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Abstract. In the Besov-type spaces Bs,τp,q (Rn), we will prove that the composition oper-
ator Tf : g → f ◦ g takes both Bs∞,q(Rn) ∩ Bs,τp,q (Rn) and W 1

∞(Rn) ∩ Bs,τp,q (Rn) to Bs,τp,q (Rn),
under some restrictions on s, τ, p, q, and if the real function f vanishes at the origin and
belongs locally to Bs+1

∞,q(R).

1. Introduction and the main result

To a Borel measurable function f : R→ R, we will associate the composition operator
Tf : g → f ◦g and we will study its boundedness on Besov-type spaces Bs,τp,q (Rn) under
some restrictions on the parameters s, τ, p and q.

The problem of composition in a real-valued function space E consists of the
conditions satisfied by f such that Tf (E) ⊆ E holds. The properties of the operator
Tf strongly depend on the space E, see, e.g. [1, Section 4] and [3, Section 4]. The
operator Tf is nonlinear unless f is a linear function. For instance, it has been proved
that the inclusion Tf (E) ⊆ E implies that f(t) = ct for some constant c, in the
following cases:

– E = Wm
p (Rn) the Sobolev space, for 1 ≤ p <∞ and 1+1/p < m < n/p, see [5],

– E = Bsp,q(Rn) the Besov space, for 1 ≤ p < ∞ and 1 + 1/p < s < n/p, see
e.g. [1, Theorem 3.3],

– E = F sp,q(Rn) the Triebel-Lizorkin space, for 1 ≤ p <∞ and 1+1/p < s < n/p,
see e.g. [1, Theorem 3.3],

– E = Bsp,q(Rn), for 1 ≤ p < ∞, q > 1 (or E = F sp,q(Rn), for 1 < p < ∞, q ≥ 1)
and 1 + 1/p = s < n/p, see e.g. [1, Theorem 3.3] or [13, Lemma 5.3.1/2, p. 308].
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The acting of Tf on Besov spaces Bsp,q(R) in the one-dimensional case has been studied
in several works, e.g. [4, 11]. However in the n-case (i.e. Bsp,q(Rn)) the composition
problem is not trivial and we have some results which can be found in [9,10,13], where
some of them are on the intersection spaces.

In the context of intersections, we want to extend the result given in [9] for
Bsp,q(Rn), to the case of Bs,τp,q (Rn). Then we will prove the following result.

Theorem 1.1. Let 0 < p, q ≤ ∞, (n/p − n)+ < s 6= 1 and 0 ≤ τ ≤ 1/p. Let
f : R→ R be a Borel measurable function such that f(0) = 0 and f ∈ Bs+1

∞,q(R)loc.

(i) If s < 1, then Tf takes W 1
∞(Rn) ∩Bs,τp,q (Rn) to Bs,τp,q (Rn).

(ii) If s > 1, then Tf takes Bs∞,q(Rn) ∩Bs,τp,q (Rn) to Bs,τp,q (Rn).

Remark 1.2. From the embedding Bs,β∞,q(R) ↪→ Bs∞,q(R) if β ≥ 0 (see [16, p. 40]),

Theorem 1.1 also holds if one replaces Bs+1
∞,q(R)loc by Bs+1,β

∞,q (R)loc.

Besov-type spaces coincide with Besov spaces for some values of τ, s, p and q, e.g.,
we have Bs,0p,q(Rn) = Bsp,q(Rn) (see [16, Lemma 2.1, p. 22]), then Theorem 1.1 covers
the case of Bsp,q(Rn), in particular the Hölder space Bs∞,∞(Rn), and yields the result
in [9] which was given only in the case p, q ≥ 1 and 0 < s 6= 1. This presents our
principal contribution, and we will also extend it to the case s = 1 (see Section 4
below).

