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Abstract. Black hole kinematics and laws governing their event horizons in spacetimes
are usually based on the expansion properties of families of null geodesics which generate
such horizons. Raychaudhuri’s equation is one of the most important tools in investigating
the evolution of such geodesics. In this paper, we use the so-called Newton transformations
to give a generalized vorticity-free Raychaudhuri’s equation (Theorem 3.1), with a corre-
sponding null global splitting theorem (Theorem 3.5) for null hypersurfaces in Lorentzian
spacetimes. Two supporting physical models are also given.

1. Introduction

Expansion properties of families of null geodesics play a crucial role, both in the sin-
gularity theorems of general relativity – in which, for example, the so-called trapped
surfaces are characterized by negative expansions for both ingoing and outgoing fam-
ilies of light rays, and in the study of black holes and the laws governing the evolution
of their event horizons – with focus on the null geodesic congruences generating the
horizons. More precisely, in the latter case Raychaudhuri’s equation is very important
in the proof of the following laws of black hole mechanics:

(a) For a black hole of mass M, with angular momentum J and area A, the changes
δM, δJ and δA in the above quantities are related by

δM =
κ

8π
δA + ΩδJ,

where κ is the surface gravity and Ω is the angular velocity.

(b) If the null energy condition is satisfied, then the surface area of a black hole
cannot decrease, δA > 0 (Stephen W. Hawking, 1971).
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(c) The surface gravity κ of a black hole cannot be reduced to zero within a finite
advanced time.

More details on these laws and their proofs can be found in [3, 8] and references
therein.

In most cases, totally geodesic null hypersurfaces have played as models of time-
independent event and isolated black hole horizons [4]. It is quite obvious that the
geodesics in these horizons have zero expansions. If, in addition, the corresponding
spacetimes are shear-free, then we deduce that these horizons are stationary [10]. In
fact, the event horizons of Schwarzschild, Reissener, Kerr and the Cauchy horizon
of Taub-NUT spacetimes are all stationary semi-Riemannian hypersurfaces (see [10]
for more details). However, due to the fact that black holes are surrounded by a
local mass distribution, then there is a significant difference in the structure of the
surrounding region (horizon) of isolated black holes. Hence, in a recent paper [4]
by K. L. Duggal, he used metric conformal symmetry to study a family of totally
umbilical null hypersurfaces M as models of these horizons, in which the following
first order vorticity-free Raychaudhuri’s equation

E(Θ1) = −Ric(E,E)− tr(σ2)− Θ2
1

2
, (1)

where E is a null vector field, Θ1 is the expansion, σ is the shear tensor and Ric
denotes the Ricci tensor of M , played part.

In [6], the authors gave a null version of Raychaudhuri’s equation and found inte-
grability conditions for some specific distinguished structures.

In this paper, we generalize (1) and give two of its applications to null hypersur-
faces in flat spacetimes. Null geometry of submanifolds has been studied by many
researchers, including but not limited to the following: [5, 7, 9–14]. The paper is or-
ganized as follows. In Section 2 we give the basic preliminaries on null hypersurfaces
as well as Newton transformations, needed for the rest of the paper. In Section 3
we derive a generalized Raychaudhuri’s equation for null hypersurfaces in Lorentzian
spacetimes. Finally, in Section 4 we give two physical models of null hypersurfaces in
flat spacetimes to support our results in the previous section.

2. Preliminaries

Let (Mn+1, g) be a null hypersurface of a Lorentzian manifold (M
n+2

, g), endowed
with the following distributions: the radical distribution Rad(TM) = TM ∩ TM⊥ =
TM⊥ and a screen distribution S(TM). Then the following decomposition of TM is
well-known [5]: TM = TM⊥ ⊥ S(TM), where TM and TM⊥ denote the tangent
and normal bundles of M respectively, and ⊥ is the orthogonal direct sum. We will
denote by Γ(Ξ) the set of smooth sections of the vector bundle Ξ over M .

