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BLENDING TYPE APPROXIMATION BY
BERNSTEIN-DURRMEYER TYPE OPERATORS

Arun Kajla and Meenu Goyal

Abstract. In this note, we introduce the Durrmeyer variant of Stancu operators that
preserve the constant functions depending on non-negative parameters. We give a global
approximation theorem in terms of the Ditzian-Totik modulus of smoothness, a Voronovskaja
type theorem and a local approximation theorem by means of second order modulus of
continuity. Also, we obtain the rate of approximation for absolutely continuous functions
having a derivative equivalent with a function of bounded variation. Lastly, we compare the
rate of approximation of the Stancu-Durrmeyer operators and genuine Bernstein-Durrmeyer
operators to certain function by illustrative graphics with the help of the Mathematica
software.

1. Introduction

The most famous theorem for convergence of linear positive operators is due to the
Weierstrass [19] who introduced an important theorem named Weierstrass approx-
imation theorem. This theorem is the first magnificent evolution in approximation
theory of one real variable and plays a basic role in the development of approximation
theory. The constructive proof of this theorem is given by following Bernstein poly-
nomials (B )nen: Bn(f;2) = Yo0_oPnw (@) f (£), where p,(z) = (0)z¥ (1 — z)"7,
for f € C(J), with J = [0,1].

Using different methods, many mathematicians generalized Bernstein polynomials
with parameters. Stancu [18] proposed the Bernstein type operators based on the two
parameters r, s € NU {0}, as follows:

n—sr

(Sn,r,s) f(.’IJ) = Z pnfsr,p,(-r) Zps,y($>f (M + V’I“) . (1)

n
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For the special case r = s = 0, these operators reduce to the classical Bernstein
operators.

Gonska and Palténed [10] introduced genuine Bernstein-Durrmeyer type operators

n—1

1 4vp—1(1 _ $\(n—v)p—1
N (i) = Snnte) [ G f dtk fO( )"+ 10",

0

v=1
where B (vp, (n — v)p) is the beta function defined by
1
_ _ ['(a)T(b)
B(a,b)= [ t* 11—t dt = ———,

(a,) /0 ( ) I'(a+b)

These operators preserve linear functions. Also, the simultaneous approximation for
these operators was obtained.

a,b>0 and p>0.

In 2008, Paltanea [16] considered the generalization of Phillips operators by taking
the weights in general form depending on the non-negative parameter p. Goyal et
al. [11] considered a one parameter family of Baskakov-Szasz type operators and
studied quantitative convergence theorems for these operators. In [13], Gupta and
Rassias proposed hybrid operators based on Polya distribution and obtained some
direct theorems of these operators. Gupta et al. [14] introduced hybrid operators
involving inverse Polya-Eggenberger distribution and studied degree of approximation
of these operators which include global approximation and uniform convergence. Very
recently, Acu and Gupta [6] defined a summation-integral type operators depending on
two parameters and discussed some approximation results, e.g., local approximation,
Voronovskaja type asymtotic theorem and weighted approximation of these operators.
In the literature survey, several authors have studied the approximation behavior of
mixed hybrid operators [1-5,7,12,15,17,20].

Motivated by the above work, for f € C(J), we introduce the following Durrmeyer
variant of the operators (1) depending on three parameters r, s and p as follows:

n—sr

s 1
K (i) = 3 prar@) S panl) / 07 () (1) d, (2)
=0 v=0 0

t(wwr)p(l — t)(n—u—vr)p

B((p+vr)p+1,(n—p—vrjp+1)
operators Kf | . preserve the constant functions.

where ©7 (t) =

n,putor It can be seen that the

The aim of this article is to study the approximation properties for the Stancu-
Durrmeyer operators based on non-negative parameters of the operators defined in
(2). We give a direct approximation theorem with the help of Ditzian-Totik modulus
of continuity, a Voronovskaja type theorem and a local approximation theorem by
means of second order modulus of continuity. Also, we discuss the rate of convergence
for absolutely continuous functions having a derivative equivalent with a function of
bounded variation. Furthermore, we show the rate of convergence of these operators
and the genuine Bernstein-Durrmeyer operators to certain function by illustrative
graphics produced by Mathematica software.
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2. Auxiliary results