The proof of Theorem 1.1 is based essentially on three aspects:

– the “paralinearization” method (see e.g. [2, p. 95] or [8]) which concerns the
possibility to linearize Tf ,

– an almost orthogonality estimate (see Proposition 3.3 below),

– the boundedness of Tf on Bs∞,q(Rn), see [3, Theorem 4] and [9, Proposition 3.1],
also, Proposition 3.1 below.

However in the case 0 < q < 1, the Fatou lemma and the precise estimate resulting
from the acting of Tf on Bs∞,q(Rn) (cf. (17)) are also main tools for the proof.

Notation

As usual, N denotes the set of natural numbers including 0, Z the integers, and R
the real numbers. All functions are assumed to be real valued, except in Subsections
2.1–2.2. For a ∈ R we put a+ := max(0, a). The symbol ↪→ indicates a continuous
embedding. S(Rn) denotes the Schwartz space and S ′(Rn) its topological dual. For
0 < p ≤ ∞ we denote by ‖ · ‖p the quasi-norm (norm if 1 ≤ p ≤ ∞) of Lp(Rn).

For f ∈ L1(Rn), we denoted by Ff (or f̂) the Fourier transform and by F−1f the
inverse Fourier transform. They are extended to S ′(Rn) in the usual way. W 1

∞(Rn) is
the usual Sobolev space of bounded and Lipschitz functions on Rn. For a tempered
function space E, the local associated space is denoted by Eloc and is the set of
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f ∈ S ′(Rn) such that ϕf ∈ E for all ϕ ∈ D(Rn). For ν := (ν1, ν2, . . . , νn) ∈ Zn and
k ∈ Z we denote by

Pk,ν := {x ∈ Rn : νj ≤ 2kxj < νj + 1, j = 1, 2, . . . , n} (1)

the dyadic cube. Finally, the constants c, c1, . . . are positive and depend only on the
fixed parameters s, p, q, . . ., and their values may change from line to line.

2. Preliminaries

We start with the Littlewood-Paley decomposition. Let ρ be a C∞ positive and radial
function, such that ρ(ξ) = 0 if |ξ| ≥ 3/2 and ρ(ξ) = 1 if |ξ| ≤ 1, which is the so-called
cut-off function. We put γ(ξ) := ρ(ξ) − ρ(2ξ); then γ is supported by the compact
annulus 1/2 ≤ |ξ| ≤ 3/2. We assume that ρ and γ are fixed thorughout the paper.
We obtain

∑
k∈Z γ(2−kξ) = 1 for all ξ ∈ Rn\{0} and ρ(ξ) +

∑
k≥1 γ(2−kξ) = 1 for

all ξ ∈ Rn. We define pseudodifferential operators Sj := ρ(2−jD) (j = 0, 1, . . .) and
Qk := γ(2−kD) (k = 1, 2, . . .). We put Q0 := S0. Using the Young inequality in
Lp(Rn), the families of operators (Sj)j∈N and (Qj)j∈N constitute bounded subsets of
the normed space L(Lp(Rn)) for any p ∈ [1,∞]. Also, it is not difficult to prove that
for every N ∈ N, there exist c > 0 and M ∈ N, such that

‖Qjf‖p ≤ c2−jN sup
|α|≤M

sup
x∈Rn

(1 + |x|)M |f (α)(x)| (2)

holds, for all f ∈ S(Rn) and all j ∈ N. These estimates easily yield that the series
f = Sjf +

∑
k>j Qkf for all j ∈ N converges in S ′(Rn).

2.1 The Besov spaces

We first define the “ordinary” Besov spaces.

Definition 2.1. Let s ∈ R and p, q ∈]0,∞]. The Besov space Bsp,q(Rn) is the set of

f ∈ S ′(Rn) such that ‖f‖Bsp,q(Rn) := ‖S0f‖p +
(∑

j≥1(2sj‖Qjf‖p)q
)1/q

<∞.