It is well-known from [5, p. 79] that for any null section E of TM⊥, there exists
a unique null section N of the transversal vector bundle tr(TM) on a coordinate
neighbourhood U ⊂ M such that g(E,N) = 1 and g(N,N) = g(N,Z) = 0, for any
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Z ∈ Γ(S(TM)). Then we have the following decomposition of TM :

TM = S(TM) ⊥ {TM⊥ ⊕ tr(TM)}.
It is important to note that the distribution S(TM) is not unique, and is canonically
isomorphic to the factor vector bundle TM/TM⊥ by Kupeli [10]. Let P be the
projection of TM on to S(TM). Then the local Gauss-Weingarten equations of M
are the following:

∇XY = ∇XY +B(X,Y )N, ∇XN = −ANX + τ(X)N,

∇XPY = ∇∗XPY + C(X,PY )E, ∇XE = −A∗EX − τ(X)E,

for all E ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)). ∇ and ∇∗ are induced linear connections
on TM and S(TM), respectively, B is the local second fundamental form of M and
C is the local second fundamental form on S(TM). Furthermore, AN and A∗E are
the shape operators on TM and S(TM) respectively, and τ is a differential 1-form
on TM . Note that ∇∗ is a metric connection on S(TM) while ∇ is generally not a
metric connection. In fact, ∇ satisfies the following relation

(∇Xg)(Y,Z) = B(X,Y )λ(Z) +B(X,Z)λ(Y ), (2)

for all X,Y, Z ∈ Γ(TM), where λ is a 1-form on TM given as λ(·) = g(·, N). It
is well-known from [5] and [7] that B is independent of the choice of S(TM) and it
satisfies B(X,E) = 0, ∀X ∈ Γ(TM).

The local second fundamental forms B and C are related to their shape operators
by the following equations

g(A∗EX,Y ) = B(X,Y ), g(A∗EX,N) = 0, (3)

g(ANX,PY ) = C(X,PY ), g(ANX,N) = 0,

for all X,Y ∈ Γ(TM). From equations (3) we deduce that A∗E is S(TM)-valued,
self-adjoint operator and satisfies A∗EE = 0. Let R denote the curvature tensor of M ;
then

g(R(X,Y )Z,E) = (∇XB)(Y,Z)− (∇YB)(X,Z)

+ τ(X)B(Y, Z)− τ(Y )B(X,Z), (4)

for all X,Y, Z ∈ Γ(TM).

Let {Zi}, for i = 1, · · · , n, be an orthonormal frame field of S(TM) which diago-
nalizes A∗E . Let us suppose that k1, · · · , kn are the respective eigenvalues (or principal
curvatures). Then the r-th mean curvature S∗r is given by [15]:

S∗0 = 1, and S∗r = σr(k1, · · · , kn) =
∑

1≤i1<···<ir≤n

ki1 · · · kir .

The characteristic polynomial of A∗E is given by det(A∗E − tI) =
∑n
α=0(−1)αS∗r t

n−α,
where I is the identity in Γ(TM). The normalized r-th mean curvature H∗r of M is
defined by

(
n
r

)
H∗r = S∗r and H∗0 = 1. Furthermore, M will be called r-maximal if

H∗r = 0, ∀ r ∈ {1, · · · , n}. (5)

Let Θr = (−1)rS∗r be the generalized null expansion. The Newton transformations
Tr : Γ(S(TM))→ Γ(S(TM)), of A∗E are given by the inductive formula (see [1,2] for
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more details)

T0 = I, Tr = ΘrI +A∗E ◦ Tr−1, 1 ≤ r ≤ n. (6)

By Cayley-Hamiliton theorem, we have Tn = 0. It is easy to know that Tr is also a self-
adjoint linear operator with respect to A∗E ; besides, A∗E and Tr can be simultaneously
diagonalized. Also, it is easy to show that Tr satisfies the following properties:

tr(Tr) = (n− r)Θr,

tr(A∗E ◦ Tr) = −(r + 1)Θr+1,

tr(A∗2E ◦ Tr) = Θ1Θr+1 − (r + 2)Θr+2,

tr(Tr ◦ ∇XA∗E) = −X(Θr+1),

for all X ∈ Γ(TM).

