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LINEAR HAMILTONIAN SYSTEM IN SCALE OF HILBERT SPACES
AND THE POINCARE RECURRENCE THEOREM

Oleg Zubelevich

Abstract. We consider an initial value problem for linear Hamiltonian system in the
scale of Hilbert spaces and prove an existence and uniqueness theorem. We also prove a
version of the Poincaré Recurrence Theorem.

1. Statement of the problem

Linear differential equations in Banach spaces and the semigroup theory have become
a classical topic of PDE since the fifties of the last century.

One of the central results of this theory is the Hille-Yosida theorem [10], [5]. This
theorem provides necessary and sufficient conditions that a densely defined operator
A: E — E of a Banach space E generates a strongly continuous semirgoup {e*4} or,
in other words, the initial value problem

&= Az, z(0)=

has a good enough solution z(t) = e*43.

This theorem is formulated in terms of spectrum of the operator A. The point is
that the spectrum of an operator is not always simple to comprehend.

In this short paper we consider a Hamiltonian system in the scale of Hilbert spaces.
Apparently there are no direct ways to solve such systems by means of the standard
spectral methods.

To motivate the statement of our main problem we first simulate the whole con-
struction by means of the easiest example. The matrix J (see below) in this example
is very simple therefore the corresponding result follows from the Hille—Yosida theo-
rem. But, in general case, our main theorem is not deduced from the Hille-Yosida
theorem.

Let © C R™ be a bounded domain with smooth enough boundary 0. It is
well known that the Laplace operator A has the countable system of eigenfunctions

>
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260 Linear Hamiltonian system in scale of Hilbert spaces

j(a) € C=(@),
—Aej = )\?ej, e;j(092) =0, jeN.
These functions form orthogonal basis of L?(£2) and
O<Xd<XA<..., A\j—oox

as j — oo. We also assume that ||e;||z2(q) = 1.

Introduce a space
o0 o0
Y, = {u(m) = Zukek | |lul|? = Zuz)\is < oo}7 seR.
k=1 k=1
One may treat elements of Yy as distributions:

= drer €D(Q), (u,0) =) urdy.
k=1 k=1
It is not hard to show that the last sum is convergent.

The spaces Y; are Hilbert spaces (all the Hilbert spaces we use are over the field
R) with the inner products

oo o0
(u,v)s = Z)\isukvk, v(z) = kaek cYi.
k=1 k=1
The spaces Y, are referred to as fractional power spaces associated to the Laplace
operator. Observe that Yy = L2(Q2), Y; = H}(Q).

The power of the Laplace operator is defined in the natural way
o0
(—A)Hu = Z)\iuukek,
k=1

and (—A)* : Y, = Y, o,, p €R,is an isometric isomorphism.

Consider the wave equation
ugp = Au,  u(t, ) |zeon=0, u(0,2)=1a(z), u0,2)="70(x). (2)
Introduce a vector-valued function f(t,z) = (u(t,x),w(t,z))T and rewrite our prob-
lem as follows

n=ae a= (4 o) = (T ae):

The initial conditions take the form
w(0,z) = (=A) " 20(z).
It is convenient to solve problem (2) in Y;, u(t,-),w(t, ) € Ys with
u€eYs, U€EYs_q.

Observe that the Schrodinger equation i, = A, Y = 1 + @y can also be
written in the form & = JBE, € = (Y1,12)T where B is a positively defined self-
adjoint operator and J is a skew-symmetric operator.
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1.1 Abstract construction

In this section we describe the above situation axiomatically. All the inessential
positive constants we denote by the letters ¢, ¢, ¢a, ... or by ¢ with another subscript.
Let

X166 CXsy, 6>0, s€R (3)
be a scale of real Hilbert spaces with inner products (-,-)s and the corresponding
norms || - ||s, | lls < || - |ls+s. The space X445 is dense in X,. In the above example
Xs =Y, xY,.

Let

J: Xs = Xs, (Jr,y)s = —(Jy,x)s

stand for a bounded skew-symmetric operator. This means that the operator J is
defined on (J,cp Xs and J(X;) C X,. The same holds for all other operators, yet we
do not stress on this.

If it is not specified anything else, the parameter ¢ belongs to the interval I =
[0,T], T > 0.

Introduce a bounded operator B : Xy — X,_1. This operator enjoys the following
properties.

