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FUSS-WINKLER-ZIMMERMANN AND SWIFT–HOHENBERG

NONLINEAR EQUATIONS OF 4TH ORDER

Dmitriy V. Kostin

Abstract. This paper presents results of the investigation of bifurcations of stationary
solutions of the Swift–Hohenberg equation and dynamic descent to the points of minimal
values of the functional of energy for this equation, obtained with the use of the modifi-
cation of the Lyapunov–Schmidt variation method and some methods from the theory of
singularities of smooth functions. Nonstationary case is investigated by the construction of
paths of descent along the trajectories of the infinite-dimensional SH dynamical system from
arbitrary initial states to points of the minimum energy.

1. Introduction

The main works in bifurcation theory were initially obtained by H. Poincare, A. M.
Lyapunov, V. I. Arnold, A. A. Andronov, H. Hopf and many other mathematicians.

In mechanical systems, as a rule, the steady motions (equilibrium states or relative
equilibrium states) depend on parameters. The values of parameters, at which the
change of the number of equilibriums occurs, are called the bifurcation ones. The
curves or surfaces showing the sets of equilibriums in the state space of parameters,
are called the bifurcation curves or bifurcation surfaces. When the parameter passes
over the bifurcation value, the change of stability properties of equilibriums occurs as
a rule. The bifurcations of equilibriums can result with arising periodical and more
complicated motions.

Stationary equation SH (Swift–Hohenberg [15,19,21]) formally coincides with the
nonlinear equation of deflections a beam on an elastic foundation, which is investigated
by Y. A. Mitropolsky, B. I. Moseenkov [17], J. M. T. Thompson, G. W. Hunt [22,23],
B. S. Bardin, S. D. Furth [2] et al. The linear equation of the beam bending on an
elastic foundation, is a well-known model suggested by Fuss–Winkler–Zimmermann
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(FWZ) and serving, up to the present time, the basis for majority of engineering
calculations of stability of the building structures [24]. Nonlinear generalizations of
FWZ model started to be considered more or less recently [2, 23].

Bifurcation analysis of periodic solutions of nonlinear equations, close to the FWZ
type, carried out by B. M. Darinskii and Y. I. Sapronov [4–6], the main attention
in their papers was paid to the question of the appearance of post-critical periodic
structures in crystals. Deflections of nonhomogeneous beams on elastic foundation
were studied by the author of this article in [12,13].

The subject of research in this article is infinite-dimensional dynamical systems
defined by the differential equations:

∂w

∂t
+
∂4w

∂x4
+ κ

∂2w

∂x2
+ αw + w3 = 0 , (1)

∂2w

∂t2
+
∂4w

∂x4
+ κ

∂2w

∂x2
+ αw + w3 = 0 , (2)

that are modeling, in different interpretations and with different initial-boundary con-
ditions, various phenomena in nature and technology. Those equations have common
stationary equation:

∂4w

∂x4
+ κ

∂2w

∂x2
+ αw + w3 = 0 . (3)

Equations similar to (1)–(3), were applied in investigation of the problems of pe-
riodic structures in physical media and of the problem of deflections of beams on
elastic foundation by J. Swift, P.S. Hohenberg [21], H.E. Kulagin, L.M. Lerman,
T.G. Shmakova [15], J.A. Mitropolsky, B.I. Moseenkov [17], J.M.T. Thompson, G.W.
Hunt [22, 23], B.S. Bardeen, S.D. Furth [2], and others. Equation (1) got the name
Swift-Hohenberg equation (SH equation). It is modeling the appearance of space one-
dimensional structures in hydrodynamics, in chemical media and nonlinear optics
(see, e.g., the survey [15]). Equations similar to (2)–(3), besides the theory of elastic
supercritical states of elastic beams, found applications in the theory of ferroelectric
phase transitions [9].

