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GROUPS OF GENERALIZED ISOTOPIES AND GENERALIZED
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P.S. Gevorgyan and S.D. Iliadis

Abstract. The group of generalized isotopies of topological space is studied. A rela-
tionship of this group with the group of homeomorphisms is established in case of locally
compact and locally connected space. Notions of generalized G-spaces and there equivariant
maps are introduced. It is proved that a new category of generalized G-spaces is a natural
extension of the category of G-spaces.

1. Introduction

In [5] the first author has studied a group of invertible continuous binary operations
of a topological space X. The concepts of binary G-spaces and binary equivariant
maps have also been introduced and studied. The notions of binary G-space X and
group of invertible binary operations of a topological space X are interdependent.

In this article natural generalizations of these objects are considered. We intro-
duce the notion of generalized isotopy and study a group of generalized isotopies of
a topological space X. The relationship between this group and the group of homeo-
morphisms is established. We also introduced the notions of generalized G-spaces and
their equivariant maps related to generalized isotopies. So, we have a new category
which is a natural extension of the category of G-spaces and equivariant maps.

Now let us recall some notations, notions and auxiliary results that we need in
this article. Throughout this paper, all spaces are assumed to be Hausdorff. The
category of topological spaces and continuous maps is denoted by Top.

By C(X,Y ) we denote the space of all continuous maps of X to Y endowed with
the compact-open topology, that is, the topology generated by the subbase consisting
of all sets of the form W (K,U) = {f : X → Y ; f(K) ⊂ U}, where K is a compact
subset of X and U is an open subset of Y .
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If G is a topological group, then there is a natural group operation on C(X,G):
given any continuous maps f, g ∈ C(X,G), their product fg ∈ C(X,G) is defined by
(fg)(x) = f(x)g(x) for all x ∈ X. If G is a topological group, then so is C(X,G)
(see [7]).

The group of all self-homeomorphisms of X is denoted by H(X). This group is not
generally a topological group. However, if a space X is locally compact and locally
connected, then H(X) is a topological group (see [1]).

Let X be a topological space, and let G be a topological group G with identity
element e. Suppose given a continuous map θ : G×X → X satisfying the conditions
θ(g, θ(h, x)) = θ(gh, x) and θ(e, x) = x for g, h ∈ G and x ∈ X. Then X is called a
G-space, and the continuous map θ : G×X → X is called the action of the group G
on the space X.

Let X and Y be G-spaces. A continuous map f : X → Y is said to be equivariant
if f(gx) = gf(x) for any g ∈ G and x ∈ X. All G-spaces and their equivariant maps
form a category. This category is denoted by G-Top.

Details on these notions, as well as on all definitions, notions, and results used in
this paper without reference, can be found in [2–4,6].

2. The group of generalized isotopies

Let T be a topological space. For any topological space X let us denote the topological
space of all continuous maps from T × X to X with the compact-open topology by
C(T ×X,X). We define an operation “◦” on C(T ×X,X) by

(f ◦ g)(t, x) = f(t, g(t, x)) (1)

for all t ∈ T and x ∈ X.
Note that each map f : T ×X → X can be considered as a family f = {ft}, t ∈ T ,

of continuous maps ft : X → X defined by

ft(x) = f(t, x) (2)

for all x ∈ X. Now the formula (1) can be written as (f ◦ g)t(x) = ft(gt(x)) =
(ft ◦ gt)(x), i.e. (f ◦ g)t = ft ◦ gt, where ft ◦ gt is an ordinary composition of maps
ft, gt : X → X. So, f ◦g is naturally called a composition of maps f, g ∈ C(T×X,X).

Proposition 2.1. The space C(T × X,X) under the operation “◦” is a semigroup
with identity, i.e. a monoid.

Proof. Let f, g, h ∈ C(T × X,X) be continuous maps. Let us check the semigroup
axiom:

[f ◦ (g ◦ h)](t, x) = f(t, (g ◦ h)(t, x)) = f(t, g(t, h(t, x)))

= (f ◦ g)(t, h(t, x)) = [(f ◦ g) ◦ h](t, x).