1. the operator B is self-adjoint and non-negative
(Bz,y)s = (z,By)s, (Bz,2)s 20, z,y€ X3

2. all the powers B? : X 4, — X, are bounded and coercive
(B, x)s > C||$H§+g/2, 02>0, =€ Xgo;

3. the operator —B? generates a Cy—semigroup [10]
e B X, 5 X,
such that for any z € X, we have
1

E(e_thr —I)x—l—BUx

— 0,
as t — O+.

Moreover, e *B7(X,) C X,45, t € (0,T] and for any z € X, and for any
d € (0,c¢s5) the estimate

le=t5" x| <

1
s+ S W”‘/EHS7 1 = 01(87(5; U) (4)

is fulfilled.
The main object of our study is the following Hamiltonian initial value problem
i=JB%x, 2(0)=i¢c X; (5)
with some fixed constants 6 > 0, § € R.

1.2 Several remarks on accepted hypotheses

In the above example all the hypotheses can be checked by direct calculation.
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Observe that hypotheses on the operator J can be considerably relaxed. Actually,
one can put J : X; — X,_,,, u >0 to be a bounded and skew-symmetric operator:
(x, Jy)s = —(Jz,y)s, 2,y € Xoyp-

This generalization does not bring any essential difficulties in the proofs of the theo-
rems but makes the formulas more complicated than we have now.

Formula (4) is very standard in the parabolic semigroup theory [9], [1], [11].

In the sequel we do not use all the Hilbert spaces contained in the scale {X;}.
Actually we use only the spaces with indexes

3, 8+v, 8-—v—-06, 5—7-356/2, §—v—20, 5-6/2, s+6.
But the scales arise in the applications. Furthermore we believe that the scale {X}

is more acceptable object than several different spaces which look like a cumbersome
and artificial construction.

2. Main theorems

Let Cy(Ir, X,) stand for the space C(Ir, XS) and X, is the space X, endowed with
the weak topology.
THEOREM 2.1. 1. Problem (5) has a weak solution
1}(t) S LOO(IT, Xg) N Cw(IT, Xg_,y)
with arbitrary T > 0 and arbitrary v > &. That is
(a) for any ¢ € X;_., it follows that

(w,m(t))Fv — (w,x(to))éi7

ast —tg € Ip;

(b) for any u(t) € C*(Ir, Xs1~), w(T) =u(0) =0 it follows that

/(u(t)@(t))édt:/ (B Ju(t), x(t)), dt.
0 0

For almost all t € I this solution enjoys the inequality
z(®)lls < cll2]]s. (6)

The constant ¢ does not depend on T.

2. Assume in addition that embeddings (3) are compact. Then the solution
x(t) € C(Ir, Xsny) N C (I, X5-7-5) (7)

is unique. This is a classical solution in the space Xz_-.

Indeed, under the conditions of the second part of the theorem system (5) possesses

the Hamiltonian
H(z) = = (B%z,z) _ 1 (B&/Q:U,B&/Qx)

5—y-26 " 9

z = x(t) (8)

§—y—26"

N =
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which is the first integral to this system:
H=(B2,i), = (B%z,JB%x) =0.

§—vy—26 §—y—26
Actually system (5) possesses the continuum set of Hamiltonians:

1 .
Hy(z) = 5(B";mac)s7 s< 38—y —20.
Using formula (8) we see that any solution of the kind (7) satisfies the estimate
crrlle ()3 —s6 /2 < H(x(t)) = H(2) < c1sl|2]13__36/2- (9)

This implies the uniqueness in Theorem 2.1.
Let us formulate a version of the Poincaré Recurrence Theorem.

THEOREM 2.2. Assume that both parts of Theorem 2.1 are fulfilled. Then there is an
increasing sequence tp — 00, such that

(k) = &lls-y—36/2 = 0.

Unlike classical Poincaré Recurrence Theorem this assertion deals with a dynam-
ical system on non compact infinite dimensional phase space. Another version of the
recurrence theorem for an infinite dimensional system on non compact space has been
proved for a hydrodynamic problem in [6].

3. Proofs of the theorems

3.1 Auxiliary lemmas

LEMMA 3.1. Let p stand for the standard Lebesque measure in Ry = (0,00). Let
T C Ry be a full measure set f(Ry\7) = 0. Then there is a number a > 0 such that
{ak/’}keN CrT.

