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SOME CALCULUS OF THE COMPOSITION OF FUNCTIONS IN
BESOV-TYPE SPACES

Madani Moussai and Mohamed Saadi

Abstract. In the Besov-type spaces B, (R™), we will prove that the composition oper-
ator Ty : g — f o g takes both B, ,(R™) N By7 (R™) and WL (R") N By 7 (R™) to By 7 (R™),
under some restrictions on s, T,p,q, and if the real function f vanishes at the origin and
belongs locally to B“‘H(R)

1. Introduction and the main result

To a Borel measurable function f : R — R, we will associate the composition operator
Ty : g — fog and we will study its boundedness on Besov-type spaces B;;g(R") under
some restrictions on the parameters s, 7, p and q.

The problem of composition in a real-valued function space E consists of the
conditions satisfied by f such that T/(E) C E holds. The properties of the operator
Ty strongly depend on the space E, see, e.g. [1, Section 4] and [3, Section 4]. The
operator Ty is nonlinear unless f is a linear function. For instance, it has been proved
that the inclusion Ty(E) C E implies that f(t) = ct for some constant ¢, in the
following cases:

~ E =W, (R") the Sobolev space, for 1 <p < coand 1+1/p <m < n/p, see [5],

- E = B; (R") the Besov space, for 1 < p < oo and 1+ 1/p < s < n/p, see
e.g. [1, Theorem 3.3],

E=F;, (R™) the Triebel-Lizorkin space, for 1 <p < oo and 1+1/p < s < n/p,
see e.g. [1, Theorem 3.3],

- E=B; (R"), for1 <p<oo,g>1(or E=F; (R"), forl<p<oo,qg=>1)
and 1+1/p—s<n/p, see e.g. [1, Theorem 3.3] or [13, Lemma 5.3.1/2, p. 308].
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The acting of Ty on Besov spaces B, ,(R) in the one-dimensional case has been studied
in several works, e.g. [4,11]. However in the n-case (i.e. B; (R")) the composition
problem is not trivial and we have some results which can be found in [9,10,13], where
some of them are on the intersection spaces.

In the context of intersections, we want to extend the result given in [9] for
B, ,(R™), to the case of By7(R™). Then we will prove the following result.

THEOREM 1.1. Let 0 < p,q < oo, (n/p—n)y < s # 1 and 0 < 7 < 1/p. Let
f:R =R be a Borel measurable function such that f(0) =0 and f € B5I L (R)oc.

(i) If s <1, then Ty takes W, (R™) N BT (R™) to BT (R™).
(i) If s > 1, then Ty takes BS, ,(R™) N By7(R™) to By7 (R™).

REMARK 1.2. From the embedding Bgfq(R) — B3, ,(R) if 3> 0 (see [16, p. 40]),
Theorem 1.1 also holds if one replaces ng,; (R)10¢ by ng’;ﬁ (R)10c-

Besov-type spaces coincide with Besov spaces for some values of 7, s, p and ¢, e.g.,
we have BS9(R") = Bj (R") (see [16, Lemma 2.1, p. 22]), then Theorem 1.1 covers
the case of B,  (R™), in particular the Holder space B3, . (R"™), and yields the result
in [9] which was given only in the case p,g > 1 and 0 < s # 1. This presents our
principal contribution, and we will also extend it to the case s = 1 (see Section 4
below).

The proof of Theorem 1.1 is based essentially on three aspects:

— the “paralinearization” method (see e.g. [2, p. 95] or [8]) which concerns the
possibility to linearize T,

— an almost orthogonality estimate (see Proposition 3.3 below),

— the boundedness of Ty on B, ,(R™), see [3, Theorem 4] and [9, Proposition 3.1],
also, Proposition 3.1 below.

However in the case 0 < g < 1, the Fatou lemma and the precise estimate resulting
from the acting of Ty on B, ,(R™) (cf. (17)) are also main tools for the proof.