The continuous map e : T ×X → X defined by e(t, x) = x for all t ∈ T and x ∈ X
is the identity element of semigroup C(T ×X,X), because f ◦ e = e ◦ f = f . Indeed,
(f ◦ e)(t, x) = f(t, e(t, x)) = f(t, x) and (e ◦ f)(t, x) = e(t, f(t, x)) = f(t, x). 2
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Definition 2.2. A map f = {ft} ∈ C(T × X,X) is said to be invertible if there
exists a map f−1 = {(f−1)t} ∈ C(T ×X,X) such that

f ◦ f−1 = f−1 ◦ f = e. (3)

In this case, f and f−1 are said to be mutually inverse maps.

Let us denote the set of all invertible maps of C(T ×X,X) by H(T ×X,X). So,
H(T ×X,X) is a group.

The following necessary condition of invertibility of continuous map f : T×X → X
holds.

Theorem 2.3 ( [5, Theorem 3]). If a map f = {ft} ∈ C(T ×X,X) is invertible, then
for any t ∈ T the map ft : X → X is a homeomorphism and f−1 = {f−1t }.

Proof. Suppose that a continuous map f : T ×X → X is invertible, i.e. there exists a
map f−1 = {(f−1)t} ∈ C(T ×X,X) satisfying relations (3). Take any element t ∈ T .
Let us prove that the continuous map ft : X → X is a homeomorphism.

The map ft is a injective. Indeed, suppose that ft(x) = ft(x
′), i.e. f(t, x) =

f(t, x′). Then x = e(t, x) = (f−1 ◦ f)(t, x) = f−1(t, f(t, x)) = f−1(t, f(t, x′)) =
(f−1◦f)(t, x′) = e(t, x′) = x′. Since (ft◦(f−1)t)(x) = ft((f

−1)t(x)) = ft(f
−1(t, x)) =

f(t, f−1(t, x)) = (f ◦ f−1)(t, x) = e(t, x) = x, we have ft ◦ (f−1)t = 1X .
A similar argument proves that (f−1)t ◦ ft = 1X . Thus, the continuous map

(f−1)t : X → X is inverse to ft : X → X, i.e. a map ft : X → X is a homeomorphism
and f−1t = (f−1)t. 2

Note that if T = [0, 1] then, by Theorem 2.3, an invertible continuous map
f : [0, 1]×X → X is an isotopy of a topological space X. So, we will call invert-
ible maps f : T × X → X generalized isotopies of topological space X over T and
H(T ×X,X) — a group of generalized isotopies.

The converse of Theorem 2.3 is not true, i.e. if for any t ∈ T the map ft : X → X
is a homeomorphism then f−1 = {f−1t } is not necessarily inverse to f = {ft}.

Example 2.4. Let X be a subset of the plane consisting of the graph of function

y = sin
2π

x
, x ∈ (0, 1], and point O(0, 0) (see Figure 1):

X =

{
(x, y) ∈ R2; x ∈ (0, 1], y = sin

2π

x

}
∪
{

(0, 0) ∈ R2
}

We will denote the intersection points of y = sin
2π

x
, x ∈ (0, 1], and x-axis by a1, a2,

. . . , an, . . . It is obvious that a2n−1 =

(
1

n
, 0

)
, a2n =

(
2

2n+ 1
, 0

)
, n = 1, 2, . . .

The points b1, b2, . . . , bn, . . . which represent the intersection of graph y = sin
2π

x
,

x ∈ (0, 1], with line y = 1 have coordinates bn =

(
4

4n+ 1
, 1

)
, n = 1, 2, . . .

Let c1, c2, . . . , cn, . . . be the intersection points of graph of the function y = sin
2π

x
with y = −x and let ξn be the x-coordinate of point c2n−1, n = 1, 2, . . .
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We denote the intersection points of y = sin
2π

x
with the line y =

1

2
by d1, d2,

. . . , dn, . . . and suppose that ηn is the x-coordinate of point d2n−1, n = 1, 2, . . ., i. e.,

d2n−1 =

(
ηn,

1

2

)
.