The spaces Bsp,q(Rn) are quasi-Banach in this quasi-norm. For their properties we
recall that, e.g.,

– Bs0p,q0(Rn) ↪→ Bs1p,q1(Rn) if s0 > s1, and Bsp,q(Rn) ↪→ Lp(Rn) if s > 0,

– if f ∈ Bsp,q(Rn) then ∂jf ∈ Bs−1p,q (Rn) (j = 1, . . . , n).

We also recall that Bsp,q(Rn) have the Fatou property, see [6]. We do not go into
details about Besov spaces but refer instead to e.g. [13, 14].

2.2 The Besov-type spaces

Here we also begin by the definition of the Besov-type spaces.
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Definition 2.2. Let s, τ ∈ R and p, q ∈]0,∞]. The Besov-type space Bs,τp,q (Rn) is the
set of f ∈ S ′(Rn) such that

‖f‖Bs,τp,q (Rn) := sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
j≥k+

(2sj‖Qjf‖Lp(Pk,ν))
q
)1/q

<∞,

where the dyadic cube Pk,ν is defined in (1).

Bs,τp,q (Rn) are quasi-Banach spaces in the above quasi-norm, where Bs,τp,q (Rn) = {0}
if τ < 0. We refer to [16] for some properties of Bs,τp,q (Rn) and recall the following
remark.

Remark 2.3. The space Bs,τp,q (Rn) is independent of the choices of ρ, i.e. if we choose
another cut-off function ρ1 with the same properties as ρ, the space Bs,τp,q (Rn) remains
unchanged and the resulting quasi-norm is equivalent to the one defined by ρ.

The following assertion is useful, which is an estimate of Nikol’skij-type and will
play a major role in this paper.

Proposition 2.4. Let p, q ∈]0,∞], s > (n/p − n)+ and τ ≥ 0. Let b > 0. Let
(uj)j∈N be a sequence in S ′(Rn) such that ûj is supported by the ball |ξ| ≤ b2j

and A := supk∈Z supν∈Zn 2nτk
(∑

j≥k+(2sj‖uj‖Lp(Pk,ν))q
)1/q

< ∞. Then the series∑
j≥0 uj converges in S ′(Rn) to a limit u satisfying ‖u‖Bs,τp,q (Rn) ≤ cA, where the

constant c depends only on n, s, τ, p, q and b.

For the proof, we need to use the following three lemmas, where the proof of the
first one is completely similar to [15, Lemma 3.8, p. 155], and the second one is a
Marschall pointwise estimate proved in, e.g. [16, Lemma 6.1, p. 150]; however the
third lemma is essentially given in [7, p. 782, (2.11)].

Lemma 2.5. Let a > 1 and 0 < q ≤ ∞. Then, there exists a constant c > 0,
such that for all l ∈ Z and all sequences (εk)k∈N of positive real numbers satisfying

A :=
(∑

k≥l+ ε
q
k

)1/q
<∞, it holds

(∑
j≥l+

(∑
k≥j a

j−kεk
)q)1/q ≤ cA.

Lemma 2.6. Let C > 0, R ≥ 1 and t ∈]0, 1]. Let h ∈ D(Rn) and θ ∈ C∞(Rn) be such

that h and θ̂ are supported by the balls |ξ| ≤ C and |ξ| ≤ CR, respectively. Then the

inequality |(θ∗F−1h)(x)| ≤ c(CR)n/t−n‖h‖
Ḃ
n/t
1,t (Rn) (M |θ|t(x))

1/t
holds, where M and

Ḃ
n/t
1,t (Rn) denote the Hardy-Littlewood maximal function on Rn and the homogeneous

Besov space, respectively. The constant c is independent of θ, h, C,R and x.

Lemma 2.7. Let 0 < p ≤ ∞. Then there exists a constant c > 0 such that the
inequality supx∈Pj,ν |ψ(x)| ≤ c2jn/p supµ∈Zn ‖ψ‖Lp(Pj,µ) holds, for all ψ ∈ S ′(Rn)

such that ψ̂ is supported by the ball |ξ| ≤ 2j+1 (j ∈ Z), all ν ∈ Zn and all x ∈ Rn.