Notation

As usual, N denotes the set of natural numbers including 0, Z the integers, and R
the real numbers. All functions are assumed to be real valued, except in Subsections
2.1-2.2. For a € R we put ay := max(0,a). The symbol < indicates a continuous
embedding. S(R™) denotes the Schwartz space and S’'(R™) its topological dual. For
0 < p < oo we denote by || - ||, the quasi-norm (norm if 1 < p < oo) of L,(R™).
For f € L1(R™), we denoted by Ff (or A) the Fourier transform and by F~1f the
inverse Fourier transform. They are extended to 8'(R") in the usual way. WL (R") is
the usual Sobolev space of bounded and Lipschitz functions on R™. For a tempered
function space FE, the local associated space is denoted by Ej,. and is the set of
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f € 8'(R™) such that ¢f € E for all ¢ € D(R"™). For v := (v1,va,...,V,) € Z" and
k € Z we denote by

P, ={z€R":v; <2%z; <v;+1,j=1,2,...,n} (1)
the dyadic cube. Finally, the constants ¢, cq, ... are positive and depend only on the
fixed parameters s, p,q, ..., and their values may change from line to line.

2. Preliminaries

We start with the Littlewood-Paley decomposition. Let p be a C*° positive and radial
function, such that p(§) = 0 if [¢] > 3/2 and p(&) = 1 if |¢] < 1, which is the so-called
cut-off function. We put (&) := p(§) — p(2£); then ~ is supported by the compact
annulus 1/2 < |£] < 3/2. We assume that p and ~ are fixed thorughout the paper.

We obtain >, ., v(27%¢) = 1 for all £ € R"\{0} and p(§) + > ;o 7(27%¢) =1 for
all £ € R™. We define pseudodifferential operators S; := p(277D) (j = 0,1,...) and
Qr := v(27%D) (k = 1,2,...). We put Qp := Sp. Using the Young inequality in
L,(R™), the families of operators (S;);jen and (Q;);en constitute bounded subsets of
the normed space £(L,(R™)) for any p € [1,00]. Also, it is not difficult to prove that
for every N € N, there exist ¢ > 0 and M € N, such that

1Q; fllp < 279N sup sup (1 + [z))| ) (x)| (2)
|| <M z€R™

holds, for all f € S(R™) and all j € N. These estimates easily yield that the series
f=8if+24s; Qrf for all j € N converges in S'(R™).
2.1 The Besov spaces

We first define the “ordinary” Besov spaces.
DEFINITION 2.1. Let s € R and p,q €]0, 00]. The Besov space B, ,(R") is the set of

) 1/q
J € S'(R") such that ||f]15; ey = 150l + ( Sy (27157 1,)7) < o0.

The spaces B, , (R™) are quasi-Banach in this quasi-norm. For their properties we
recall that, e.g.,

~ B3 (R") < B3, (R") if 5o > s1, and BS (R") = L,(R") if s > 0,
—if f € By ,(R™) then 8;f € By '(R") (j =1,...,n).
We also recall that B; ,(R™) have the Fatou property, see [6]. We do not go into
details about Besov spaces but refer instead to e.g. [13,14].

2.2 The Besov-type spaces
Here we also begin by the definition of the Besov-type spaces.
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DEFINITION 2.2. Let s,7 € R and p, ¢ €]0, oc]. The Besov-type space B;:7 (R") is the
set of f € S'(R™) such that
1/

. 1/q
BT (Rn) i= SUD SUp Q"Tk( Z (2“"J||ij||Lp(pk)V))q) < 00,
kezverr J>k+

where the dyadic cube Py, is defined in (1).

Bp:7(R™) are quasi-Banach spaces in the above quasi-norm, where B,7(R") = {0}
if 7 < 0. We refer to [16] for some properties of B,7(R") and recall the following
remark.

REMARK 2.3. The space B;:g(R”) is independent of the choices of p, i.e. if we choose
another cut-off function p; with the same properties as p, the space By (R™) remains
unchanged and the resulting quasi-norm is equivalent to the one defined by p.

The following assertion is useful, which is an estimate of Nikol’skij-type and will
play a major role in this paper.

PROPOSITION 2.4. Let p,q €]0,00], s > (n/p —n)y and 7 > 0. Let b > 0. Let
(uj)jen be a sequence in S'(R™) such that w; is supported by the ball || < b27

. 1/q
and A := Supycyz SUpP,czn 2’”’“(221€+ (QSJ”’U,]'”LP(pk‘u))q) < 00. Then the series
2 jsoUj converges in S'(R") to a limit u satisfying ||uf
constant ¢ depends only on n, s, T,p,q and b.

BsT(rn) < CcA, where the

For the proof, we need to use the following three lemmas, where the proof of the
first one is completely similar to [15, Lemma 3.8, p. 155], and the second one is a
Marschall pointwise estimate proved in, e.g. [16, Lemma 6.1, p. 150]; however the
third lemma is essentially given in [7, p. 782, (2.11)].