It is important to note that the operators Tr depend on the choice of the transversal
bundle tr(TM) and the screen distribution S(TM). Suppose a screen distribution
S(TM) changes to another screen S(TM)′. The following are some of the local
transformation equations due to this change (see [5, p. 87] for more details):

W ′i =

n∑
j=1

W j
i (Wj − εjcjE) ,

N ′(X) = N − 1

2
g(W,W )E +W,

A
′∗
EX = A∗EX +B(X,N −N ′)E, (7)

N ′(X)∇′XY = ∇XY +B(X,Y ){1

2
g(W,W )E −W},

for any X, Y ∈ Γ(TM |U ), where W =
∑n
i=1 ciWi, {Wi} and {W ′i} are the local

orthonormal bases of S(TM) and S(TM)′ with respective transversal sections N and
N ′ for the same null section B. Here ci and W j

i are smooth functions on U and
{ε1, · · · , εn} is the signature of the basis {W1, · · · ,Wn}. Denote by ω the dual 1-form
of W , characteristic vector field of the screen change, with respect to the induced
metric g = g|M , that is, ω(X) = g(X,W ), ∀ X ∈ Γ(TM). Consider an orthogonal
basis {Zi}, for i ∈ {1, · · · , n}, which diagonalizes A

′∗
E and A∗E . Let k′i and ki be the

eigenvalues corresponding to eigenvector Zi. Then, from (7) we have (k′i − ki)Zi =
−B(Zi,W )E, which shows that the eigenvalues change under the change of the screen
distribution. Since the generalized expansion Θr depends on the eigenvalues ki, i.e.
Θr = (−1)rS∗r = (−1)rσr(k1, · · · , kn), then a change of N will cause a change in it.
Now, let {Θ, Tr} and {Θ′, T ′r} be two sets of the above objects under a change in N .
Applying recurrence relation (6) and the fact that TrZi = (−1)rS∗ir Zi, we have

T ′rZi = Θ′rI + (−1)r−1S∗i
′

r−1A
∗′
EZi, TrZi = ΘrI + (−1)r−1S∗ir−1A

∗
EZi. (8)

Subtracting the second relation in (8) from the first and using relation (7) with X =
Zi, we deduce that the operators Tr and T ′r are related by the following equation:

T ′r = Tr + (Θ′r −Θr)I + θrA
∗
E +B(T ′r−1, N −N ′)E,

where θr := (−1)r−1(S∗i
′

r−1 − S∗ir−1).
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It is easy to see that the tensor Tr is unique if and only if the null hypersurface M
is totally geodesic. For more details on Newton transformations and their properties,
we refer the reader to [1, 2] and many more references therein.

3. Generalized Raychaudhuri’s equation

Raychaudhuri’s equation is central to the study of gravitational focusing and space-
time singularities. The equation was first derived by Amal Kumar Raychaudhuri, in
1955, in order to describe gravitational focusing properties in cosmology.

In this section, a generalized Raychaudhuri’s equation for null hypersurfaces is
derived with the help of general relativity concepts and Newton transformations. A
local null normal section E is called geodesic if ∇EE = 0, for which the integral
curves of E are called null geodesic generators [7]. This condition has been shown to
have interesting geometrical and physical meanings and it also simplifies the algebraic
computations. Moreover, it is well known from [7] that if U is a null normal section
on M , then for all p ∈M one can scale U to be geodesic on a suitable neighborhood
U of p.

Let us consider the tidal force operator (also known as the Jacobi operator)
RE : Γ(TM|U )→ Γ(TM|U ) (see [7, p. 103] for details) defined as follows

RE(X) = R(X,E)E = ∇[E,X]E −∇E∇XE.
It is easy to show that RE is a symmetric operator and tr(RE) = Ric(E,E). Let us
define RE : Γ(TM|U )→ Γ(TM|U ) in the same way but using the induced connection

∇ instead of ∇. Then one can easily verify that RE = RE . This allows us to define
the tidal force in terms of the induced objects on a null hypersurface.