Proof (Proof of Proposition 2.4). Let γ̃ be a radial function in D(Rn \ {0}) such that

γγ̃ = γ. We put Q̃j := γ̃(2−jD). Also, for the time being and for brevity, we denote



124 Some calculus of the composition of functions in Besov-type spaces

by “g” the series
∑
k≥0 uk. Since ûk is supported by the ball |ξ| < b2k, there exists an

integer m0 (which will be used along this proof), which depends only on b, such that
Qjuk = 0 if k ≤ j + m0 (m0 is the nearest integer to the real number − log2 (2b)),
but if k ≥ 0, then S0g =

∑
k≥0 S0uk and Qjg =

∑
k≥(j+m0)+

Qjuk (j = 1, 2, . . .).

Step 1: convergence in S ′(Rn). Let f ∈ S(Rn). We put g1 :=
∑
j≥1Qjg and

g2 := S0g. We will estimate |〈g1, f〉| and |〈g2, f〉| separately.

Substep 1.1: estimate of |〈g1, f〉|. Let 0 < d < 1. By the assumption on γ̃, we

have 〈Qjg, f〉 = 〈Qjg, Q̃jf〉, and then by Bernstein inequality we get

|〈g1, f〉| ≤ c
∑
j≥1

2−jn(1−1/d)
(∫

Rn
|Qjg(x)Q̃jf(x)|ddx

)1/d
.

Now, we decompose “
∫
Rn . . . ” with respect to

⋃
ν∈Zn Pj,ν for j ∈ N, and thus we find

|〈g1, f〉| ≤ c
∑
j≥1

2−jn(1−1/d)
( ∑
ν∈Zn

∫
Pj,ν

|Qjg(x)Q̃jf(x)|ddx
)1/d

≤ c
∑
j≥1

2−jn(1−1/d)‖Q̃jf‖d sup
ν∈Zn

sup
x∈Pj,ν

|Qjg(x)|.

By using (2), let N ∈ N (which will be chosen later on) be such that

|〈g1, f〉| ≤ c
∑
j≥1

2−j(N+n−n/d) sup
ν∈Zn

sup
x∈Pj,ν

|Qjg(x)|. (3)

So, the problem remains to estimate supν∈Zn supx∈Pj,ν |Qjg(x)|. We apply Lemma
2.7 with ψ := Qjg. It holds

sup
x∈Pj,ν

|Qjg(x)| ≤ c2jn/p sup
µ∈Zn

‖Qjg‖Lp(Pj,µ). (4)

Applying now Lemma 2.6 with

θ := uk, h := γ(2−j(·)), C := 3 · 2j−1 and R := b2k−j+1, (5)

we have b2k ≤ CR (supp θ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ CR}), also the condition R ≥ 1 is
guaranteed by the fact that k ≥ (j +m0)+. Then we obtain, for some t ∈]0, 1],

|Qjuk(x)| ≤ c 2k(n/t−n)‖γ(2−j(·))‖
Ḃ
n/t
1,t (Rn)(M |uk|

t(x))1/t. (6)

Using the Ḃ
n/t
1,t (Rn)’s property, i.e. ‖γ(2−j(·))‖

Ḃ
n/t
1,t (Rn) ≤ c 2j(n−n/t)‖γ‖

Ḃ
n/t
1,t (Rn) for

all j ∈ N, we get

|Qjg(x)| ≤ c
∑

k≥(j+m0)+

2(k−j)(n/t−n)
(
M |uk|t(x)

)1/t
, ∀ x ∈ Rn.