LEMMA 2.5. Let a > 1 and 0 < ¢ < oo. Then, there exists a constant ¢ > 0,
such that for alll € Z and all sequences (ex)ken of positive real numbers satisfying

A= (Zk25+ gz)l/q < 00, it holds (ijlJr (Zkzj ajfkgk)q)l/q < cA.

LEMMA 2.6. Let C >0, R>1 andt €]0,1]. Let h € D(R™) and 6 € C*®(R™) be such
that h and 0 are supported by the balls || < C and |¢] < CR, respectively. Then the
inequality |(0xF ~1h)(z)| < c(CR)™!™||h| ) (M|0]t(x))""" holds, where M and

B
B%t(R”) denote the Hardy-Littlewood mazimal function on R™ and the homogeneous
Besov space, respectively. The constant c is independent of 0, h,C, R and x.

LEMMA 2.7. Let 0 < p < oco. Then there exists a constant ¢ > 0 such that the
inequality sup,ep, , [¥(z)| < c2in/p sup,ezn ||l p;,) holds, for all v € S'(R™)

such that 1 is supported by the ball |€| < 29+! (j € Z), all v € Z"™ and all € R™.

Proof (Proof of Proposition 2.4). Let 7 be a radial function in D(R™ \ {0}) such that
¥y = 7. We put Q; := (277 D). Also, for the time being and for brevity, we denote
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by “g” the series >, <, ux. Since wy, is supported by the ball |¢| < b2, there exists an
integer mq (which will be used along this proof), which depends only on b, such that
Qjur = 01if k < j 4+ mg (my is the nearest integer to the real number —log, (2b)),

but if £ > 0, then Spyg = Zkzo Sour, and Qg = Zkz(j-i-mo)+ Qjur (7=1,2,...).
Step 1: convergence in S'(R"). Let f € S(R™). We put g1 := > 5, Q;jg and
g2 := Spg. We will estimate |{g1, )| and |(g2, f}| separately. B
Substep 1.1: estimate of (g1, f)|. Let 0 < d < 1. By the assumption on 7, we
have (Q;g, f) = (Q;9,Q;f), and then by Bernstein inequality we get

) ~ /d
o <20 ( [ 1090 f)ftar)
jzl Rn

2

43
Now, we decompose ¢ [p, ...

[lgn, Pl < e 270D (37 /P Q@)@ f@)ar)

j>1 vezn

with respect to (J,czn Pj. for j € N, and thus we find

<ey 27MVDIQ g sup. sup [Qsg(w)]-
i1 veLr xePj
By using (2), let N € N (which will be chosen later on) be such that
g1, 1)l < ey 279D sup sup |Qj9(2)]. 3)
i>1 veZ™ xePj
So, the problem remains to estimate sup, ¢z Sup,ep, , |@;9(z)|. We apply Lemma
2.7 with 9 := Q;g. It holds

sup |Q;g(x)| < c2/"/P sup 1Qs9llz,(p;.)- (4)
pnez™

[ASY
Applying now Lemma 2.6 with

0:=up, h:=~v277()), C:=3-2"1 and R:=p2~I1 (5)
we have 28 < CR (suppf C {¢ € R" : [¢] < CR}), also the condition R > 1 is
guaranteed by the fact that k& > (j + mo)+. Then we obtain, for some ¢ €]0, 1],

Qun(a)] < 2y (27 ()| g g (M () (6)

Using the B}, (R")’s property, ie. ||7(277("))
all j € N, we get
Qig@) <c S 200 (M i), Yz e R
k>(j+mo)+

For any | € Z we take the L,(P,) of the last inequality and use the following
elementary inequality

(Zsj)agzsg O<a<le>0,j=01,...), (7)

=0 720

||Bf'/tt(]R") < CQj(n_n/t)HfY”BIl/tt(Rn) for

1/t

. 2(k7j)(n7nt)Mu te. ’
ZkZ(J‘f‘mO)Jr | k| () Lp/t(Pl:H)

with o := ¢, to obtain ||Q;gl|z,(p, ) < ¢
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We choose first ¢t < min(1,p) (i.e. p/t > 1). Then the maximal function satisfies
IMfllz,, p,) <clfllL,, (p,) for all j and all y; indeed, let 1p, , be the indicatrix
function of P, ,; then for any cube @ satisfying @) C P}, it holds