Consider, as in [7], the flux of E as a local congruence of null geodesic curves. It
is known that the vorticity tensor ω is the antisymmetric part of −A∗E and the shear
tensor σ is the trace-free of the symmetric part of −A∗E . Since −A∗E is symmetric,
then

ω = 0, σ = −A∗E −
Θ1

n
I. (9)

Then the first order vorticity-free Raychaudhuri’s equation [7] for null hypersurfaces
is given by

E(Θ1) = −Ric(E,E)− tr(σ2)− Θ2
1

n
. (10)

Note that if the screen distribution S(TM) changes to another screen S(TM)′, then
the shear tensors σ and σ′ associated with S(TM) and S(TM)′, respectively, are
related by

σ′ = σ +B(·,W )⊗ E +
Θ1 −Θ′1

n
I.

The uniqueness of the shear tensor holds if the null hypersurface M is totally geodesic.

The following theorem is a generalization of the first order vorticity-free Ray-
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chaudhuri’s equation (10). It uses the divergence of the operator Tr as the vector
field div∇(Tr) ∈ Γ(TM) which is defined as

div∇(Tr) = tr(∇Tr) =

n∑
β=0

(∇ZβTr)Zβ .

Theorem 3.1. Let (M, g) be a null hypersurface in a Lorentzian manifold (M, g).
Let E be a null generator of M , which is parameterized to be a geodesic, with a
generalized null expansion Θr. Then, the generalized vorticity free Raychaudhuri’s
equation is given by

E(Θr) = −tr(Tr−1 ◦RE)− tr(σ2 ◦ Tr−1)− 2
Θ1

n
tr(σ ◦ Tr−1)− Θ2

1

n
,

for all r ∈ {1, · · · , n}.

Proof. Using the recurrence relation (6), we have

g(div∇(Tr), X) = PX(Θr) + g((∇EA∗E)Tr−1E,X) + g(div∇(Tr−1), A∗EX)

+

n∑
i=1

g((∇ZiA∗E)Tr−1Zi, X), (11)

for any X ∈ Γ(TM). But

g((∇ZiA∗E)Tr−1Zi, X) = g(Tr−1Zi, (∇ZiA∗E)X) + g(∇ZiA∗E(Tr−1Zi), X)

− g(∇Zi(A∗EX), Tr−1Zi) + g(A∗E(∇ZiX), Tr−1Zi)

− g(A∗E(∇ZiTr−1Zi), X), (12)

for all X ∈ Γ(TM). Applying (2) to (12) while considering the fact that A∗E is
screen-valued, we get

g((∇ZiA∗E)Tr−1Zi, X) = g(Tr−1Zi, (∇ZiA∗E)X)

− λ(X)B(Zi, A
∗
E ◦ Tr−1Zi). (13)

Furthermore, using (4), the first term on the right-hand side of (13) reduces to

g(Tr−1Zi, (∇ZiA∗E)X) = g(R(Zi, X)Tr−1Zi, E) + g((∇XAN )Zi, Tr−1Zi)

+ τ(X)B(Zi, Tr−1Zi)− τ(Zi)B(X,Tr−1Zi), (14)

for any X ∈ Γ(TM). Replacing (14) in (13) and plunging the resulting equation in
(11) we get

g(div∇(Tr), X) = −λ(X)E(Θr) + g((∇EA∗E)Tr−1E,X) + g(div∇(Tr−1), A∗EX)

+ τ(X)tr(A∗E ◦ Tr−1)− λ(X)tr(A∗2E ◦ Tr−1)

−
n∑
i=1

{g(R(Zi, X)E, Tr−1Zi)− τ(Zi)B(X,Tr−1Zi)}, (15)

for any X ∈ Γ(TM). Finally, setting X = E in (15), and using A∗E = −σ − Θ1

n I and
(9), to the resultant equation, we get the desired result. �

Definition 3.2. Let M be a null hypersurface of M and let σ denote the shear tensor
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of M . Then M is said to be r-stationary if Θr vanishes and the operator (σ2 ◦ Tr) is
trace-free for all r ∈ {0, · · · , n}.