An analysis of equations (1)–(3) can be conditionally divided into three parts,
the first of which analyses the stationary supercritical state (depressions, post-critical
phase, cluster reconstructions etc.). The author carried out the analysis of stationary
states on the basis of a modification of the Lyapunov-Schmidt variation method with
the use of some methods from the theory of singularities of smooth functions [6,12,13].
This analysis is done under the Dirichlet, Neumann, periodical and other boundary
conditions. We pay special attention to the case of weak inhomogeneity of the medium,
in which there is a functional parameter at the highest derivative that has the physical

meaning of inhomogeneity of the material: d2

dx2 (q d
2w
dx2 ). The second and the third

parts of analysis of the equations are connected with the study of dynamic descent
trajectories to the minimum of the energy functional (SH equation) and of oscillations
of the infinite-dimensional dynamical systems (FWZ equation).

The main result of the bifurcation analysis of stationary states here is a construc-
tion of the complete qualitative picture of the behavior of solutions, their quantity
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and character, dependence on parameters, and construction of the first asymptotics
of the solutions. Proposed bifurcation analysis is based on the local reduction of
equation (3) to the Lyapunov-Schmidt function, inheriting all structural properties of
the solutions of original problem [6].

In the third section, we study the dynamic of the SH equation by constructing the
descent trajectory to stationary points with the minimum energy and other graphical
images of the states along the descent trajectories. This approach made a good
showing in studying structural rearrangements of physical media based on model
equations of “reaction-diffusion” and Cahn-Hilliard [11] types. As the result of this
approach, the graphical images of solutions along descent paths (from an arbitrary
state to stationary points of lowest energy) are obtained.

2. Analysis of deflection of the elastic beam on elastic foundation

2.1 Supercritical deflections of the homogeneous beam on elastic foundation

Nonlinear scaled model of oscillatory motion of the homogeneous beam on elastic
foundation is given by equation (2) (see [23]), where w is deflection of the beam (the
offset of points along the midline of elastic beam located along x axis). A similar
equation arises in the theory of crystals [9], where w is an order parameter.

The first step in the study of this problem is determination of the equilibrium
(stationary) conditions, defined by the equation

d4w

dx4
+ κ

d2w

dx2
+ αw + w3 = 0, (4)

which we consider below with standard boundary conditions

w(0) = w(1) = w′′(0) = w′′(1) = 0. (5)

Initial boundary value problem with boundary condition (5) admits 2-dimensional
degeneration.

Equation (4) is the Euler equation for the extremals of the functional (action)

V =

∫ 1

0

(
1

2

((
d2w

dx2

)2

− κ
(
dw

dx

)2

+ αw2

)
+
w4

4

)
dx. (6)

The two-dimensional degeneration of zero extremal occurs at

κ = κ1 := (p2 + q2)π2, α = α1 := p2q2π4, p, q ∈ N,
with standard modes of bifurcation (the basis and kernel of the second differential)

e1 =
√

2 sin(p πx), e2 =
√

2 sin(q πx).

Below it is assumed that p = 1, q = 2 and, respectively, κ1 = 5π2, α1 = 4π4 (these
values are the smallest ones of those, in which there is a 2-dimensional degeneration;
in the other cases the analysis is similar).
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The Lapunov-Schmidt reduction [6] to key function (of two variables)

W (ξ, δ) = inf
w:

〈w, e1〉 = ξ1,
〈w, e2〉 = ξ2

V (w,α1 + δ1, κ1 + δ2), (7)

ξ = (ξ1, ξ2), δ = (δ1, δ2), preserves the symmetry of the action functional. Since
functional (6) is invariant under the involution of J1, J2

J2(p)(x) := p (1− x), J1 := −J2,
for the function (7) we also have

W (−ξ1, ξ2, δ1, δ2) = W (ξ1,−ξ2, δ1, δ2) = W (ξ1, ξ2, δ1, δ2)

(symmetry of the rectangle). This yields (see [6]) the asymptotic representation

W (ξ, δ) = U(ξ, δ) + o(|ξ|4) +O(|ξ|4)O(δ),

where U(ξ, δ) = V (ξ1e1 + ξ2e2, δ) is a linear Ritz approximation of functional V with
respect to the modes e1, e2. Therefore, for the key function the following asymptotic
representation takes place