In order to prove the main results, in this section we will show some lemmas.
Let e;(x) = 2%,i = 0,4.
LEMMA 2.1. For the operators Kf, ,. ((f;x), we have
(l) Kﬁ,r,s(eo;m) = ]-a
) KP Ly Al
(“) ’Cn,r,s(elvx) - np+2 ’
22 n(n —1) —rs(r — 1)) +2p[n(3+ p) + rsp(r — 1)] + 2
P C) — .
(7'”) ICn,r,s(627 .’E) - (np + 3) (’I'Lp + 2) 5
) 3p3 —1D(n—=2)4+r(r—1)(2—3n+2r)s]
() Rieleai) o+ Do+ 3o+ 2)
32%p [n*(2+ p) —rs(r = 1)(2+ p+rp) +n(r’sp — (1 + 257)(2 + p) +75(4 + p))]
(np+4)(np+3)(np+2)
4 ap(rsp(r —1)(6 + p+rp) +n(11+ p(6 + p)))
(np +4)(np+ 3)(np +2)
+ 0 ;
(np+4)(np+3)(np+2)’

+

P oslea;x) = z'p! nn—1)(n —2)(n —
) K)o 7~ D= 2=

+n*(11 4 6r%s(s — 1) — 12rs(1 4 1rs) + 6rs(3 +75)) + 2n(—3 + 2r’s(s — 1)(s — 2)
—11rs — 9r%s — 2r®s — 3r°s(s — 1)(1 + 2rs) + 2rs(2 + 6rs 4 3r°s))
+ (r's(=6 + 115 — 65° + 5°) — 4r's°(s — 1)(s — 2) + 6r°s°(s — 1)(1 + 7s)
—4r°5%(2 + 3rs + 1°s) 4+ rs(6 + 11rs + 6175 + 1“33))}
. 23 p?

(np +5)(np +4)(np + 3)(np + 2)
+75(34+2p)) 4+ 6(r*sp(s — 1) (s — 2) — rs(2 4 3rs + r2s) (1 + p) + 125> (1 + 75)(3 + 2p)
+1%5(s — 1) (=2 + 5 — 2rsp) + 125> (34 (24 7s)p — s(3+ p))) + 6n(2r°sp(s — 1)

{6713(1 +p) 4+ 6n°(r’sp — 3(1 4+ rs)(1 + p)

+ (24 6rs +3sr°) (14 p) — rs(1 4 2rs)(3+ 2p) + r°s(—=3 — 2(1 4+ rs)p + s(3 + p)))]
+ r'p

(np +5)(np +4)(np + 3)(np + 2)
4 2rs(11 + 9p + 2p°) — (14 2rs)(p + 1)(11 + 7p)) + 7r'sp’(s — 1) — 2r°sp(9 — 9s + 2rsp)

{nQ(p + 1)(11 + 7p) + n(4r®sp® + 6r°sp(p + 3)

—2r2% (114 9p + 2p°) + rs(1 4+ rs)(p + 1) (11 + 7p) 4+ r*s(—11 + 115 — 6rsp(p + 3))]

| @lrs6+pir + 6r2p +1°p°)) + (p+ 1) (p +2)(p + 3)(n — 7s)]
(np +5)(np+4)(np + 3)(np +2)
24

T B+ Vnp B (mp+2)’
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LEMMA 2.2. For m = 1,2, the m*" order central moments of Kf, .5 defined as
Z’,r,s( ) ’Cg r, s((t - x)m; (E) Satlsfy
1-2x
(i) nfors(x) = np+2)°

2’ (6—pn+ (n+(r—1Drs)p)) + 2 (=64 p(n+ (n+ (r—1rs)p)) +2

(i) mis(@) = (np + 2)(np + 3)

LeEmMA 2.3. For n € N, we have

AP x(1 —x)
]Cp 02, < s ,
where Af ; is a positive constant depending on r,s and p.
REMARK 2.4. For the operators Kf | ., we get
1—2z 1+ p)z(l—2x)
nli)néonnnrs(x)_ p ) nh_{gonnnrs('r)_ f’

1222 1)2
lim n? gt (o) = 22 @7

n—oQ p2

3. Direct estimates
THEOREM 3.1. Let f € C(J). Then lim K, (f;x) = f(x), uniformly in J.
n— 00 o

Proof. Since Kf . (L;x) =1, K, (e1;2) = =, Kf . (ez;2) = 2 as n — oo, uni-
formly in J. By Korovkin Theorem it follows that Kf, . .(f;2) — f(z) as n — oo,
uniformly in J. g

3.1 Voronovskaja type theorem
In this section we establish Voronvoskaja type result for the operators K7, . .

THEOREM 3.2. Let f € C(J). If f" exists at a point x € J, then we have

lim n [Kﬁ’rﬁ(f; T) — f(x)] = ﬂf/(x) + wﬂ(@.