For any l ∈ Z we take the Lp(Pl,µ) of the last inequality and use the following
elementary inequality(∑

j≥0

εj

)α
≤
∑
j≥0

εαj (0 < α ≤ 1, εj ≥ 0, j = 0, 1, . . .), (7)

with α := t, to obtain ‖Qjg‖Lp(Pl,µ) ≤ c
∥∥∥∑k≥(j+m0)+

2(k−j)(n−nt)M |uk|t(·)
∥∥∥1/t
Lp/t(Pl,µ)

.
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We choose first t < min(1, p) (i.e. p/t > 1). Then the maximal function satisfies
‖Mf‖Lp/t(Pl,µ) ≤ c‖f‖Lp/t(Pl,µ) for all j and all µ; indeed, let 1Pl,µ be the indicatrix
function of Pl,µ; then for any cube Q satisfying Q ⊂ Pl,µ it holds(∫

Q

1Pl,µ(x)dx
)(∫

Q

1Pl,µ(x)1/(1−p)dx
)p−1

≤ c|Q|p,

and we have a weighted norm inequalities for M in Lp/t(1Pl,µ ; dx), [12, Theorem 9],
but Lp/t(1Pl,µ ; dx) = Lp/t(Pl,µ); see also [2, Theorem 1.14, p. 13]. We apply the
Minkowski inequality (i.e. `1(N;Lp/t(Pl,µ)) ↪→ Lp/t(Pl,µ; `1(N))), and we obtain

‖Qjg‖Lp(Pl,µ) ≤ c
( ∑
k≥(j+m0)+

2(k−j)(n−nt)‖M |uk|t‖Lp/t(Pl,µ)
)1/t

≤ c 2j(n−n/t)
( ∑
k≥(j+m0)+

2k(n−st−nt)(2ks‖uk‖Lp(Pl,µ))
t
)1/t

(∀l ∈ Z). (8)

Secondly, we choose t such that n− st− nt < 0, which implies that∑
k≥(j+m0)+

2k(n−st−nt) ≤
∑
k≥0

2k(n−st−nt) ≤ c. (9)

Then t will be chosen such that
n

s+ n
< t ≤ min(1, p), (10)

which is possible since s > (n/p− n)+. On the other hand, we have

sup
k≥(j+m0)+

sup
µ∈Zn

2ks‖uk‖Lp(Pj,µ) ≤ c2
−nτjA. (11)

Indeed, if m0 ≥ 0, which implies (j +m0)+ = j +m0 ≥ j, then we use the fact that
supk≥(j+m0)+ . . . ≤ supk≥j . . .; if m0 < 0, we have Pj,µ ⊂ Pj+m0,2m0µ with 2m0µ ∈ Zn
and use the inequality ‖uk‖Lp(Pj,µ) ≤ ‖uk‖Lp(Pj+m0,2

m0µ)
≤ supν∈Zn ‖uk‖Lp(Pj+m0,ν

).

Then choosing l = j in (8), and inserting, both (9) and (11) in (8), we get

‖Qjg‖Lp(Pj,µ) ≤ c2
j(n−nτ−n/t)A (∀j ∈ N, ∀µ ∈ Zn). (12)

Now we turn to (3). By inserting, both (4) and (12) in (3), and by choosing the
natural number N such that N + nτ − n/p− n/d+ n/t > 0, we derive that |〈g1, f〉|
is bounded by c1A

∑
j≥1 2−j(N+nτ−n/p−n/d+n/t) which gives the bound c2A.