0 1

1

−1

x

y
b3 b2 b1

d3 d2 d11
2

a2 a1

c3
c2
c1

Figure 1
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ηn
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a2n−1
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n
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2

2n+1

Xn

Figure 2

Now let us define the isotopy f : [0, 1]×X → X, i.e. the family of homeomorphisms
ft : X → X, t ∈ [0, 1], in the following way.

For t = 0 let f0 = 1X . Now we define the homeomorphism ft : X → X on each

interval

[
1

2n+ 1
,

1

2n− 1

]
, n = 1, 2, . . ., as follows.

If t ∈
[

1

2n
,

1

2n− 1

]
, n = 1, 2, . . ., then

ft(x, y) =



(
pt(x), sin

2π

pt(x)

)
x ∈

(
ξn,

4

4n+ 1

]
,(

qt(x), sin
2π

qt(x)

)
x ∈

(
4

4n+ 1
, ηn

]
,

(x, y); x /∈ (ξn, ηn] ,

(4)



114 Groups of generalized isotopies and generalized G-spaces

where

pt(x) =

4n(2n− 1)

(2n+ 1)(4n+ 1)

(
t− 1

2n

)
+

2

2n+ 1
− ξn

4

4n+ 1
− ξn

(x− ξn) + ξn.

qt(x) =

ηn −
[

4n(2n− 1)

(2n+ 1)(4n+ 1)

(
t− 1

2n

)
+

2

2n+ 1

]
ηn −

4

4n+ 1

(x− ηn) + ηn.

Let t ∈
[

1

2n+ 1
,

1

2n

]
. Note that the interval

[
1

2n+ 1
,

1

2n

]
is mapped linearly

on the interval

[
1

2n
,

1

2n− 1

]
by the formula t′ =

1

2n
+

2n+ 1

2n− 1

(
1

2n
− t
)

. Moreover,

1

2n+ 1
→ 1

2n− 1
and

1

2n
→ 1

2n
. Now we define the homeomorphism ft(x, y) by

putting ft(x, y) = ft′(x, y), where ft′(x, y) is calculated by formula (4).
It is not difficult to see that the map ft : X → X is an identity except on arc Xn

which consists of the points of X with x-coordinate belonging to (ξn, ηn] (see Figure
2). This arc is linearly mapped on itself by ft such that f 1

2n
(bn) = a2n.

One can easily verify that pt(x) = qt(x) = x for t =
1

2n− 1
. Therefore, f 1

2n−1
(x, y) =

(x, y) for all n = 1, 2, . . . and (x, y) ∈ X.
The map f : [0, 1] × X → X, f(t, x) = ft(x) is obviously continuous on X\{O}

and is fixed at O, i. e., f(t, O) = O for all t ∈ [0, 1]. It is readily seen that every

circular neighborhood of O of radius <
1

2
is mapped into itself by every ft. Hence

f : [0, 1]×X → X is continuous at the point O, i.e. is an isotopy of X.
Now let us prove that the map f−1 : [0, 1] × X → X, f−1 = {f−1t }, is not

continuous at the point O. Indeed, the sequence a2n =
1

2n
, n = 1, 2, . . . , converges

to O. However, the sequence f−11
2n

(a2n) = bn, n = 1, 2, . . . , has no limit in X.

However, the following statement is true.

Theorem 2.5 ( [5, Theorem 4]). Let T be any topological space, X be a locally compact
and locally connected and f : T×X → X be a continuous map. If the map ft : X → X,
defined by (2), is a homeomorphism for each t ∈ X, then the map f is a generalized
isotopy.

Proof. Consider the map f−1 given by f−1(t, x) = f−1t (x).
It is easy to show that f−1 is inverse to f . Indeed,

(f ◦ f−1)(t, x) = f(t, f−1(t, x)) = f(t, f−1t (x)) = ft(f
−1
t (x)) = x,

i.e. f ◦ f−1 = e. The relation f−1 ◦ f = e is proved in a similar way.
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It remains to prove the continuity of map f−1 : T ×X → X.