([ 1materin) ([ 1,0 Pa)™ < clar

and we have a weighted norm inequalities for M in Ly, /,(1p, ,;dz), [12, Theorem 9],
but L,,(1p,,;dx) = Ly/(F,); see also [2, Theorem 1.14, p. 13]. We apply the
Minkowski inequality (i.e. £1(N; L,/ (P ) < Ly (P 5 £1(N))), and we obtain

o 1/t
||ngHLp(PI,,u) < C( Z 9(k—3)(n nt)HMlukItHLP/t(Pz,M))
k>(j+mo)+

1/t
< CQJ(”—n/t)( Z gk(n—st—nt) (QkS”uk”Lp(Pz,H))t) / (W ezZ). (8)
k>(j+mo)+
Secondly, we choose t such that n — st — nt < 0, which implies that
Z 2k(n—st—nt) < Z2k(n—st—nt) <ec. (9)
k>(j+mo)+ k>0
Then t will be chosen such that

<t < min(1,p), 10
i< min(l,p) (10)
which is possible since s > (n/p —n)4+. On the other hand, we have

sup  sup 2k8||uk||Lp(pw) <27"IA, (11)

k>(j4+mo) 4+ HEL™
Indeed, if my > 0, which implies (j + mg)4+ = j + mo > j, then we use the fact that
SUPL> (jtmo)y - -+ < SUPE>j - - -5 i mo < 0, we have P ;, C Pj iy om0, with 2M0p € 22"
and use the inequality |Jux|lz (p; ) < ||“kHLp(Pj+m0,2mo,J < supyezn Ukl L, (P ymg.)-
Then choosing | = j in (8), and inserting, both (9) and (11) in (8), we get
1@l p, ) < XOTIOA (W€ N, Y € ZM). (12)

Now we turn to (3). By inserting, both (4) and (12) in (3), and by choosing the
natural number N such that N +nr —n/p —n/d+ n/t > 0, we derive that |(g1, f)|
is bounded by ¢; AY" o, 27/ (N+nr=n/p=n/d+n/t) which gives the bound cyA.

Substep 1.2: estimate of |{ga, f)|. This estimate is similar to that of the above
substep, but only a few changes are needed. Indeed, we begin with

(g2, f)] < Z/P 1Sog(@)[|f(z)| dz < [[f]lx sup sup [Sog()]. (13)

vezn VEZL™ xE€Py,,
To estimate the last term of (13) we consider the following two cases:

e The case 1: b > 3/2. We will apply Lemma 2.6 as in (6), and we find, for some
t €]0,1], |Soup(z)| < 280/ t=7) (M |uy |t (2))*/t, where we have used

0:=up, h:=p, C:=3/2 and R:=0b2F"1/3 (14)

with R > 1 for all k£ > 0 by the assumption on b (recall that g is supported by the
ball |¢| < CR = b2¥). Then we continue by choosing ¢ such that ¢ < min(1,p)
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and obtain, as in (8) (with p=v and [ = 0),

1/t
||Sog||Lp(p0,y) < C(ZQk(n—st—nt)(ka”uk”Lp(Po‘y))t) . (15)
k>0

1/q
Now we write 25 |ug | (p, ) < 2’”0(leo@“lluzIIL,)<PD,V>)q) . Since 2770 =
. 1/q
1, then 2% ||ug |1, (p,.,) < sup;ey2"™ (lej(leHUlHLp(Pj,V))q) < ¢A holds.
From (15), by choosing also ¢ such that n — st —nt < 0 (cf. (10)), we get that

1Sogllz,(py,) <A (Vv eZm). (16)

Now, by applying again Lemma 2.7 with ¢ := Spg, (¢ is supported in [£| < 3/2),
we get sup,ep, , [Sog(z)| < esup,ezm 1509, (p, ) (Vv € Z"). Finally, by
inserting this last inequality in (13) and taking (16) into account, we obtain
[{g2, )] < c||fll1A which yields the desired result.

Now the function g exists and belongs to S'(R™). We put u := g.