Substep 1.2: estimate of |〈g2, f〉|. This estimate is similar to that of the above
substep, but only a few changes are needed. Indeed, we begin with

|〈g2, f〉| ≤
∑
ν∈Zn

∫
P0,ν

|S0g(x)||f(x)|dx ≤ ‖f‖1 sup
ν∈Zn

sup
x∈P0,ν

|S0g(x)|. (13)

To estimate the last term of (13) we consider the following two cases:

• The case 1: b ≥ 3/2. We will apply Lemma 2.6 as in (6), and we find, for some
t ∈]0, 1], |S0uk(x)| ≤ c 2k(n/t−n)(M |uk|t(x))1/t, where we have used

θ := uk, h := ρ, C := 3/2 and R := b2k+1/3, (14)

with R ≥ 1 for all k ≥ 0 by the assumption on b (recall that θ̂ is supported by the
ball |ξ| ≤ CR = b2k). Then we continue by choosing t such that t < min(1, p)
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and obtain, as in (8) (with µ = ν and l = 0),

‖S0g‖Lp(P0,ν) ≤ c
(∑
k≥0

2k(n−st−nt)(2ks‖uk‖Lp(P0,ν))
t
)1/t

. (15)

Now we write 2ks‖uk‖Lp(P0,ν) ≤ 2nτ0
(∑

l≥0(2ls‖ul‖Lp(P0,ν))
q
)1/q

. Since 2nτ0 =

1, then 2ks‖uk‖Lp(P0,ν) ≤ supj∈N 2nτj
(∑

l≥j(2
ls‖ul‖Lp(Pj,ν))q

)1/q
≤ cA holds.

From (15), by choosing also t such that n− st− nt < 0 (cf. (10)), we get that

‖S0g‖Lp(P0,ν) ≤ cA (∀ν ∈ Zn). (16)

Now, by applying again Lemma 2.7 with ψ := S0g, (ψ̂ is supported in |ξ| ≤ 3/2),
we get supx∈P0,ν

|S0g(x)| ≤ c supµ∈Zn ‖S0g‖Lp(P0,µ) (∀ν ∈ Zn). Finally, by
inserting this last inequality in (13) and taking (16) into account, we obtain
|〈g2, f〉| ≤ c‖f‖1A which yields the desired result.

Now the function g exists and belongs to S ′(Rn). We put u := g.

• The case 2: b < 3/2. We first replace ρ by another function with the same
properties. Let r > 0. Let ρr be a cut-off function such that ρr(ξ) = 0 if
|ξ| ≥ r and ρr(ξ) = 1 if |ξ| ≤ 3r/2. We put γr(ξ) := ρr(ξ) − ρr(2ξ) which is
supported by the compact annulus r/2 ≤ |ξ| ≤ 3r/2, and associate the operators
Sr,k := ρr(2

−kD) (k = 0, 1, . . .) and Qr,j := γr(2
−jD) (j = 1, 2, . . .). Again, we

write g := g1 + g2 where g1 :=
∑
j≥1Qr,jg and g2 := Sr,0g, and we estimate

|〈g1, f〉| and |〈g2, f〉| similarly as in Substeps 1.1 and 1.2/Case 1, respectively.
Indeed, we only note the following three situations:

– m0 is the nearest integer to the real number log2(r/(2b)), where Qr,juk = 0
if k ≤ j +m0,

– as in (5), the constants C and R become C := 3r2j−1 and R := b2k−j+1/r
with R ≥ 1, the estimate of |〈g1, f〉| follows,

– by choosing r such that 0 < r < 2b/3 we obtain as in (14), C := 3r/2
and R := b2k+1/(3r) with R ≥ 1 for all k ≥ 0 and the estimate of |〈g2, f〉|
follows too.

Again, the function g now exists and belongs to S ′(Rn), and we also put u := g.

Step 2: proof of ‖u‖Bs,τp,q (Rn) ≤ cA. Consider a number r such that r > 2b. Based
on Remark 2.3, we will use the sequences (Sr,k)k≥0 and (Qr,j)j≥1 defined above in
Substep 1.2/Case 2. The condition r > 2b implies m0 ≥ 0. Now, we first write the
inequality (8) and recall that it holds for any l ∈ Z; we put σ := n − st − nt for
brevity, and get