Proof. Assume the converse: for any a > 0 there exists k € N such that ak ¢ 7. This
implies that
Ry = U My, Mp={a>0]ak¢ 71} =R\(7/k).
keN
It follows that p(Mjy) = 0. This gives a contradiction. O

LEMMA 3.2 (the Banach-Steinhaus Theorem [3], [8]). Let
AVSX%Y, I/G[l/l,l/g]
be a set of bounded operators of a Banach space X to the Banach space Y. Assume

that for each x € X we have
A,z — Azlly — 0 (10)

as v — vy € [v1,v2]. Then the operator A : X — Y is also bounded and the conver-
gence (10) is uniform on any compact set of variable x.

Moreover, for any continuous function f : [t1,ta] — X it follows that || A, f(t) —
Af(to)lly = 0 asv — vy and t — to € [t1,ta].
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Proof. Observe only that F = {f(t) | t € [t1,t2]} is a compact set in X as an image
of the compact set [t1,?2] under the continuous mapping f. So that by the previous

propositions A,z converges to Az uniformly in = € F.

LEMMA 3.3. Let v € Xs_g,, so > 0. Then the mapping
t e By

is a continuous mapping of (0,T] to Xj.
Proof. Let t —t—, > 0. We have

(eftB7 B effBV)x — e tBY/2 (I . ef(tlt)B“/)eftBW/zx'
One yields the estimate

‘e—t37/2 (I- e—(f—t)B”’)e—tB’Yﬂm

S

c —_(i—t)BY\ —tB"Y/2
< |- 0y

$—S8g
The mapping

— y
ts e B2,

O

is a continuous mapping of the small neighbourhood of the point  to Xs_s,. From

Lemma 3.2 it follows that

If t — t+ then the argument is trivial

(78" — e B g = (e tDB _[)e 1By By e X,

LEMMA 3.4. Assume that a function u € C([0,t.)) satisfies the inequality

ogmw§A+BA(ﬁg%

here A, B, a are positive constants, o < 1. Then sup;cpg ) u(t) < oo.

¢, t>0

Proof. Let us take numbers p, ¢ such that
1 1 1
-4+-=1, 1<p<—.
p q «
Then the right-hand side of (11) is not greater than
1

([ ) ([ e

1

u(t) §A+C</Otuqd§)q

So that

with some positive constant C'.

(12)
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Define a function

_ () = AT ifu(t) > A,
wt) = {o if u(t) < A.

The function w is non-negative and continuous in [0,%.). Observe also that u <
A+ w'/a.
Inequality (12) implies
t
w(®) <€ [ D) d B = (A+n)" (13
0
Recall the following fact.
PROPOSITION 3.5 ( [2]). Let a non negative function v € C([0,t1]) be such that

v(t) < K/o ®(v(€))d¢, K = const > 0.

Assume the function ® € C[0,00) to be positive and non decreasing.

Assume also that
U(n) = /17 —df — 00
O A0

as 1 — co. Then
v(t) < UH(KY),

here U1 s the inverse function.

By this Proposition and due to formula (13) the function w is bounded in [0, ¢.).
Thus w is also bounded. [
3.2 Proof of the first part of Theorem 2.1

We use a version of the classical parabolic regularization method [7].
We will approximate problem (5) with the following sequence of “paraboli” prob-
lems
&p = JB%x, — a, B x,, x,(0) =3, =e Pi, (14)

here a, = 1/n, n € N. Note that z,, € X5, seR.
Consider corresponding integral equation

t
Tn(t) =e B 3, + / e (=B JRoy (€)dE (15)
0
and the operator

t
Fale()] = e i, + / e OB a(€) de.
0

LEMMA 3.6. The operator F, takes the space C(I;,X;) to itself. Here 7 >0, s € R
are arbitrary constants.
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Proof. First note that if ¢ — 0+ then e~ **8"# — & in X, and

Fis IO, < [ om0 87ate)] de

S

< | — L TB ()]s dE
A (an(t )) /’Y

< | (€[l dE — 0.
/O (an(t_f)) o

Thus F,[z(-)](t) is a continuous function in ¢ = 0.
For 0 <t <t < 7 one has the identity
Falz()(t') = Fala()(t") = 77 (emen =15 — D),

t/
+ / e~ W=OB" 1B04(¢) d¢
t

1"