Proof. Applying Taylor’s expansion of f, we have

1
F(t) = f(@) + @)t —2) + 5" @)t = 2)* + @ (t 2)(t - @)%,
where hm w(t,z) = 0. By using the linearity of the operator Kf

t—x

Khrs(fi2) = f2) =K7 . ((t = 2);2) f'(2) + /Cf“s(( t—a)*x)f" ()
+’CIPLTS( (t,l‘)(t—l‘)Q,l‘).

we get

n,r,s?
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Now, using the Cauchy-Schwarz property, we have

Kp . o(w(t,x)(t — x)° \//Cnrs )\/nZICZ,r,s((tfx)‘*;x).

In view of Theorem 3.1, we obtain hm IC,")LH( 2(t,2);2)= w?(x,x) = 0, since

w(t,z) — 0 as t — x, and using Remark 2 4 for every x € J, we get

122%(z +1)?
Jim KL (- 2)e) = 2R

Hence, nK/, ,. (w(t, z)(t — )% z) = 0. From Remark 2.4, we have

1-2 1 1—
lim nKf, (- asa) = “2 25 lim nk?,, ((t - 2)%a) = G PTEZD)
Combining the results from the above, the theorem is proved. O

3.2 Local approximation
We begin by recalling the following K-functional:
Ks(f,8) = mf{|[f — gll +8]lg"|| : g € W?} (6 > 0),

where W2 = {g: ¢ € C(J)} and | - || is the uniform norm on C(J). By [8], there
exists a positive constant M > 0 such that

Ky (f,8) < Muwsy(f, V),

where the modulus of smoothness of second order for f € C(J) is defined as

wg(f,\/g)z sup sup |f(z +2h) —2f(z+ h) + f(x)].

0<h<V3§ x,x+2h€e]
The modulus of continuity for f € C(J) is defined by

w(f,0)= sup  sup [f(z+h)— f(z)

0<h<d z,x+hed
The Steklov mean is defined as

h h
4 (2 [2
@) =55 [ ] R+t o) - fo 20t )] dude 3)
o Jo
By simple computation, it is observed that

a) [[fn — fllecn < wa(f,h);

5
b) fio fl € W) and ffllew < 2wlfih) Il < pxwalfh).
THEOREM 3.3. Let f € C(J). Then for every x € J, the following inequality holds

K8 ol 32) = 0] < 5 (£ () + s (2820

Proof For = € J, and using the Steklov mean fh given by ( ), we may write

From( ), for every f € C( )we get

Ko s (Fr )| < I ()
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Using assumption (a) of Steklov mean and (5), we have

nrs('f fh| )<||1Cnrs(f_fh)||SHf_thgo‘Q(th)

By Taylor’s expansion and Cauchy-Schwarz property, we obtain

‘K:nrs fh_fh ) <||th\/K:”7"9 t—l‘ ”f ||K:nrs((t_‘r)27x)

From Lemma 2.2 and inequality (b) of Steklov mean, we have

ICE (= (s < Dl W T2 (0) + zeon(F R ().

Choosing h = /0% ¢ (2), and substituting the values of the above estimates in (4),
we get the desired result. 0

3.3 Global approximation

In this subsection, we recall the definitions of the Ditzian-Totik first order modulus
of smoothness and the K-functional [9]. Let ¢(z) = y/z(1 —z) and f € C(J). The
first order modulus of smoothness is defined by
h
, T ¢2(x) eJ },

ottty = sup { (e 248 - (- 2)

0<h<t
and the Petree’s K-functional is given by
Ko(f,t)= it {If =gl +tlog'| + g} (¢ > 0),
g€W¢,

where Wy = {g: g € ACioc, |¢g'|| < 00,|¢’|| < oo} and || - || is the uniform norm on
C(J). It is well known [9, Theorem 3.1.2] that K 4(f,t) ~ we(f,t) which means that
there exists a constant M > 0 such that

