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Abstract. The purpose of this paper is to find conditions which guarantee quasiregu-
larity of a harmonic map of the unit disk D of the form f(z) = ReB1(z) + i ImB2(z), where
B1, B2 are automorphisms of D.

1. Introduction

Quasiconformal harmonic maps are natural generalization of the notion of conformal
map. A function w is called harmonic in a region D if it has the form w = u+iv where
u and v are real-valued harmonic functions in D. If D is simply-connected, then there
are two analytic functions g and h defined on D such that w has the representation
w = g + h.

On the other hand, a quasiconformal map f is an orientation-preserving homeo-
morphism, which is at least partially differentiable almost everywhere on a domain D
in C, satisfying the Beltrami equation fz = µfz.

More precisely, an analytic definition of quasiconformal map can be given in the
following way. Let f be an orientation-preserving homeomorphism of a domain D
into C. Then f is quasiconformal if (see for instance [7]):

1. f is absolutely continuous on lines (ACL).

2. There exists a constant k, 0 ≤ k < 1, such that |fz| ≤ k |fz| almost everywhere
on D.

Setting K = (1 + k)/(1− k) , we say that f is a K-quasiconformal mapping. We
call the infimum of K > 1 such that f is K-qc, the maximal dilatation of f , and
denote it by Kf .
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242 Quasi-regularity of harmonic maps

Quasiregular map is a map which satisfies the conditions 1. and 2. but which is not
necessarily a homeomorphism. In this paper, we will consider quasiregular harmonic
maps, i.e. we will not require map to be injective.

The first characterization of harmonic quasiconformal mappings with respect to
the Euclidean metric for the unit disc was given by O. Martio, [4]. Thereafter this
area has been studied by the participants of Belgrade Seminar for Analysis; for a
partial review and further results see for example [1, 3, 5].

Let D = {z ∈ C : |z| < 1} denote the unit disk, and denote the circle of radius
r and center z0 by C(z0, r) = {z ∈ C : |z − z0| = r}. Let B(z) = λ

∏n
j=1

aj−z
1−ajz ,

a1, . . . , an ∈ D, |λ| = 1 be a finite Blaschke product, where B : D → D, such that
|B(z)| < 1 for z ∈ D and |B(z)| = 1 for z ∈ ∂D.

In this paper, we consider the question, suggested by Matti Vuorienen in a personal
communication, when a map of the form f(z) = ReB1(z) + i ImB2(z) is harmonic
quasi-regular, where B1, B2 are finite Blaschke products. We will give necessary and
sufficient conditions for this (Theorem 2.1), when B1 and B2 are automorphisms of
the unit disk, give a bound for quasi-regularity constant K (Theorem 2.2), as well as
a simpler, sufficient condition (Corollary 2.3).

2. Main results

Our main result is the following theorem.

Theorem 2.1. Let B1, B2 : D → D be automorphisms of the unit disk given by
B1(z) = a−z

1−az , B2(z) = b−z
1−bz , |a| < 1, |b| < 1. Then the mapping f : D → C, where

f(z) = ReB1(z) + i ImB2(z) is quasiregular if and only if

Re(1 + i)(1− ab) >
√

2|a− b| and Im(1 + i)(1− ab) >
√

2|a− b|, (2)

and f(z) is harmonic for all a, b ∈ D.

Proof. We compute the real and the imaginary part of f(z):

Re
a− z
1− az

=
1

2

( a− z
1− az

+
a− z
1− az

)
, Im

b− z
1− bz

=
1

2i

( (b− z)
(1− bz)

− b− z
1− bz

)
.

Then f(z) has the form:

f(z) =
1

2

( a− z
1− az

+
a− z
1− az

)
+

1

2

( b− z
1− bz

− b− z
1− bz

)
.

Now we find the partial derivatives of f(z) with respect to z and z respectively:

fz(z) =
1

2

( |a|2 − 1

(1− az)2
+
|b|2 − 1

(1− bz)2
)
, fz(z) =

1

2

( |a|2 − 1

(1− az)2
+
|b|2 − 1

(1− bz)2
)
.