λ1
2
ξ21 +

λ2
2
ξ22 +

1

4

(
Aξ41 + 2Bξ21ξ

2
2 + Cξ42

)
+ o(|ξ|4) +O(|ξ|4)O(δ), (8)

where

λ1 = δ1 − π2δ2, λ2 = δ1 − 4π2δ2,

A =

∫ 1

0

e41 dx =
3

2
, B =

∫ 1

0

e21e
2
2 dx = 3, C =

∫ 1

0

e42 dx =
3

2
.

On contracting the above formula by factor 3/2, we obtain function (8) with
normalized principal part

W̃0(ξ, δ) = Ũ(ξ, δ) + o(|ξ|4) +O(|ξ|4)O(δ),

where

Ũ(ξ, δ) =
λ̃1
2
ξ21 +

λ̃2
2
ξ22 +

1

4

(
ξ41 + 4ξ21ξ

2
2 + ξ42

)
.

The “geometric subject” for bifurcation of critical points and the first asymptotics
for branches of bifurcating points (in supercritical increments of control parameters)

for the function W̃0(ξ, δ) are completely determined by its principal part of Ũ(ξ, δ),
which is a perturbed two-dimensional cusp (with the coefficient of double ratio a = 4),
even with respect to each variable [6].

Let θ1 = λ̃1 − 2λ̃2, θ2 = λ̃2 − 2λ̃1. Since the Hessian of function Ũ can be
represented in the form(

λ̃1 + 3ξ21 + 2ξ22 4ξ1ξ2
4ξ1ξ2 λ̃2 + 2ξ21 + 3ξ22

)
,

it is easy to check that for θ1 > 0 and θ2 > 0 there are four 2-mode critical points
of index 1. All 1-mode points here are local minima, and zero-mode ones are critical
point of index 2. The 1-mode critical point arise when the parameters λ̃1 and λ̃2
come to the domain of negative values.

The caustic (bifurcation diagram of functions [1]) ΣŨ of the function Ũ separates
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the plane of control parameters into six zones

ω0 = λ̃1 > 0, λ̃2 > 0 ,

ω1 = λ̃1 < 0, λ̃2 > 0 ,

ω2 = λ̃1 > 0, λ̃2 < 0 ,

ω3 = λ̃1 < 0, λ̃2 < 0, θ1 < 0, θ2 > 0 ,

ω4 = λ̃1 < 0, λ̃2 < 0, θ1 > 0, θ2 < 0 ,

ω5 = λ̃1 < 0, λ̃2 < 0, θ1 > 0, θ2 > 0 .

Each zone has its own variety (bif-variety) of bifurcating critical points:

• parameters of the zone of ω0 correspond to the case of the only critical point
(minimum point at zero);

• ω1, ω2 corresponds to a pair of symmetrically arranged (relative to zero) 1-mode
minimum points and the saddle at the origin;

• ω3, ω4 corresponds to the pair of symmetrically located 1-mode minimum points,
the pair of 1-mode saddles and the local maximum point at zero;

• and, at last, ω5 corresponds to four symmetrically located 1-mode minimum
points, four 2-mode saddles and the point of local maximum at zero.

On making circuit of the plane of control parameters counterclockwise around
zero, starting with the area ω0, we obtain the corresponding metamorphosis of level
lines and the distribution of critical points, represented on the following diagram:

1

2

2

3

3
4

λ
1

λ
2

Figure 1: Bifurcation diagram

In this case, the varieties of bifurcating critical points (bif-variety) correspond to
the following integer vectors: (1, 0, 0), (2, 1, 0), (2, 2, 1), (4, 4, 1) and only they arise.