M_lw(i’(f, ) < Ftﬁ(fa ) < de)(fv )
Now we present a global approximation theorem for the operators K?

n,r,s*

THEOREM 3.4. Let f be in C(J) and ¢(x x(1 —x). Then for every x € [0,1),

we have
— f Ags
|’Cg,r,s(f;$) (.’1?)' < Cw¢ (f, W) )

where AY. ; is defined in Lemma 2.3 and C > 0 is a constant.

t
Proof. Applying the relation g(t) = g(z) + / g'(u) du, we may write

KL, o(gi2) — g(z)| = ’Kﬁrs(/:g'(U) dww)‘- (6)

For any z,t € (0, 1), we have

[ s

t
dul|.

b
(u)

x
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Therefore,

/It(b(lu)du

z(|\/£\/5|+|F\/ﬁ|>

1 1
= x<f+f+ﬁ+m>
1 2f|t—:c|
A7) < 5

Collecting (6)—(8) and using Cauchy-Schwarz property, we may write
Kt s (g52) = g(@)] < 2V2]| 69 |6~ (2)K5, . (It — 25 2)

1/2
< 2V3|g' |6~ <>( m«tx)?;x)) |

Now applying Lemma 2.3, we obtain

<2t —

ATS

IKh s(giz) —g(z)| < C Ao

lpg'l-

Using Lemma 2.1 and (9), we get
|Kﬁ,r,s( ) |<|Kn’rs(f_g; )|+|f g|+|lcnrs(ga )—g((E)‘

AP
C<|f9||+ i+ )||¢> II>

Taking infimum on the right-hand side of the above inequality over all g € Wy, we

have

AP
K8l S0)] < OF (£ 5.

Using Ky (f,t) ~ we(f,t), we get the desired relation.

O

Let us consider the Lipschitz-type space with two parameters k1 > 0,k > 0. We

define
Llp(m,m)(a) — {f c C(J) : |f(t) — f(l‘)| <M

where 0 < o < 1.

|t — |

(t + k122 + Kox) 2

THEOREM 3.5. Let f € sz(m’m")(a). Then for all z € (0,1], we have

2 . c/2
8o (Fi) — F@)| < M (ﬂ“) |

K122 + Ko

=t e Jxe (0,1

b

Proof. Let us prove the theorem for the case 0 < ¢ < 1, applying Holder’s inequality
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2—0o
|]Cnrs Z Pn— sr;t Zpsu / |f nu+vr(t)dt
S Z pnfsr,u(x) Zps,u (/ |f n },LJrVT‘(t) dt)
u=0 v=0
< { Z Prn—sr u Zps v / |f n M—‘,—]/r(t) dt}

X <Z Pn— 57‘,1, Zpsy / ®nu+u7‘ )

n=0
n—sr s 1 g
= (Z pn—sr,u(J?) Zps,u(l’)/ |f(t) — f= )|7 n u+ur(t) dt)
p=0 v=0 0
<M i ()Zsj ()/1 (=2 oo wya '
= = Prn—sr,u\ Vzops.,y z . (t+l‘€1$2 +I€2x) n,p+ur
Lﬁ ni’r‘pnfsr (l’) zs:ps V((I}) /1(t — x) @p ( )dt B
B (HII'Q + l‘izl‘)i =0 ks = ’ 0 n,u+ur
S (EREE
(K122 + Kox)2
M

= —————— (7 (2))%. -
(k12?2 + Kox)?

THEOREM 3.6. For f € CI(J) and x € J, we have

| IO RN RE CRVEREN

Proof. Let f € C1(J). For any t,x € J, we have
t

f@&) = f(@) = f'(2)(t - ) +/ (f'(u) = f'(z)) du.

x

|ICn'rs |—

Using K7, ,. (-; ) on both sides of the above relation, we have
¢
K10 = J(@)it) = @2t = i) 4 K8 ([ (770 = 1) ds

Using the well-known inequality for modulus of continuity | f(t)—f(z)| < w(f,9) (‘t%;ml + 1),

6 > 0, we obtain
[ = sy ai] <o) (S5 - ).
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It follows that
KE o (f52) = f)] <|f/ ()] |KE, o (t — 2 2)]

el 0) {38 (0 0%50) + K0 ali) .
From Cauchy-Schwarz inequality, we have

\Kh s s(Fr2) = f(2)] <If' ()| 1K, o (t — 23 2))|
+w(f’, 5{ \/’Cnrs t—x)2 )+1}\/’Cnrs((t—x)2;m).