Let us set

A(z) =
|a|2 − 1

(1− az)2
, B(z) =

|b|2 − 1

(1− bz)2
,
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Then we have:

fz(z) = A(z) +B(z), fz(z) = A(z)−B(z).

Now we find the complex dilation µ of f and k(z) = |µ(z)|:

µ(z) =
fz(z)

fz(z)
=
A(z)−B(z)

A(z) +B(z)
,

k(z) =
∣∣∣A(z)−B(z)

A(z) +B(z)

∣∣∣ =
|A(z)−B(z)|
|A(z) +B(z)|

=
|A(z)−B(z)|
|A(z) +B(z)|

.

Then k(z) =
|1− B(z)

A(z) |

|1 + B(z)
A(z) |

=
|1− w|
|1 + w|

, for w =
B(z)

A(z)
.

To prove that f(z) is harmonic quasiregular we have to show that for some q < 1:

|1− w|
|1 + w|

≤ q < 1. (3)

The condition |1−w||1+w| < 1 is equivalent to Rew > 0, where w = B(z)
A(z) = |b|2−1

(1−bz)2
(1−az)2
|a|2−1 .

Clearly we have Rew = |b|2−1
|a|2−1 Re (1−az)2

(1−bz)2 , and |b|2−1
|a|2−1 > 0, since |a|, |b| < 1, the

condition Rew > 0 is equivalent to Re (1−az)2

(1−bz)2 > 0.

Let us introduce a map φ, where

φ(z) =
1− az
1− bz

. (4)

Note that φ is a Moebius transformation which maps C(0, 1) to another circle Cf ,

the condition Re (1−az)2

(1−bz)2 > 0 for z ∈ D is equivalent to Cf belonging to regions I or

II, where the region I is x > |y| and the region II is x < −|y|.
Let us find the center Of and radius rf of Cf :

φ(z) =
1− az
1− bz

=
a

b

(z − 1
a

z − 1
b

)
=
a

b

(
1 +

1
b
− 1

a

z − 1
b

)
=
a

b
+

a
b
− 1

bz − 1
.

We can write φ(z) = φ1 ◦ φ2 ◦ φ3 ◦ φ4 ◦ φ5(z) such that

φ5(z) = bz, φ4(z) = z − 1, φ3(z) =
1

z
, φ2(z) = (

a

b
− 1)z, φ1(z) = z +

a

b
.

Let us see what circle C(0, 1) is mapped to under φ, step by step:

1. map φ5: the image of unit circle under this map is a circle C(O1, r1) with
center O1 = 0 and radius r1 = |b|, since the map is a homothety with cofficient
|b| composed with a rotation preserving the circle center 0.

2. map φ4: this map is a translation by −1, and the image of our circle becomes
C(O2, r2) with center O2 = −1 and radius r2 = |b|.

3. map φ3: application of the map φ3(z) = 1
z to circle from the previous step gives

the circle C(O3, r3) with center O3 and radius r3, where, using that the center
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is on the real line,

O3 =
1

2

( −1

1− |b|
− 1

1 + |b|

)
=

−1

1− |b|2
,

and r3 =
−1

1 + |b|
+

1

1− |b|2
=

|b|
1− |b|2

.

4. map φ2: this map is multiplication by (α − 1), where α = a
b
, and we get that

image of C(O3, r3) under this map is the circle C(O4, r4) with center O4 and
radius r4, where

O4 = (α− 1)
−1

1− |b|2
=

1− α
1− |b|2

, i.e. O4 =
1− a/b
1− |b|2

=
b− a

b(1− |b|2)
,

and r4 = |α− 1| |b|
1− |b|2

, i.e. r4 =
|a− b|
|b|

|b|
1− |b|2

=
|a− b|
1− |b|2

.