Let (t0, x0) ∈ T×X be any point. Denote f−1(t0, x0) = f−1t0 (x0) = y0 and consider

any open neighborhood W ⊂ X of y0 such that the closure W is compact. Since the
map f−1t0 is a homeomorphism, there exists a compact connected neighborhood K of
x0 for which

f−1t0 (K) ⊂W. (5)

Denote the interior of K by K◦. It is evident that

ft0(y0) = x0 ∈ K◦. (6)

Inclusion (5) implies

ft0(WC ∩W ) ⊂ KC , (7)

where WC and KC are the complements of W and K, respectively.

Since f : T ×X → X is a continuous map, {y0} and WC ∩W are compact subsets
of X, and K◦ and KC are open subsets, it follows from (6) and (7) that the point
t0 ∈ T has an open neighborhood U ⊂ T such that, for any t ∈ U , we have

ft(y0) ∈ K◦ (8)

and ft(W
C ∩W ) ⊂ KC . (9)

Inclusion (9) implies that K ⊂ ft(W ∪W
C

) for any t ∈ U . Therefore, f−1t (K) ⊂
W ∪ WC

. Since f−1t (K) is connected and W and W
C

are disjoint open sets, it
follows from the last inclusion that f−1t (K) is contained in one of the sets W and

W
C

. However, by virtue of (8), we obviously have f−1t (K) ⊂W . Hence

f−1t (K◦) ⊂W (10)

for all t ∈ U .

Thus, given any open neighborhood W of y0 = f−1t0 (x0), we have found open
neighborhoods U of t0 and K◦ of x0 for which (10) holds. This proves the continuity
of map f−1 : T ×X → X. 2

Theorems 2.3 and 2.5 imply the following assertion.

Theorem 2.6 ( [5, Theorem 5]). Let T be any topological space, X be a locally compact
and locally connected. A continuous map f : T ×X → X is a generalized isotopy if
and only if the continuous map ft : X → X defined by (2) is a homeomorphism for
any t ∈ X.

Proposition 2.7. The group H(X) of all self-homeomorphisms of a topological space
X is isomorphic to a subgroup of the group H(T ×X,X) of generalized isotopies.

Proof. To each f ∈ H(X) we assign the continuous map f̃ : T ×X → X defined by

f̃(t, x) = f(x) for all t ∈ T , x ∈ X. Obviously, f̃−1 = f̃−1. Thus, f̃ is a generalized
isotopy, i.e. f̃ ∈ H(T×X,X). The correspondence f → f̃ is the required isomorphism
between the group H(X) and a subgroup of H(T ×X,X). 2
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Theorem 2.8 ( [5, Theorem 6]). Let T be any topological space and X be a locally
compact and locally connected. The group H(T ×X,X) is isomorphic (algebraically
and topologically) to C(T,H(X)).

Proof. Consider the map p : C(T,H(X)) → H(T × X,X) defined by p(f)(t, x) =
f(t)(x) for f ∈ C(T,H(X)), t ∈ T and x ∈ X. The map f(t) : X → X is a
homeomorphism for each t ∈ X. Therefore, by virtue of Theorem 2.6, p(f) : T ×X →
X is a generalized isotopy, i.e. p(f) ∈ H(T ×X,X).

Let us prove that p is injective. Take f, g ∈ C(T,H(X)), f 6= g. There exists
a point t0 ∈ T such that f(t0) 6= g(t0). Since f(t0), g(t0) ∈ H(X), it follows that
f(t0)(x0) 6= g(t0)(x0) for some x0 ∈ X. Thus, p(f)(t0, x0) 6= p(g)(t0, x0), and hence
p(f) 6= p(g).

The map p is also surjective. Indeed, let ϕ ∈ H(T × X,X) be any generalized
isotopy. By virtue of Theorem 2.6, the map ϕt : X → X defined by ϕt(x) = ϕ(t, x) is
a homeomorphism for any t ∈ T . It is easy to see that the element f ∈ C(T,H(X))
determined by the condition f(t) = ϕt is the preimage of ϕ. Indeed, we have
p(f)(t, x) = f(t)(x) = ϕt(x) = ϕ(t, x).

Thus, the map p−1 : H(T × X,X) → C(T,H(X)) defined by p−1(ϕ)(t)(x) =
ϕ(t, x) for ϕ ∈ H(T ×X,X) is inverse to p : C(T,H(X))→ H(T ×X,X).