2.2 The case of slightly inhomogeneous beams

Equilibrium configuration of slightly inhomogeneous beams are described by the equa-
tion

d2

dx2

(
q
d2w

dx2

)
+ κ

d2w

dx2
+ αw + w3 = 0, q(x) = 1 + εγ(x), (9)
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where ε is a small parameter and γ is a smooth function. Equation (9), considered on
the interval [0, 1] of real axis with boundary conditions (5), determines the extremals
of functional

V =

∫ 1

0

(
1

2

(
q

(
d2w

dx2

)2

− κ
(
dw

dx

)2

+ αw2

)
+
w4

4

)
dx. (10)

The presence of “weight” factor q does not allow us to apply research scheme of [4].
Indeed, in this scheme, the condition of constancy of the bifurcation modes is not
satisfied, while on this condition the computational algorithm of [4] is based. However,
the bifurcation analysis of this boundary value problem can also be realized by the
Lyapunov– Schmidt reduction to the key functions of a more general form

W̃ (ξ, δ) = inf
w:

〈w, ẽ1〉 = ξ1,
〈w, ẽ2〉 = ξ2

V (w,α1 + δ1, κ1 + δ2), (11)

where ẽk are “perturbed” bifurcation modes

ẽk = ek + εhk + o(ε), ek =
√

2 sin(kπx),

that form the basis of 2-dimensional root subspace of the Hesse operator H = A+ εB
at the zero of functional (10), where

Au :=
d4w

dx4
+ κ

d2w

dx2
+ αI, Bw :=

d2

dx2

(
γ
d2w

dx2

)
(elements of ẽk are not, generally speaking, eigenfunctions of the operator H).

The main technical difficulty in the construction of the principal part of the key
function (11) is to calculate hk. They can be determined by using the formula of the
orthogonal projection on the root subspace of a perturbed symmetric operator [16].

So, instead of the eigenfunctions, we consider the elements ẽj(λ), j = 1, 2, (below
they are called the root ones), for which

∂f

∂x
(0, λ)ẽj(λ) =

∑
k

αjk(λ) ẽk(λ).

An important concomitant of the proposed approach here is that the functions, in-
cluded in these relations, i.e. αjk(λ), and ẽj(λ), smoothly depend on λ. As the
required basic elements one can take ẽk(λ) = P(λ)(ek), where

P(λ) =
1

2πi

∮
`

R(λ, z)dz

is an orthogonal projection onto a two-dimensional root space, ` is a circle of suf-
ficiently small radius centered at the origin (in the complex plane) and R(λ, z) is

resolvent R(λ, z) = (A+ εB − zI)
−1

. Thus,

ẽk = ek + εhk + o(ε), (12)

where

hk =Mek, (13)

M =
1

2πi

∮
`

(A− zI)−1B(A− zI)−1 dz. (14)
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So, the following assertion is true:

Theorem 2.1. Perturbed root vectors ẽk, k = 1, 2, can be represented in form (12),
where hk are determined by relations (13)–(14).

2.3 Calculation of integral coefficients

From the preceding discussion it follows that for obtaining the root vectors ẽk it is
necessary to calculate the integral

M ek =
1

2πi

∮
|z|=1

(A− zI)−1B(A− zI)−1ek dz, (15)

taking into account boundary conditions (5) (where ` loop |z| = 1).

The eigenvalue z = 0 has multiplicity two, it corresponds to the eigenelements

ek =
√

2 sin(kπx), k = 1, 2.

Note that if ek is an eigenvector corresponding to eigenvalue zk : Aek = zkek,
then

(A− zI)−1(A− zkI)ek = 0,

and we obtain

(A− zI)−1ek =
ek

zk − z
.

Thus, formula (15) can be rewritten as

Mek =
1

2πi

∮
|z|=1

(A− zI)−1Bek
zk − z

dz. (16)

It is obvious that the operator A with given domain and boundary conditions is
symmetrical, and its eigenfunctions form a complete system in L2[0, 1] [18].