5. map φ1: this map is a translation by α, where α = a
b
, and we get the final circle

C(Of , rf ) with center Of and radius rf , where

Of =
b− a

b(1− |b|2)
+
a

b
=

b− a|b|2

b(1− |b|2)
, (5)

and rf =
|a− b|
1− |b|2

. (6)

Now we got the final circle with center Of = b−a|b|2

b(1−|b|2) , and a radius rf = |a−b|
1−|b|2 .

For convenience, we will apply homotethy with cofficient 1 − |b|2, we get Oh =
1− ab, rh = |a− b| (this homothety preserves regions I, II). Note that, since |ab| < 1,
Oh never lies in region II of Figure 1.

Next, we apply rotation R by π/4, R(z) = eiπ/4z, which takes the region I to the
region x > 0 , y > 0 (i.e. the first quadrant). Our circle will be mapped to circle with
center eiπ/4 Oh and radius rh . The circle will be in the first quadrant if and only if
Re(eiπ/4 Oh) > rh, Im(eiπ/4Oh) > rh which is equivalent to:

Re(1 + i)(1− ab) >
√

2|a− b|, Im(1 + i)(1− ab) >
√

2|a− b|.

Theorem 2.2. The quasi-regularity constant K for a map f(z) = ReB1(z)+i ImB2(z)

from Theorem 2.1 satisfies K < R4+1
2ε2 , where R = |1−ab|+|a−b|√

(1−|a|2)(1−|b|2)
and

ε = min
(

(Re( 1+i√
2
)(1−ab))−|a−b|√

(1−|a|2)(1−|b|2)
,
(Im( 1+i√

2
)(1−ab))−|a−b|√

(1−|a|2)(1−|b|2)

)
.

Proof. We will use the notation from the proof of Theorem 2.1. Recall that w(z) =
1−|b|2
1−|a|2

(
1−az
1−bz

)2
, and our map f is K-quasi-regular with K = 1+q

1−q if and only if (3)

holds for all z ∈ D.
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If M(w) = 1−w
1+w , then C(0, q)

M−→ C(O′, r′), where

O′ =
1

2

(1 + q

1− q
+

1− q
1 + q

)
=

1 + q2

1− q2

and r′ =
(1 + q

1− q
− 1− q

1 + q

)
=

2q

1− q2
.

Since M(M(w)) = w, we have that the condition (3) is equivalent to the condition
that w(z) lies inside the circle C(O′, r′).

Now w(z) = ψ(z)2, where ψ(z) =
√

1−|b|2
1−|a|2

1−az
1−bz =

√
1−|b|2
1−|a|2φ(z), where the map

φ(z) is given by formula (4) from Theorem 2.1. Since φ maps C(0, 1) to circle

−3. −2. −1. 1. 2. 3. 4. 5. 6. 7.

−3.

−2.

−1.

1.

2.

3.

4.

0 y

R2 r′

O′

x

Figure 1: The intersections of circles C(0, R2) and C(O′, r′).

C(Of , rf ), where Of , rf are given by (5) and (6), ψ maps C(0, 1) to circle C(O, r),
where

O =

√
1− |b|2
1− |a|2

Of =
|1− ab|√

(1− |a|2)(1− |b|2)
,

and r =

√
1− |b|2
1− |a|2

rf =
|a− b|√

(1− |a|2)(1− |b|2)
.

So, we want to find a sufficient condition, so that C(O, r) is mapped inside C(O′, r′)
under the square mapping.

Note that C(O, r) lies inside C(0, R), where R = |O| + r = |1−ab|+|a−b|√
(1−|a|2)(1−|b|2)

, and

after rotation by the angle π/4 around 0, C(O, r) is mapped to C( 1+i√
2
O, r) which lies

in the region Ω = {z ∈ C : Re z > ε ∧ Im z > ε}, where

ε = min
( (Re( 1+i√

2
)(1− ab))− |a− b|√

(1− |a|2)(1− |b|2)
,

(Im( 1+i√
2

)(1− ab))− |a− b|√
(1− |a|2)(1− |b|2)

)
.
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Since Im(z2) = 2 Re(z) Im(z) and ( 1+i√
2

)2 = i, the region Ω will be mapped inside the

region {z ∈ C : Re z ≥ 2ε2} under the map z 7→ z2/( 1+i√
2

)2.