The following result also holds.

Theorem 3.3. Let (M, g) be a null hypersurface in a Lorentzian manifold (M, g). Let
E be a null generator of M , which is parameterized to be a geodesic, with a generalized
null expansion Θr. If M satisfies the r-th energy condition tr(Tr−1 ◦RE) ≥ 0 and the
operator Tr−1 has non-negative eigenvalues, then for all r ∈ {1, · · · , n}, the following
are equivalent

(a) Θr vanishes along every null generator E of M which is parameterized to be a
null geodesic;

(b) M is r-stationary;

(c) M is r-maximal in M .

Proof. First note that when M is Lorentzian then the screen distribution is Rie-
mannian. Since Tr−1 has non-negative eigenvalues,, hence tr(σ2 ◦ Tr−1) ≥ 0. Now,
(a) ⇔ (b): If Θr = 0 then we see from Theorem 3.1 that tr(σ2 ◦ Tr−1) ≤ 0 and
therefore, tr(σ2 ◦ Tr−1) = 0. Hence, M is r-stationary. Then, (b) ⇔ (c): It follows
immediately from (5). �

When r = 1 we deduce the following well-known result [10, p. 88].

Corollary 3.4 ( [10]). Let (M, g) be a null hypersurface in a Lorentzian manifold
(M, g). Let E be a null generator of M , which is parameterized to be a geodesic.
If M satisfies the energy condition tr(RE) = Ric(E,E) ≥ 0 then the following are
equivalent

(a) Θ1 vanishes along every null generator E of M which is parameterized to be a
null geodesic;

(b) M is stationary;

(c) M is totally geodesic in M .

Next, we give the generalized global null splitting theorem.

Theorem 3.5. Let M be a null hypersurface in a spacetime M admitting a unique
distinguished global structure (S(TM), E) and satisfies the generalized null energy
condition tr(Tr−1 ◦RE) ≥ 0 for every E ∈ Γ(Rad(TM)), and r = 1, 2, · · · , n, and the
operator Tr−1 has non-negative eigenvalues. Then, M is r-maximal if and only if its
r-th null mean curvature S∗r vanishes identically for all E ∈ Γ(Rad(TM)).

Proof. A proof is straightforward and therefore we leave it out. �

By setting r = 1 in Theorem 3.5, we deduce the following well-known result.
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Corollary 3.6 ( [7]). Let M be a null hypersurface in a spacetime M admitting a
unique distinguished global structure (S(TM), E) and satisfies the null energy con-
dition tr(RE) = Ric(E,E) ≥ 0 for every E ∈ Γ(Rad(TM)). Then, M is totally
geodesic if and only if its first order null mean curvature S∗1 vanishes identically for
all E ∈ Γ(Rad(TM)).

4. Physical models

A star which is heavier than a few solar masses has a tendance of collapsing under its
gravitational attraction in a process called gravitational collapse, which occurs with-
out achieving any equilibrium state. The outcome of such collapse is usually a black
hole which covers the resulting space-time singularity and causal message from the
singularity cannot reach the external observer at infinity. The Schwarzschild, Reis-
sener, Kerr and Taub-NUT spacetimes [5, 7, 10] are nondegenerate semi-Riemannian
manifolds satisfying Ric(E,E) ≥ 0 for every null E ∈ Γ(TM). The event horizons
of Schwarzschild, Reissener, Kerr and the Cauchy holizon of Taub-NUT spacetimes
are r-stationally semi-Riemannian hypersurfaces, and thus by Theorem 3.3 they are
r-maximal (and particularly, totally geodesic [10]). Other examples are given here-
under.