Now, taking § = /757 .(), the required result follows. U
3.4 Rate of convergence

DBV, 5y denotes the class of all absolutely continuous functions f defined on J, having
on J a derivative f’ equivalent with a function of bounded variation on J. We observe
that the functions f € DBV{ ;) possess a representation

f(z) = /01 g(t)dt + £(0),

where g € BV(jy, i.e. g is a function of bounded variation on .J.
The operators Kf, . ((f; ) also admit the integral representation

K o(fr) = Aphﬂmet (10)

where the kernel P? . . (x,t) is given by

n,r,s

n—sr

nrs Z Pn— STM ZpSV ,u+ur(t)

LEMMA 3.7. For a fized x € (0,1) and sufficiently large n, we have

A?‘“)s (1—I)
¢ ﬁn"b‘ry /’P'”/Téa:td 70Sy<m7
K VS T ) 2
A2 z(1—x)
1-7 < : 1
(i) Bh s, 2) / Pl s(x,t)dt < A5 np) (=) ,r<z<l,

where Af . is defined in Lemma 2.5.
Proof. (i) In view of Lemma 2.3, we obtain

r Ve —t\2
o) = [Preoas [ (Z20) 2o
0
0

r—y

AP
=K, s((t—a)2) (@ —y) 72 < —

(1+np) (x—y)*
The proof of (i7) is similar, hence we omit the details. U
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THEOREM 3.8. Let f € DBV (J). Then for every x € (0,1) and sufficiently large n,
we have

e (fia) — f(a)] < L2 @) & [0

(np+2) 2
AL (1 — ) |f/(x+) — f/(x—)]
(1+np) 2
A - e
Tret (fi)+ —= (f2)
W+ 3. X/k) vn x—(yﬁ)

AP V7] z+((1—x)/k) (1-2) z+((1—z)/v/n)
’I"S ! /
i Z \/ (fi)+ = Voo

T

where \/ (f1) denotes the total variation of f.. on [c,d] and f. is defined by

{ f't) = fl(z=), 0<t<u

fo) =4 0, t=1x (11)

/@)= fl(z+) z<t<l
Proof. Since Kf, . ((1;2) = 1, by using (10), for every x € (0, 1) we have

K2 o(f:2) /mxt @)t

/ 0 () (/m f(u)du) dt. (12)

For any f € DBV (J), by (11) we may write
F1(0) =flu) + 5 (f () + @) + 5 (7 (4) = (=) sgns — 2)
+ 02 (u)[f'(u) — %(f’(ﬂﬂ-) + f'(@=))], (13)

where §,(u) = { (1)’ Z;i
Obviously,

By (10) and simple calculations we have

[ ([ 50n+ rea)p, o
= 5@+ F ) [ = aPr, e
= S @)+ F @)K (0~ 2);)
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and

/01 Pﬁ,r,s(x,t)(/: %(f’(er) — f'(z—)) sgn(u — ) du) dt’
% | f'(z4) = f'(z—) | /0 1 |t —a|P, (x,1) dt

<3174 = @) | K2 (= o)

IN

IN

1/2
3 1 1@ = @) (K= aia)

In view of Lemmas 2.2 and 2.3, applying (12)—(13) we find the following estimate

1, , A7 sz(1 — x)
Ko (f32) = F@) <51 @) = f =) [ = 5=

Oz </; fa(u) du> P () dt
+/: (/; fu(u) du> PLo(2,1) dt‘, (14)

G2, (fa /(/f Jau) P ot .
T s (for /(/f du) Pr (1) dt.