The case 2: b < 3/2. We first replace p by another function with the same
properties. Let r > 0. Let p, be a cut-off function such that p,.(§) = 0 if
€] > 7 and po(€) = 1if [€] < 3r/2. We put 7,(6) = py(€) — pr(26) which is
supported by the compact annulus r/2 < || < 3r/2, and associate the operators
Sk = p-(27FD) (k=0,1,...) and Q,; :==7-(279D) (j = 1,2,...). Again, we
write g := g1 + g2 where g := Ej>1 Qr,jg and g2 := S, g, and we estimate
[{g1, f)] and |(g2, f)| similarly as in Substeps 1.1 and 1.2/Case 1, respectively.
Indeed, we only note the following three situations:

— my is the nearest integer to the real number log, (r/(2b)), where @, jur =0
if k < j + myo,

— asin (5), the constants C' and R become C := 372! and R := b2F—7+1 /r
with R > 1, the estimate of |(g1, f)| follows,

— by choosing r such that 0 < r < 2b/3 we obtain as in (14), C := 3r/2
and R := 281 /(3r) with R > 1 for all k > 0 and the estimate of |(ge, f)|
follows too.

Again, the function g now exists and belongs to S’(R™), and we also put u := g.

Step 2: proof of Hu||B;:;(Rn) < cA. Consider a number r such that r > 2b. Based

on Remark 2.3, we will use the sequences (S; x)r>0 and (@, ;);>1 defined above in
Substep 1.2/Case 2. The condition r > 2b implies my > 0. Now, we first write the
inequality (8) and recall that it holds for any [ € Z; we put o := n — st — nt for
brevity, and get

. 1/t
1@rtli, ) <2 3 2@l
k>(j+mo)+
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which is bounded by 27"~/ (37, .9k (2K5lug || p ))) ! where t is given in
(10). We continue by summation with respect to j and take into account that in the
right-hand side it holds that >, .\, ... <37~ .... Then

(Z @10l <o X (T2 ) ")

Jzly jzly  k2j
Applying Lemma 2.5, since o < 0, the right-hand side of the last inequality is bounded
by 27" A, and the desired result follows. O

3. Proof of Theorem 1.1

As mentioned in the Introduction, the main tools of the proof are the following state-
ments, where we need a cut-off function: we fix ¢ a C'°-function on R, such that
o(x) =1if z € [-1,1] and ¢(z) = 0 if x ¢ [-2,2]. We put ¢; := p(t~1(-)) for all
t > 0, which will be used in what follows as in the following equality fog = fp;og
if g € Loo(R™) and ¢ > max(1,||g]|-)-

PROPOSITION 3.1. [3,9] Let 0 < s A1 and 0 < ¢ < 0o. Let f : R — R be a Borel
measurable function in B3, ,(R)ic-

(i) If s > 1, then T} takes B3, ,(R™) to itself.
(ii) If s <1, then Ty takes WL (R") to B3, ,(R™).
Moreover, there exists a continuous increasing function ¢ : Rt — RT depending only

onn,q and s, such that, for all such functions f, and all g in various function spaces

in (i) and (ii), it holds
IT¢ (9 Bz, ,&n) < [IfeellBs, @SN (9)), (17)

where t > max(1, ||g]l.), N(g) := ||g| B, (R") N the case (i) and N'(g) := ||g||Wolo(Rn)
in the case (ii).

REMARK 3.2. Concerning Proposition 3.1, the cases s > 1 and 0 < s < 1 are proved
in [3, Theorem 4] and [9, Proposition 3.1], respectively. These two references provide
the proofs for ¢ > 1, however the extension to 0 < ¢ < 1 is easy. Also, the precise
estimate (17) occurs in both [3] and the proof given in [9].

PROPOSITION 3.3. Let 0 < p,q <00,s> (n/p—n); and0 <7 <1/p. Letb > 0. Let
(Xj)jen be a sequence of functions in B3, ,(R™). Let (f;)jen be a sequence in S'(R™)
such that fj is supported by the ball |£] < b2 and

. 1/q
A= sup sup 277 (37 (@7 filln, p,0)") < o0,
ke€EZ vern G>ky

Then it holds H ijo Xij'HB;;;g(Rn) < cAsup;s |Ix;] Bs, (") where the constant ¢

depends only on n,p,q,s, 7 and b.
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Proof. For all j € N, we have x; = S;x; +>_,,5 ;11 @mX;, then we put 3,50 x; f; =
> ) >
g1 + g2, where gy := 3" f3Six; and g2 := 30, 5 200 fiQumX;

Step 1: estimate of g1. The function fJ/S]\Xj is supported by the ball |£] < (b +
3/2)27, hence from Proposition 2.4, we have