Consider the function g = Bek, g(x) ∈ L2[0, 1], and expand it in the series with
respect to eigenfunctions of A:

g(x) =

∞∑
n=1

cnen(x), (17)

where

cn =

∫ 1

0

g(s) en(s)ds =

∫ 1

0

en(s)(γ(s)e′′k(s))′′ ds. (18)

On integrating by parts, we transform integral (18) to the form:

cn = −(nπ)2
∫ 1

0

en(s)γ(s)e′′k(s)ds = (nkπ2)2
∫ 1

0

γ(s)en(s)ek(s)ds.

Then using formula (17) in integral (16), where κ = 5π2, α = 4π4, we obtain the
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following expansions

Mek(x) =
1

2πi

∮
|z|=1

(A− zI)−1

z

∞∑
n=1

cnen(x) dz

=

∞∑
n=1

cn
1

2πi

∮
|z|=1

en(x)dz

z(zn − z)

=

∞∑
n=3

cn en(x)
1

2πi

∮
|z|=1

1

zn

(
1

z
+

1

zn − z

)
dz =

∞∑
n=3

cnen(x)

zn
.

Here we take into account that z1 = z2 = 0 and that
1

2πi

∮
|z|=1

dz

z2
= 0.

Thus, on the basis of (15), we obtain for all perturbed eigenfunctions that

Me1 =
∞∑
n=3

2
√
2 n2

(n2−4)(n2−1)

(∫ 1

0
γ(s) sin(nπs) sin(πs) ds

)
sin(nπx),

Me2 =
∞∑
n=3

8
√
2 n2

(n2−4)(n2−1)

(∫ 1

0
γ(s) sin(nπs) sin(2πs) ds

)
sin(nπx).

 (19)

Now, since the asymptotic behavior of the first root vectors ẽ1, ẽ2 is known, we
can construct the principal part of the key functions (up to the linear change of
coordinates)

Wq(ξ, ν) =
1

2

(
ν1 ξ

2
1 + ν2 ξ

2
2 + 2 ν3 ξ1ξ2

)
+

1

4

(
Aξ41 + 2Bξ21ξ

2
2 + Cξ42

)
+O(|ξ|4) +O(|ξ|4)O(ν) + o(ν),

where

ν1 =

∫ 1

0

(
q

(
d2ẽ1
dx2

)2

− (κ1 + δ1)

(
dẽ1
dx

)2

+ (α1 + δ2)ẽ21

)
dx, (20)

ν2 =

∫ 1

0

(
q

(
d2ẽ2
dx2

)2

− (κ1 + δ1)

(
dẽ2
dx

)2

+ (α1 + δ2)ẽ22

)
dx, (21)

ν3 = ε

∫ 1

0

(
γ
d2ẽ1
dx2

· d
2ẽ2
dx2

)
dx, (22)

A = C =

∫ 1

0

e41 dx =
3

2
B =

∫ 1

0

e21e
2
2 dx = 3 .

After contraction by the factor 3/2 we obtain the representation of the key function
that we are looking for. Thus, the following statement takes place.

Theorem 2.2. For key function (11) the representation

W̃q(ξ, ν) =
1

2

(
ν̃1 ξ

2
1 + ν̃2 ξ

2
2 + 2 ν̃3 ξ1ξ2

)
+

1

4

(
ξ41 + 4ξ21ξ

2
2 + ξ42

)
+O(|ξ|4) +O(|ξ|4)O(ν̃) + o(ν̃)

is true, where ν̃j is defined by relations (13), (14), (19)–(22).
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As compared with the function W0, defined by equation (8), here the additional
term ν̃3 ξ1ξ2 appears that destroys the symmetry of rectangle.