B / Xjo,r)(€) (e~ =BT — Demen OB T B4 (¢) de, (16)
0
here x is the indicator function.
Assume that ¢t > 0. The integral in the middle of the right-hand side of formula
(16) is not greater than
t/

le=n (' =OB" jBo2(¢)|, de

¢/

S T
/ (an(t =€)

t’ 1
<c —— x s d
<af g el

t/
1
< c3max Hx(§)||s/ —————-d{—0 (17)
tel, " (an(t’ 75)) /v
ast' —t" ort —t'.
The expression under the last integral in the formula (16) is majorated by L!-summable
function of € € I

[(ean ' =tDBT _ [)eman"=OB" jBog(¢)|, < &

(an(tn - 6))0/7
Fix ¢/ and fix £ <t’ and let £ < a < t'. Let a constant a € (£,t'). By Lemma 3.3 the
mapping

lz(E)]]s-

Py eman =08 T 5o )
is a continuous mapping of [a,t'] to Xs. By Lemma 3.2
(A, =e B 1 v=t 1", X=Y=X,)
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it follows that
(emen®=tDBT — Dyem O B (g) ], = 0
ast” — t'.
When t' — t”, the asymptotics
[(e=en @ =HDBT — [)eman("=OBT JBo0(¢)||, 0, &<t
is obtained directly. Thus by the dominated convergence theorem we have

-
| / Xpo.r)(€) (e TET — Dem e OB BTa(g) dg|| - 0
0 S
ast' —t" ort" = t'.
Analogously one has
(e @ BT pyemant B 50
ast' —t" ort" —t'. O

LEMMA 3.7. For any n € N and for any s € R equation (15) has a unique solution
xn(t) € C(Ir, Xy).

Proof. After already prepared estimates it is clear that for sufficiently small 7 > 0 the
mapping JF,, is a contraction of C'(I,, X) and thus there is a fixed point Fy,[z,,] = x,,.
This is true for all s € R but 7 depends on s.

The solution x, can actually be extended to the whole interval Ip. Assume
the converse: there is a positive constant ¢, < T such that the solution z,(t) €
C([0,t4), Xs) but the limit lim; ;, _ 2, (t) does not exist in X,. If this limit would
exist we could take z(t.) as a new initial condition and use again the contraction
mapping principle to prolong the solution forward over t,.

Observe that

He_tBaxH <csollzls, t>0, telp
S

see for example [10]. Thus taking in estimate (17) ¢ =t and t” = 0 and replacing =
with z,, from equation (15) we get

¢
5 Zn (§)lls
fon(Olls < calinll e [ 1L
0 (an (t - ))
Consequently, by Lemma 3.4 the solution () is bounded on [t,1.).
To get the contradiction it is sufficient to observe that if ¢/, — t,— then

l2n (t) = 2 (")l = 0.

Since z,, is a fixed point of F,,, the proof repeats the argument of Lemma 3.6. 0

LEMMA 3.8. The function z,(t) € C'(Ir,Xs), s € R solves initial value problem
(14).

Proof. In this lemma we already know that the function z(§) belongs to C(Ir, X5)
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for all s € R. One must check that for s € R it follows that

n(t+h)—x,(t A
lim Hx (E+h) = 2alt +(—JBU+anB7)]:n[xn](t)H =0, for t > 0 and
h—0 h s
lim Hm —JB%i, + anBdn| =o.
h—0+ h s

This follows from the same argument which is employed in Lemma 3.2. One must use
formula (16) taking once ' =t +h, ¢’ =¢>0, h >0 and after this checking the
case t’' =t—h, t =t>0.

The operator

<€7anhB“* B I)

an(t'—t"")B”

S| =

appears instead of the operator e~ — I. To pass to the corresponding limits
one must use again the dominated convergence theorem and Lemma 3.2.
For example, let us show that

1 t+h 5 R N
Ap = EH/ e~ an(tHh=6B" J oo (e) de — JB"x(t)H =0
t s
as h — 0+. Observe that since z(t) € C'(Ir, Xs15) the function
€= He*an“”*@B”JB%(g)dg - JB%(t)H

is continuous and therefore by the Mean Value Theorem for integrals we have

dg

S

1 t+h 5 R R
An< 5 / He*an“%*é)B JBx(€) — JB? x(t)
t

- He*an“%*")m JB%x(n) — JB%(t)’

. neEltt+h).
We obtain z(n) — z(t) in Xs45 as n — t; thus
JB%x(n) — JB%x(t), e (Fh=mBY 1By (1) - JBOx(t)
in X;. The last asymptotic goes from Lemma 3.2. U

|s-

LEMMA 3.9. The following inequality holds sup,,cy maxicr, [|2n(t)|s < c7||

Proof. Due to equation (14) and since J is a skew symmetric operator we obtain

d s .
—(B7n(t),20(8));_; ) = =20 (B (t), 2n(t));_; 5 < 0.