1/q
By S esup sup 27 (37 29 1385018 5, )
VEZL kg

Using the inequality ||SjX;llcc < cl[Xjlloo (V5 > 0), and the embedding B3, ,(R™) <
L o (R") (s > 0), we get ||fa JXJHL (o) < Cllfilln, e IXGl B ey and (g1l B2 7 (re)
L(R)-

Step 2: estimate of g2. The functlon f(zz.n;ol fiQmXx;) is supported by the ball
€] < (b/2 4 3/2)2™ where m > 1. Then Proposition 2.4 gives us

g1

92| 377 (rny < csup sup 2””*( > Qequ Z ngng‘

kezZverr m>1+ky

1/q
. 18
Ly(Py, u)) ( )

We continue the proof by the following substeps Wlth respect to p and q.
Substep 2.1: the case p > 1 and g > 1. By Minkowski inequality with respect to
24(N), we get

1/q
921555 ey < ersup sup 21737 (37 2@l )
€ZveL” j>0 m>j+1

Now we have easily

1/q - 1/q
> 2 Qi ) S(Z%S L||@m><j||go) 1£illzy oo

m>j+1

and then we obtain that [|g2|| gs:r gn) is bounded by casup;> Xl By, , (rn)(A1 + A2)

k+
where A; := sup sup 2""" Z I fillz,(py.,) and Ag := sup sup 2"7kZ||fj||L (Pew)

k€EZ veln >tk J=0

Then, by Holder inequality it holds
Ay < sup sup 2"7F Z 275 2SJ||fjHL (Pe.)) < CcA. (19)
kezZ vezr

J=k+
Now we prove that Ay < cA. By the inequality | f;]r,(p,.) < 27%/P(|fjllec We

get Ay < supy,gy 2k (7=1/P) 2520 | filloo- For the estimate of || f;||, we use the same
calculus given in the proof of [16, Proposition 2.6, p. 46]. We obtain ||fj||e <
c23(n/p=n7=5) A for all 7 > 0, and by assumptions 0 < 7 < 1/p and s > 0 we get that

E+
A2<01Asup2kn(T 1/17)22 jn(r—=1/p)g—sj
kEZ
7=0
< et A1+ sup2tn(r=1/) 22 1Dy < oy, (20)
k>1

7=0
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Now, by (19) and (20) it follows that || go|

Bz (&) is bounded by cAsup;>q X 5., ®n)-

Substep 2.2: the case p > 1 and 0 < ¢ < 1. In (18) using (7) with « := ¢, we have

m—1 1/q
o2l ey < csp sup 277 (30 ST 2L, Qus )

Lverr m>1+ky j=0
Using the following estimate
1£i QX L, Py < N1Q@mXilloo I fill L, (P (21)
we obtain 1921l B3 () < esup Ix;llBs, ) (A3 + As), (22)
1=

1/q
where As := supjcz Sup,ez» 2”7k<2j21+k+ ||fj||qu(Pk,u)) ’

1/q
r k .
Ay = SUPyez SUP,czn 2" k(Zjio ||fj||qu(Pk.,,)) . The estimates of Az and A4 are
completely similar to that of A; and As, respectively.

Substep 2.3: the case 0 < ¢ < p < 1. From (18), and using twice (7) with respect
to £,({0,...,m — 1}) and with respect to £,/,({k4 + 1, k4 +2,...}), we have

m—1

g <espsup 27 (55 (3 [ o migQupar) )
k,v

keZ veZn m>1+k =0

g2

m—1 1/q
< csup sup 2’”’“( Z Z Qqu”ijij||%p(Pk,V)) :
keZ verm m>1+ky j=0

Then, again we proceed as in (21) and (22).

Substep 2.4: the case 0 <p <1, p < q and 0 < ¢ < co. Here also from (18) and
using (7) with respect to £,({0,...,m — 1}), we obtain

m—1
a/p\ 1/q
g2l ) < esup sup 27 (30 (30 /P 27| £, Qs (@) da) )
k,v

kezvezr m>1+ky  j=0
nrk smp » a/pyp/a\1/p
<esup sup 27 ({30 (2™ Quxile,) )
kEZ vEL™ mhy 50
Now by Minkowski inequality with respect to £,/,(N), it holds
p/ay1/p
Bij(®e) < CSUD Sup 2”'6{2( > QquHfﬁQij||qu<Pk,V>> } ’