2.4 The structure of the caustic. Stable equilibrium

Caustic Σ (discriminant set of initial equation) is a two-dimensional surface in the
three-dimensional space of parameters ν̃i, i = 1, 2, 3. Here the critical points of the
key functions are determined by the system of equations

∂Ũ

∂ξ1
= ν̃1ξ1 + ξ31 + 2ξ1ξ

2
2 + ν̃3ξ2 = 0,

∂Ũ

∂ξ2
= ν̃2ξ2 + 2ξ21ξ2 + ξ32 + ν̃3ξ1 = 0,

detH =

∣∣∣∣ ν̃1 + 3ξ21 + 2ξ22 4ξ1ξ2 + ν̃3
4ξ1ξ2 + ν̃3 ν̃2 + 2ξ21 + 3ξ22

∣∣∣∣ = 0,

where H is the Hessian. Solving this system with respect to ν̃1, ν̃2, ν̃3 and going to
the polar coordinates ξ1 = ρ sinϕ, ξ2 = ρ cosϕ, we obtain

ν̃1 = −ρ2 (3 + cos3(2ϕ))

2 + sin2(2ϕ)
= 0,

ν̃2 = −ρ2 (3− cos3(2ϕ))

2 + sin2(2ϕ)
= 0,

ν̃3 = −3ρ2
sin3(2ϕ)

4 + 2 sin2(2ϕ)
= 0.

On the basis of this system, we obtain the image of Σ, the level lines of the key
function (with “typical” values of the parameters ν̃1, ν̃2, ν̃3 and γ = 0, 01 · sin(2πx)),
as well as the separatrix level surfaces of the key function and the forms of deflection
corresponding to the points of minimum.

Figure 2: Caustic surface
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Figure 3: Contour curves and solutions

3. Tracing the descent along the trajectories of the Swift-Hohenberg
equation to the points of minimum energy

Let us turn back to the Swift–Hohenberg equation (1). The change of κ, and α
causes loss of stability of the initial phase and, as a result (as the response of the
system), its transition to a new state (new structural properties). Such a transition
can be accompanied by, for example, spinodal stratification (the distraction) expressed
in changing the local concentrations of components, in appearing first the granular
structure and then clusters and domains of the new phase. During the recent years,
restructuring the physical environment is often explained on the basis of the nonlinear
diffusion SH equation (Cahn-Hilliard [3], [20])

u̇ = δ gradV (u) := D δ(u3 − u− γδ(u)) , (23)

where u = u(x) is the relative concentration of the component substance, x ∈ U ⊂
Rm, 1 ≤ m ≤ 3, D is the diffusion coefficient,

VCH(u) := D
∫
U

(
(u2 − 1)2

4
+
γ

2
|∇u|2

)
dx

is the energy integral and U is the domain occupied by the medium under considera-
tion.

The SH nonlinear equation is close to equation (23), and can also simulate the
structural transformations. It can be represented as a gradient dynamical system
(infinite number of degrees of freedom)

ẇ = −gradV (w) := −
(
∂4w

∂x4
+ κ

∂2w

∂x2
+ αw + w3

)
, (24)

w = w(x, t) , x ∈ [0, 1] , t ≥ 0,

V (w) :=

∫ 2π

0

(
(w′′)2

2
− κ (w′)2

2
+ α

w2

2
+
w4

4

)
dx

is the energy integral. We further assume that the concentration satisfies the boundary
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condition

w(0, t) = w(1, t) =
∂2w

∂x2
(0, t) =

∂2w

∂x2
(1, t) = 0 . (25)

In the study of local bifurcations of extremals, the Ritz functional approximation
is used

WR(ξ) := V (c+ ξ1e1 + ξ2e2 + . . . + ξnen),

constructed from initial eigenfunctions (modes) ej of the operator d4

d4x . In the nonlocal
problems, one can also use the Ritz approximations, but in order to achieve the
required accuracy of the solution it is necessary to use large number of modes that
leads to the large dimension of approximating system. To reduce the dimension of
the approximating system it is possible to apply the nonlinear Ritz approximation,
say, in the form of nonlocal extended key function, i.e. to pass in fact to the finite-
dimensional problem ξ̇ = gradW (ξ), ξ ∈ Rn, where W (ξ) := inf〈w,ej〉=ξj V (w) is the
Lyapunov–Schmidt key function.

Below, we use the procedure of the shortest direct descent to the minimum point of
V (without going to the approximating key function). The first step of this procedure
is to select the shift amount along the gradient, starting from (generating) point, in
order to reduce the value of the energy functional.