The map p is a homomorphism, that is, p(f ◦ g) = p(f) ◦ p(g). Indeed, for any
t ∈ T , x ∈ X we have

p(f ◦ g)(t, x) = (f ◦ g)(t)(x) = (f(t) ◦ g(t))(x) = f(t)(g(t)(x))

= f(t)(p(g)(t, x)) = p(f)(t, p(g)(t, x)) = (p(f) ◦ p(g))(t, x).

Let us prove the continuity of p. Take any element W (K×K ′, U) of the subbase of
the compact-open topology on H(T ×X,X), where U ⊂ X open and K ⊂ T , K ′ ⊂ X
are compact subsets. Let us show that the preimage of W (K × K ′, U) is the set
W (K,W (K ′, U)), which is an element of the subbase of the compact-open topology
on C(T,H(X)). Indeed, for any ϕ ∈ W (K ×K ′, U) and f = p−1(ϕ) ∈ C(T,H(X)),
we have

ϕ ∈W (K ×K ′, U) ⇐⇒ ϕ(t, x) ∈ U ⇐⇒ p(f)(t, x) ∈ U
⇐⇒ f(t)(x) ∈ U ⇐⇒ f ∈W (K,W (K ′, U)),

where t ∈ K and x ∈ K ′ are arbitrary elements.

The continuity of the inverse map p−1 : H(T ×X,X)→ C(T,H(X)) is proved in
precisely the same way. 2

Corollary 2.9. If T is any topological space and X is locally compact and locally
connected, then H(T ×X,X) is a topological group.

Proof. It is known that H(X) is a topological group (see [1]). Therefore, C(T,H(X))
is a topological group as well (see [7]). According to Theorem 2.8, H(T ×X,X) is a
topological group. 2
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3. Generalized actions of groups and the category of generalized
G-Spaces

The idea to introduce the notion of action of a group on a finite set is related to the
permutation group of this set. The rule, by which the elements of the permutation
group permute the elements of the set is called its group action.

The same applies when set X is infinite and we consider a symmetric group S(X)
of set X. Elements of S(X), that are bijections of set X, also permute the elements
of X. They satisfy the following conditions:

(gh)x = g(hx), ex = x, (11)

where g, h ∈ S(X), and e — identity mapping of X.
These conditions are the basis of definition of abstract action of group G on X: a

map α : G×X → X, α(g, x) = gx or (g, x)→ gx, is called an action of group G on
X if it satisfies condition (11) for every g, h ∈ G and identity element e of group G.

Let’s note that the map g → αg, where αg(x) = α(g, x), is a homomorphism from
G to the symmetric group S(X).

When we consider a topological space X, we assume that all maps are continuous
and so we get homomorphism from groupG to the groupH(X) of all homeomorphisms
of X.

Remark 3.1. Note that an action α : G × X → X of group G on X is a general-
ized isotopy. Indeed, the continuous map α−1 : G × X → X given by the formula
α−1(g, x) = α(g−1, x) is inverse to α in the sense of Definition 2.2: (α ◦ α−1)(g, x) =
α(g, α−1(g, x)) = α(g, α(g−1, x)) = α(gg−1, x) = α(e, x) = x. Clearly, α−1 : G×X →
X is the right action of group G on X. Hence, the set of all actions of group G on
the topological space X is a subset of group H(G×X,X) of all generalized isotopies
of X over G.

Now let us consider the group H(T ×X,X) of generalized isotopies of topological
space X over T . Since elements of the group H(T ×X,X) satisfy condition (1), we
can define the notion of generalized action of group G on X over T and generalized
G-space in the following way.

Definition 3.2. A continuous map α : G×T ×X → X is called a generalized action
of group G on X over T , if

α(gh, t, x) = α(g, t, α(h, t, x)), (12)

α(e, t, x) = x, (13)

where e is the identity element of G, g, h ∈ G, t ∈ T and x ∈ X.

In the notation α(g, t, x) = g(t, x) relations (12) and (13) take the form gh(t, x) =
g(t, h(t, x)), e(t, x) = x.