€Z veL™ >0 m>ky

g2

and by (21) we obtain the bound esup;> [|Ix;ll s,  ®»)(As + Ag) where

k
1/p i 1/p
A5 := sup sup 27”16( E ‘|fj||ip(Pk,y)> s A6 = sup Sup 2"7‘k<§ :Hfj”ip(pkw)) 7
kEZ veLr PSTke kEZ veLr g

and the estimates of A5 and Ag are similar to that of A; and As, respectively, however
some technical changes are needed. Indeed, by Holder inequality with exponents ¢/p
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and ¢/(q — p), it holds
L sip/esi i p/q
S 1l = X 2w < o 3 @ 1le.0)")
J>1+ky J>1+ky J=ky
for all k£ € Z, which yields A5 < cA. For Ag, by using the estimate || f;[|z,(p,,
271+ A (V§ > 0, Vv € Z"), then as in (20) we get

N1/
Ag <clA<1+sup2k" Tp—1) 22 gn(rp=1)9 S”’) : < e A.
E>1 =0

The proof is complete. O

Proof (Proof of Theorem 1.1). Let g be a function in W, (R™) N By7(R™), s < 1, (in
the case s > 1 the function g is taken in B3,  (R") N B;:7 (R™)). We easily get, both
lim; oo foS;9=fogin Lo(R™) and the following linearization:
fog=1rfoSog+ Y (foSi1g9—foS;g), (23)
j=0

(for more details, see [8,9]). Now, we introduce a bequence of operators (R;) en
defined by Ro(f,g) f1 o (2509)dz, Ri(f.g) = [, fo (Sj—19 + 2Q,g)dz (j =
1,2,...). From (23) e hav

fog=>Y Ri(f',9)Q;9. (24)

Jj=0
On the other hand, there exist two positive constants ¢; and ¢ such that
[Soglle < crllglle and 18519 + 2Qsgllc < llgloe (42 € 0,1], 5 = 1,2,...).

By taking ¢ > max(1, ¢1||g]lco, c2]|9]l0) We arrive at

Ri(f',9) = R;i(eef'. 9), (25)
where the cut-off function ¢ is defined in the beginning of this section. The function
[’ belongs to B, ,(R). Indeed, we may write f'¢r = (foi) — fe}, then both

(fei) € B, 4(R) and fo} € B5H1(R) < BS, ,(R) yield the desired assertion. Now
we establish the following claim: the sequence (R;(f’,g));en is bounded in B,  (R™).

In the case g > 1, the equality (25) and Proposition 3.1 give the claim. However,
this argument does not work in the case 0 < ¢ < 1 since it is not possible to apply
the Minkowski inequality. Then the integral (in R;) can be interpreted as the limit
of Riemann sums, i.e. we first prove

wa)$$52f(%@hlﬂwl (26)

We set U, LSy ['(£S0g). Indeed, using Proposition 3.1 (see also (17)),
there exits a contmuous 1ncreasing function ¢ : R™ — R* depending only on n, ¢ and
s, such that

k
! !
5 )H =
(m od Bg, ,(R™) Hf(ptl

Bgqu(R)qs(N(SOg)) (k=0,...,m—1). (27)
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Here we have used ¢(N (£ Syg)) < ¢(N(Sog)), where
k
t > max(1,¢||gll) = max(1,|Sogllc) > max (1, ESOQH ),
and N(-) is defined in Proposition 3.1, i.e., N(Sog) < cllgllwr @mn) if s < 1, or

N(Sog) < cllgllps,  ®n) if s > 1, (they follow from [|Soglles < cllg[|), s0 We con-
clude that N (Spg) < cN(g) in each case, and consequently
Um0l Bs, ;@) < 1 ellBs, ,@@(cN(g))  (Vm = 1). (28)
Now, by the embedding B5, ,(R") < Lo (R") the estimate (27) yields
U, lloe < I1fetllBs, ) ¢(cN(g))  (Ym >1), (29)

where ¢t > max(1, ¢||g]|.) and the right-hand side of (29) is independent of m. Let
now ¥ € S(R™). We apply Dominated Convergence Theorem, and we deduce that

n}i_r>n00<Um’(0)’ ¢> - \/]R” W}E;noo Uma(o) ($)w($) dr = <R0(f/7 g)a ¢>,

and (26) is proved. Now we put U, (j) := = ZZ:OI F(Si—19+£Q;9), (1=1,2,...),
and the same proof yields the following:

Ui llBe, @) < 1 0tlle, @d(cN(9)  (Vi=1L¥m=1),  (30)
Ui lloo < 1 f0ellm. ey $(eN(g) (G, m > 1), (31)
Tim Uy, ) = By(f',9) in S'(R"). (32)

Applying the Fatou property to the sequence (U, (j))men, by (26)-(32), we get
1R; (1", 9B, ;&) < allf'eills,  myd(c2N(g)) (V5 =0),

where ¢t > max(1, ||g||.), and the claim is proved. Finally, by applying Proposition
3.3 to the series (24) (with x; := R;(f’,¢) and f; := Q;g), we obtain

IT5 (@l 5z ) < 1 0el s ey 62N )]
where t and N(g) are defined above. Here we have also used 1 etllBs. ,®) <
chgptHngé(R) for all ¢ > 0. Now concerning the assumption f(0) = 0, by testing
the zero function in (33), we obtain this condition, and the proof of Theorem 1.1 is
complete. O

By (Rn)) (33)

4. Some extensions and remarks

Now, we deal with the case s = 1, where we need the following notation: we denote
by WZ(R™) (m = 1,2,...) the homogeneous Sobolev space of f € S'(R™) such
that f(® € Lo (R™) for |a| = m, and endowed with the semi-norm Il m (mey =
2 lal=m 1£¢||oo. We have ||f + Pliyym@ny = Ifllvim @ny for all polynomials P of
degree less than m. So, we formulate the following statement.

PROPOSITION 4.1. Let 0 < g < oo. If a function f : R — R belongs to (WL (R) N
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Bl ,(R))ioc, then Ty takes Wk (R")NBL, ,(R™) to BL, ,(R™). Moreover, there exists
a constant ¢ = ¢(n,q) > 0 such that
||Tf(9)||Bg,qu(R") < C||f<Pt||Wgo(R)mB;01q(R) (1+ HgHW;O(R”)mBC{O‘q(R”))

holds, for all such functions f and all g € WQO(R")QB;OH(R”), where t > max(1, ||g.)-
The function @y was defined in the beginning of Section 3.

Proof. In the case 0 < ¢ < 1, we have BL,  (R) NWL(R) = Bl ,(R)and BL, ,(R")N
WL (R") = BL, ,(R"), and the assertion is proved in [3, Theorem 5] with ¢ = 1. The
proof given in [3, Theorem 5] can be easily extended to any ¢ > 0 under assumptions
on f and g, since we only replace, in this proof, the L;(]0, oo[; dt/t) by L,(]0, oo[; dt/t).

O

Based on this proposition, we obtain a result for the composition operator T on
the space B;:;(R") which has a proof completely similar to that of Theorem 1.1.

THEOREM 4.2. Let0 < p,q < oo, (n/p—n)y <s=1and0 <7 <1/p. Let f: R — R
be a Borel measurable function such that f(0) = 0 and f € (W2 (R) N B2, ,(R))ioc-

Then Ty takes WL (R") N Bl (R™) N BLT(R™) to Bh7(R™). Moreover, there exists
a constant ¢ = ¢(n,p,q,7) > 0 such that

||Tf(9)HB},;g(1Rn) =< CHf(Pt||W§C(R)nB§C1q(IR)(1 + Hg”WOlo(R")mBéQ,q(R"))HgHB},:g(Rn)
holds, for all such functions f and all g € WL (R™) NBL (R")NBLT(R™), and where
t > max(L, [|g[|)-
REMARK 4.3. It would be interesting to extend the result in Theorem 1.1 to:

(i) The Triebel-Lizorkin-type spaces Fj;:7 (R"), (p €]0,00], ¢ €]0,c], 5,7 € R), the
set of f € S'(R™) such that

(> (zsj\ijbq)” "HLP(PM <o

£l 27 Ry = sup sup 2577
ez j>k4

VEZL™

(ii) The homogeneous Besov-type spaces B;;g(R"), (p,q €]0,00], s,7 € R), the set
of the tempered distributions modulo polynomials f such that

ntk sj q a

105 ey += sup sup 277 (S2291Q5 i, pe)?) <00 (34)
’ keZ verr P>k

Here Q; := v(277D) for all j € Z. Recall that Hf”B;*;(R") =|f+ P”B;;;(Rn)

for all polynomials P on R™.
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