Example 4.1 (Slices of Minkowski null cone). Consider the congruence formed

by the generators of the null cone in a flat spacetime M
4
. The geodesics originate

from a single point, say O, which we can consider to be at the origin of the Cartesian
coordinate system xα. Then, the corresponding null hypersurface can be represented
as M = {t−a = 0 : a2 = x2+y2+z2}. By considering the parametric transformations
t = ρ, x = ρ sin θ cosφ, y = ρ sin θ sinφ and z = ρ cos θ, in which yα = (ρ, θ, φ) are
the intrinsic coordinates; ρ is an affine parameter on the null cone’s generators, which
moves with constant values of θA = (θ, φ), A = 2, 3. Then the null geodesics can be
represented by

Eα = −∂αu = (1, sin θ cosφ, sin θ sinφ, cos θ),

and the corresponding transversal vector field Nα lies in (t, a) plane and is given by

Nα =
1

2
∂αv =

1

2
(−1, sin θ cosφ, sin θ sinφ, cos θ).

The screen distribution S(TM) is the 2-surface spanned by ∂θ and ∂φ, where

∂θ = (0, ρ cos θ cosφ, ρ cos θ sinφ,−ρ sin θ),

and ∂φ = (0,−ρ sin θ sinφ, ρ sin θ cosφ, 0).

Also, one can show that the line element induced on S(TM) is

ds2|S(TM) = diag(0, 0, a2, a2 sin2 θ).

By straightforward calculations, we get k1 = k2 = 1
a . Hence, Θ1 = − 2

a and
Θ2 = 1

a2 (Gaussian curvature) and the corresponding Newton transformations are
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given by

T1 = −2

a
I +

1

a
P and T2 =

1

a2
I−A∗E ◦ T1.

It is easy to see that both σ and ω are vanishing and hence, the corresponding
generalized Raychaudhuris’s equation is given by

Eα(Θr) +
Θ2

1

2
= 0, r = 1, 2. (16)

Note that ω = 0 and tr(Tr−1 ◦ RE) = 0, for r = 1, 2. Furthermore, (16) indicates
that Eα(Θr) < 0 and hence the generalized null expansion Θr decreases (or simply,
the geodesics are focused) during the congruence’s evolution.

Example 4.2 (Null geodesics in Schwarzschild spacetime). Let us consider the

radial null geodesics of the Schwarzschild spacetime M
4
. The line element is given by

ds2 = −ψdt2 + ψ−1dr2 + r2dθ2 + r2 sin2 θ dφ2,

where ψ = 1 − 2m
r and m denotes the mass of the black hole. For dθ = dφ = 0, we

have that the Schwarzschild line element of the metric reduces to

ds2 = −ψdt2 + ψ−1dr2.

In this case, the displacements will be null if ds2 = 0. Let

u = t− r and v = t+ r,

where r =

∫
1

ψ
dr = r + 2m ln

∣∣∣ r
2m
− 1
∣∣∣ .

We can see that u = constant on outgoing null geodesics and v = constant on the
ingoing null geodesics. Hence, {u = constant} and {v = constant} are null subspaces
of M . It is easy to see that the vector fields

Eαout = −∂αu and Eαin = −∂αv,
are both null and satisfies the null geodesic condition, with +r and −r as the affine
parameters for Eαout and Eαin, respectively. Let M = {u = constant} or M =

{u = constant}. The corresponding transversal vector fields are respectively given
by Nα

out = 1
2∂αv and Nα

in = 1
2∂αu. Also, S(TM) = span{∂θ, ∂φ}. Following simple

calculations, we can see that

A∗Eα = diag(±1

r
,±1

r
),

on S(TM). Hence, Θ1 = ± 2
r , where the + (respectively, -) represents the outgoing

(respectively, ingoing) congruence, and Θ2 = 1
r2

(Gaussian curvature). The Newton
transformations for this system are given by

T1 = ±2

a
I +

1

a
P and T2 =

1

a2
I−A∗E ◦ T1.

Observe that σ = 0 and ω = 0. Hence, the generalized Raychaudhuri’s equation is

given by Eα(Θr) +
Θ2

1

2 = 0, r = 1, 2. As in the previous example, we have Eα(Θr) <
0 and hence the generalized null expansion Θr decreases during the congruence’s
evolution. Notice that M is neither r-stationary nor r-maximal. Notice also that on
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the event horizon M := {r = 2m} of the above spacetime, we have Θr = 0 and σ = 0.
Hence, M in this case is r-stationary and also r-maximal.
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