To complete the proof, it is sufficient to determine the terms Gf, ((f;,z) and

FE 5[z ). Since f dif3f . s(z,t) < 1 for all [c,d] C J, applying mtegratlon by
parts and using Lemma 3.7, with y = z — (x/v/n), we may write

Gttt =| [ ([ i) asg, e0] -
</ /)|f ) 18 (2, 0)] dt
A [V =0 [V

Ar sx(l - x) v (I/f) ’ _9 xT “ ,
—_— o) (T — dt + — )
T Vo -oae V)

Let

ey <>dt\
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By the substitution of u = z/(x — t), we obtain

AL (1 — ) pr=@/vm) N
W/o (x —t) \/(fw)dt— 1+np / }{/u

Y s S0
< (f2)-
1+71p z—(z/u) ].+TL[)) k=1 z—(z/k)
Thus,
[\/ﬁ] @ z
Aves(l_ x /
Gh s (frr )] < (TZ \/ (f2 )+ﬁ \/ (f2)- (15)
Q= N

Using integration by parts and applying Lemma 3.7 with z = 2 + ((1 — 2)/v/n), we

have
1 t

FL ()] = (/’f'ucw)¢wrxzt>ﬁ\
(/a QO 8. (,)

/(/nfdﬁﬁ Bala)

:H/f (1 — B, (x,1) ] /f ) = Bp s (x, 1)) di

) (Ltﬂ@QmOddl—MQJWJ»

W du(l = 82,02 — [ L0 = 82 wn0)

{/f = o] [ 00 3, 00
(1 —Bﬁm(w,t))dw/:f;(t)(l —BQT,S(a:,t))dt‘
1+1n;x /1\7 w)‘th+Lz\Z<f;>dt

t z+((1-z)/vn)

_w ' Nt — )2 (1—=) ’
— (L+np) /ac+((1m)/\/ﬁ)\gg/(fx)(t NG \z/ ()
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By the substitution of v = (1 — x)/(t — z), we get

AP (1 — 1) vz ((1—z)/v) - (1—2) z+((1-z)/v/n)
Pl < ZEEn [T ot S )
Vn] k41 z+H((1—2)/v) z+((1—z)/v/n)
‘Ag T / (1 — LL')
< I (F2)dv + ()
(1+mnp) & \x/ Vvn \w/
Ap [vn] z+((1- :C)/k) (1 — ) z+((1-z))/vn
= et ) 16
P NRVRARE VR4 (16)
Combining the estimates (14)7(16), we get the desired relation. U

4. Numerical examples

In this section, we show the comparison of the convergence of the Stancu Durrmeyer
type operators Kf, . ((f;x) and the genuine Bernstein-Durrmeyer operators N (f;x)
to the certain function for different values of parameters r, s and p using Mathematica
algorithms.

EXAMPLE 4.1. In Figure 1, for n = 20, r = 2, s = 3, p = 3, the comparison of conver-
gence of K, . (f; ) (orange) and the genuine Bernstein-Durrmeyer [10] (thick) oper-
ators to f(z) = 22 — 22+ 3 (blue) is illustrated. It is seen that the genuine Bernstein-
Durrmeyer N?(f;x) operators give a better convergence to f(x) than Kf, . .(f; ) for
n=20,r=2,5s=3,p=3.

0.2 0.4 0.6 0.8 10

Figure 1: The convergence of Kf, .. .(f;z) and NE(f;x) to f(z)

EXaMPLE 4.2. In Figure 2, for n = 60, r = 2, s = 6, p = 7 the comparison of
convergence of Kf, . ( f ;) (orange) and the genuine Bernstein-Durrmeyer [10] (thick)
operators to f(z) = 2% — 2z + 3 (blue) is illustrated. It is observed that the genuine
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Bernstein-Durrmeyer N7 (f;x) operators give a better approximation to f(z) than
IC'rpL,r,s(f;x) for n = 60, T = 2, s = 6, p = 7.

S I S S n
0.2 0.4 0.6 0.8 1.0

Figure 2: The convergence of Kf, . ;(f;x) and N (f;z) to f(z)

EXAMPLE 4.3. In Figure 3, for n = 100, r = 1, s = 5, p = 5 the comparison of
convergence of K, . (f; ) (orange) and the genuine Bernstein-Durrmeyer [10] (thick)
operators to f(x) = 2 —2x+3 (blue) is illustrated. It is seen that both the operators
NE(f;x) and Kf, . ((f; ) give a good convergence to f(x) for n = 100, 7 = 1, s =

5, p=5.

S S O S S S
0.2 0.4 0.6 0.8 10

Figure 3: The convergence of K, - s(f; ) and N£(f;x) to f(z)

REMARK 4.4. From the above examples, we conclude that the operators Kf, . (f;x)
converge to f(x) for large n.
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