As the final states of the desired trajectories of dynamic system (24) we use the
orbits of minimum points that branched off (with increasing parameter κ and α) from
subcritical zero equilibrium.

The main step in the construction of “line of the shortest” descent to the minimum
is the solution (relative to s) of

〈gradṼ (a0 + sh0), h〉 = 0. (26)

Here h0 = −gradṼ (a0), g = −gradṼ , a0 is the initial (generating) point. For exam-
ple, it is possible to take (to be specific)

a0 = sin(7πx1) + ε

6∑
k=1

sin(kπx) ,

ε is a certain specified small value. Using for g(a + sh0) the Taylor expansion, we
obtain the relation

g(a0 + sh0) = g(a0) + s
∂g

∂x
(a0)h0 + o(s),

where ∂g
∂x (a0) is the Frechet derivative of the gradient mapping g, and

〈g(a0 + sh0), h0〉 = 〈g(a0), h0〉+ s〈(∂g/∂x)(a0)h0, h0〉+ o(|s|).
Hence, starting from equation (26), we can set (with some accuracy)

s = s0 := − 〈g(a0), h0〉
〈(∂g/∂x)(a0)h0, h0〉

= − |g(a0) |2

〈(∂g/∂x)(a0)h0, h0〉
.

The search for the value of s0 can be done more accurately by finding the minimum
point of the fourth-degree polynomial

p(s) = s4 + p3s
3 + p2s

2 + p1s ∼ Ṽ (a0 + s h0)



D. Kostin 37

(considered to within a constant factor and constant summand).

The next step of the shortest descent is the repetition of the main step for new
generating point a1 := a0 + s0h0, etc. Below, on Figure 4, we show the graphs,
obtained for κ = 5π2+0.5, α = 4π4+0.2, of the corresponding intermediate and final
solution functions after a certain preliminary choice of the Fourier coefficients of the
expansion for a randomly chosen initial function sin(7πx)+0.05 sin(πx)+0.06 sin(2πx)+

0.05 sin(3πx) + 0.01 sin(4πx) − 0.7 sin(5πx) + 0.9 sin(6πx).

On the base of this algorithm we obtain the curves that show the dynamics of
concentrations along the trajectories of descent for problem (24), (25).

initial approximation
2 iteration

1 iteration
3 iteration
20 iteration4 iteration

Figure 4: The initial value of the function and the first four and the twentieth iteration

In addition, a numerical experiment is carried out, the result of which is in
the following figure that shows different minima for different values of the param-
eter κ = 5π2 − 15, κ = 5π2, κ = 5π2 + 15 for one primary function: sin (5π x) +
0.05 sin (π x) + 0.06 sin (2π x) + 0.05 sin (3π x) + 0.01 sin (4π x).

initial state 20th iteration initial state 20th iteration initial state 20th iteration

Figure 5: 1) κ = 5π2 − 15; 2) κ = 5π2; 3) κ = 5π2+ 15 and the initial value of the function
10th iteration
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Under constant values of the parameters κ = 5π2 and α = 4π4 for different primary
functions the minima are constructed. The graph shows that for various characters of
the initial approximations the minima are different. For example, for the functions:

1) f1 = sin (5π x)−0.05 sin (π x)+0.6 sin (2π x)+0.5 sin (3π x)+0.01 sin (4π x) ;
2) f2 = 0.1 sin (5π x)+0.9 sin (π x)+0.6 sin (2π x)+0.5 sin (3 π x)+0.01 sin (4π x) ;
3) f3 = −f2

the graphs have the form, respectively:

initial state 5th iteration

initial state 20th iteration initial state 20th iteration

Figure 6: 1) Function f1; 2) function f2; 3) 3) function f3

Conclusion

The methods presented in this paper, in future will allow one to investigate more
exactly the character of dependence of a descent trajectory to the points of local
minima on the values of parameters and on a starting point of the function.
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