Hence,
csllzn(@®)ls < (B7za(t), za(t))

= (B7e P, e Pa) = (

say2 S (3633”(0)793”(0))57&/2
/2 _—anB 2 /2 _—anB 2
B7/%¢ i, B?/%e x)é_&/Q

< col| s

COROLLARY 3.10. The following inequality holds

sup max ||, ()[|s— < crollZ]s.
neN telr
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Proof. This directly follows from Lemma 3.9 and equation (14). O

From Lemma 3.9 it follows that the sequence {z,(¢)} is *-weakly relatively com-
pact in L*(Ir, X;). Recall that for any normed space X, the strongly closed ball of
X' is a o(X', X)-compact set [10]. Note also that L>(Ip, X;3) = (Ll(IT,Xg))/ [4].

Lemma 3.9, its Corollary 3.10 and the third Ascoli theorem [8] imply that the
sequence {x, ()} is relatively compact in Cy, (I7, Xs_~). Note also that each bounded
in X;_, set is weakly relatively compact.

Furthermore since the closed ball of X;_, is weakly compact, it is also weakly
complete.

Hence the sequence {x,(t)} contains a subnet {x,,_} with some directed set A > «
such that

limz, =z
0 Tng

in Cy (I, X5—) and in L>°(I7, X3) equipped with *-weak topology; and ||z Lo (7, x,) <
crl|&]]s.
By virtue of equation (14) it remains to pass to the limit in

—/ ((u(t)mna(t))gdt:/ ((=B°J = an,B")u(t), zn, (1)), dt.
0 0

3.3 Proof of the second part of Theorem 2.1

From Lemma 3.9 and Corollary 3.10 by the Third Ascoli theorem [8] it follows that the
sequence {x,(t)} is relatively compact in C(Ir, X;_~). Here we use the hypothesis
on compactness of embedding X; C X;_,.

Thus there is a subnet {x,_} C {x,} such that in addition to enumerated above
properties it is convergent to z(t) in C'(Ir, Xs—~) as a € A.

In the space C'(I1, Xs—~y—5) we pass to the limit in (15) and obtain that x(t) is a
solution to integral equation

z(t) = aa+/0 JB%z(€) d¢. (18)

Differentiating equation (18) in ¢ in the space X;__s we obtain
i=JB%, i¢€C(Ir,Xsr_s)

Theorem 2.1 is proved.

3.4 Proof of Theorem 2.2

We employ Lemma 3.1. Let 7 stand for the set of values ¢t > 0 such that z(t) € X;
and inequality (6) holds. Then put ¢; = ai. Observe that t; — ¢’ € 7 provided i > j.

Let et/B” & stand for the solution with initial condition 4 € X;. Since e(t;_tlﬂ')JBai‘ S
X we can write

6t;JB&i, _ et;.]Bai, _ et_;JBﬁ ((e(t;ft;)JB[’ _ I)i‘)



270 Linear Hamiltonian system in scale of Hilbert spaces

The sequence {z(#;)} is bounded in X;. Thus it contains a subsequence {z(#;)}, {t;} C
{t;} that is convergent in X;_,_35 /2,
lo(:) = 2(t)lls—y—36/2 = 0
as t,j — 00.
By the same argument as in formula (9) we can write

ti—1; JB& ~112 —t,)JB? A
c17||e(t t) | NP ( (t ) I)x)
= H(eW7B (0 00IE — D)3 < crglla(@) = o) 12 anp (19)

It remains to choose a sequence j = j(i) such that ¢; = t; — ¢;(;) — oo and j(i) — oo
as ¢ — oo. Indeed, from inequality (19) it follows that

— 0.

055 - i" 5—vy—36/2

Theorem 2.2 is proved.
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