Definition 3.3. A topological space X with a fixed generalized action of group G
on X over T , that is, a quadruple (G,X, T, α) is called a generalized G-space or a
G-space over T .
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Let α be a generalized action of a topological group G on space X over T . For
each g ∈ G, we define a continuous map αg : T ×X → X as αg(t, x) = α(g, t, x).

The following proposition is valid.

Proposition 3.4. The map g → αg is a continuous homomorphism from G to the
group H(T ×X,X) of generalized isotopies of topological space X over T .

It is not difficult to note that for any t ∈ T the continuous map αt : G×X → X
defined by αt(g, x) = α(g, t, x) is an action of group G on X. Hence, a generalized
action α of group G on space X over T induces the family {αt}, t ∈ T , of “ordinary”
actions of G on X.

Now, let (G,X,α) be a G-space. It is evident that one can define a generalized
action α̃ of G on X over T by formula

α̃(g, t, x) = α(g, x) (14)

for all t ∈ T and x ∈ X. This is a trivial generalized action induced by “ordinary”
action of a group G on X.

The following example shows that there is a nontrivial generalized action induced
by “ordinary” action of group G on X.

Example 3.5. Let (G,X,α) be a G-space. The continuous map α̃ : G×G×X → X
defined by α̃(g, h, x) = α(hgh−1, x), or g(h, x) = hgh−1x, is a generalized action
of the topological group G on X over G.

Indeed, conditions (12) and (13) in Definition 3.2 are satisfied: we have α̃(gg̃, h, x) =
hgg̃h−1x = hgh−1hg̃h−1x = α̃(g, h, hg̃h−1x) = α̃(g, h, α̃(g̃, h, x)) and α̃(e, h, x) =
heh−1x = ex = x for all g, g̃, h ∈ G and x ∈ X.

Now, let us consider two generalized G-spaces (G,X,α) and (G, Y, β). One can
define the notion of equivariant map between two generalized G-spaces in the following
way.

Definition 3.6. A continuous map f : X → Y is called an equivariant map if
f(α(g, t, x)) = β(g, t, f(x)), or, equivalently, f(g(t, x)) = g(t, f(x)), for all g ∈ G,
t ∈ T and x ∈ X.

An equivariant map f : X → Y of generalized G-spaces (G,X,α) and (G, Y, β)
which is also a homeomorphism is called an equivalence of generalized G-spaces.

The following assertion is valid.

Theorem 3.7. Generalized G-spaces and equivariant maps form a category.

We denote this category by G-TopT . It is evident that if T = {∗} is a singleton
then G-Top∗ = G-Top.

Note that if X and Y are G-spaces, then any equivariant map f : X → Y is also
equivariant as a map between generalized G spaces with trivial generalized actions
defined by (14). Thus, the category G-Top can be regarded as a subcategory of the
category G-TopT . So, we have the following chain of natural extensions of categories:
Top ⊂ G-Top ⊂ G-TopT .
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There is a natural covariant functor from the category G-TopT to the category G-
Top. Indeed, if (G,T,X, α) is a generalized G-space then we can consider the G-space
(G,T ×X, α̃) on which group G acts as

α̃(g, t, x) = (t, α(g, t, x)) (15)

for all g ∈ G, t ∈ T and x ∈ X.
It remains to note that if X and Y are generalized G-spaces, then any equivariant

map f : X → Y generates the equivariant map f̃ : T ×X → T × Y defined by

f̃(t, x) = (t, f(x)), (16)

where t ∈ T and x ∈ X.
Thus, the formulas (15) and (16) determine an isomorphism of G-TopT onto a

subcategory of G-Top whose objects are G-spaces of the form T ×X with actions α̃
over T while morphisms are equivariant maps (i.e. G-maps) f̃ : T ×X → T × Y over
T . Clearly, “over T” means that the diagrams

G× T ×X α̃ //

%%

T ×X

{{
T

T ×X
f̃ //

##

T × Y

||
T

commute, where the maps with the codomain T are natural projections. In other
words, the established functor G-TopT → G-Top is injective on objects and faithful.
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