Thus, it is enough that region {z ∈ C : Re z ≥ 2ε2 ∧ |z| < R2} is inside the circle
C(O′, r′), which is true if the intersections of circles C(0, R2) and C(O′, r′) have real
parts greater or equal to 2ε2 (see Figure 1).

Now let us compute an upper bound for quasiregularity constant K.
From Figure 1, we have, by Pythagoras’s theorem.

R4 − x2 = r′
2 − y2 (7)

and x+ y = O′ (8)

From (7) we have R4 − r′2 = x2 − y2 = (x− y)(x+ y), so x− y = R4−r′2
x+y = R4−r′2

O′ ,

and therefore x = R4−r′2
O′ + y = R4−r′2

O′ + O′ − x. Then x = 1
2

[
R4−r′2+O′2

O′

]
, so

our condition is 1
2

[
R4−r′2+O′2

O′

]
> 2ε2, i.e. R4 − r′

2
+ O′

2
> 4ε2O′. Substituting

O′ = 1+q2

1−q2 , r
′ = 2q

1−q2 , we get:

R4 + 1 > 4ε2
1 + q2

1− q2
.

or
1 + q2

1− q2
<
R4 + 1

4ε2
.

Note that, for |q| < 1, 1+q
1−q = (1+q)2

1−q2 = 1+q2

1−q2 + 2q
1−q2 < 2 1+q2

1−q2 . Since 1
2K = 1

2
1+q
1−q <

1+q2

1−q2 , we get K < R4+1
2ε2 . �

Figure 2: The region of points b around point a where |a− b| < g(a, b) and a circle around
a = 0.3 + i 0.4 with radius r = 0.75

2
√
2
.

Now that we have estimated K, we give a simpler condition for quasiregularity
of our map f . Our region, given by inequalities (2), is illustrated in Figure 2. Note
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that condition (2) is of the form |a − b| < g(a, b), where g(a, b) is the minimum of
Re(1 + i)(1− ab) and Im (1 + i)(1− ab).

Corollary 2.3. If |a− b| < 1−|a|2

2
√
2

then f(z) = ReB1(z) + i ImB2(z) is quasiregular

on D.

Proof. We need to prove that from |a− b| < 1−|a|2

2
√
2

, it follows:

Re(1 + i)(1− ab) >
√

2|a− b|, Im(1 + i)(1− ab) >
√

2|a− b|
It is sufficient to prove:

Re
(1 + i)√

2
(1− ab) > 1− |a|2

2
√

2
Im

(1 + i)√
2

(1− ab) > 1− |a|2

2
√

2
.

Assume b = a+ (b− a) = a+ ρeiθ, where ρ < 1−|a|2

2
√
2

. Then the center

O = 1− ab = 1− a(a+ ρeiθ)ab = 1− |a|2 − aρ eiθ.

Now Re (1+i)√
2

(1 − ab) = 1−|a|2√
2

+ Re (1+i)√
2

(−aρ eiθ). Let eiϕ = (1+i)√
2
eiθ. Since

ρ < 1−|a|2

2
√
2
,− 1−|a|2

2
√
2
< Re ρeiϕ < 1−|a|2

2
√
2

, we get

Re
(1 + i)√

2
(1− ab) > 1− |a|2√

2
− 1− |a|2

2
√

2
= (1− |a|2)(

1√
2
− 1

2
√

2
) =

1− |a|2

2
√

2
.
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[1] D. Kalaj, M. Mateljević, Quasiconformal harmonic mappings and generalizations, J. Analysis,
18 (2010), 239–260.
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