪ am
2 〈b2〉 depending whether m is odd

or even. Also, it is easy to see that M2mn

Z(M2mn)
∼= D2m or Dm depending whether m is

odd or even. Hence, the result follows from Theorem 2.5. �

The above Proposition 2.8 also gives the spectrum of the commuting graph of the
dihedral group D2m, where m > 2, as given below:

Spec(ΓD2m
) =

{
{(−1)m−2, 0m, (m− 2)1}, if m is odd

{(−1)
3m
2 −3, 1

m
2 , (m− 3)1}, if m is even.

Proposition 2.9. The spectrum of the commuting graph of dicyclic group or the
generalized quaternion group Q4m = 〈a, b : a2m = 1, b2 = am, bab−1 = a−1〉, where
m ≥ 2, is given by

Spec(ΓQ4m
) = {(−1)3m−3, 1m, (2m− 3)1}.

Proof. The result follows from Theorem 2.5 noting that Z(Q4m) = {1, am} and
Q4m

Z(Q4m)
∼= D2m. �

Proposition 2.10. Consider the group U6n = 〈a, b : a2n = b3 = 1, a−1ba = b−1〉.
Then Spec(ΓU6n

) = {(−1)5n−4, (n− 1)3, (2n− 1)1}.
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Proof. Note that Z(U6n) = 〈a2〉 and U6n

Z(U6n)
∼= D6. Hence the result follows from

Theorem 2.5. �

We conclude the paper by noting that the groups M2mn, D2m, Q4m and U6n are
commuting integral.
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