‖Qr,ju‖Lp(Pl,ν) ≤ 2j(n−n/t)
( ∑
k≥(j+m0)+

2kσ(2ks‖uk‖Lp(Pl,ν))
t
)1/t
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which is bounded by 2j(n−n/t)
(∑

k≥j+m0
2kσ(2ks‖uk‖Lp(Pl,ν))t

)1/t
where t is given in

(10). We continue by summation with respect to j and take into account that in the
right-hand side it holds that

∑
k≥j+m0

. . . ≤
∑
k≥j . . .. Then( ∑

j≥l+

(2js‖Qr,ju‖Lp(Pl,ν))
q
)1/q

≤ c1
( ∑
j≥l+

(∑
k≥j

2(k−j)σ(2ks‖uk‖Lp(Pl,ν))
t
)q/t)1/q

.

Applying Lemma 2.5, since σ < 0, the right-hand side of the last inequality is bounded
by c2−nτlA, and the desired result follows. �

3. Proof of Theorem 1.1

As mentioned in the Introduction, the main tools of the proof are the following state-
ments, where we need a cut-off function: we fix ϕ a C∞-function on R, such that
ϕ(x) = 1 if x ∈ [−1, 1] and ϕ(x) = 0 if x /∈ [−2, 2]. We put ϕt := ϕ(t−1(·)) for all
t > 0, which will be used in what follows as in the following equality f ◦ g = fϕt ◦ g
if g ∈ L∞(Rn) and t ≥ max(1, ‖g‖∞).

Proposition 3.1. [3, 9] Let 0 < s 6= 1 and 0 < q ≤ ∞. Let f : R → R be a Borel
measurable function in Bs∞,q(R)loc.

(i) If s > 1, then Tf takes Bs∞,q(Rn) to itself.

(ii) If s < 1, then Tf takes W 1
∞(Rn) to Bs∞,q(Rn).

Moreover, there exists a continuous increasing function φ : R+ → R+ depending only
on n, q and s, such that, for all such functions f , and all g in various function spaces
in (i) and (ii), it holds

‖Tf (g)‖Bs∞,q(Rn) ≤ ‖fϕt‖Bs∞,q(R)φ(N (g)), (17)

where t ≥ max(1, ‖g‖∞), N (g) := ‖g‖Bs∞,q(Rn) in the case (i) and N (g) := ‖g‖W 1
∞(Rn)

in the case (ii).

Remark 3.2. Concerning Proposition 3.1, the cases s > 1 and 0 < s < 1 are proved
in [3, Theorem 4] and [9, Proposition 3.1], respectively. These two references provide
the proofs for q ≥ 1, however the extension to 0 < q < 1 is easy. Also, the precise
estimate (17) occurs in both [3] and the proof given in [9].

Proposition 3.3. Let 0 < p, q ≤ ∞, s > (n/p−n)+ and 0 ≤ τ ≤ 1/p. Let b > 0. Let
(χj)j∈N be a sequence of functions in Bs∞,q(Rn). Let (fj)j∈N be a sequence in S ′(Rn)

such that f̂j is supported by the ball |ξ| ≤ b2j and

A := sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
j≥k+

(2sj‖fj‖Lp(Pk,ν))
q
)1/q

<∞.

Then it holds
∥∥∑

j≥0 χjfj
∥∥
Bs,τp,q (Rn)

≤ cA supj≥0 ‖χj‖Bs∞,q(Rn), where the constant c

depends only on n, p, q, s, τ and b.
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Proof. For all j ∈ N, we have χj = Sjχj +
∑
m≥j+1Qmχj , then we put

∑
j≥0 χjfj =

g1 + g2, where g1 :=
∑
j≥0 fjSjχj and g2 :=

∑
m≥1

∑m−1
j=0 fjQmχj .

Step 1: estimate of g1. The function f̂jSjχj is supported by the ball |ξ| ≤ (b +
3/2)2j , hence from Proposition 2.4, we have

‖g1‖Bs,τp,q (Rn) ≤ c sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
j≥k+

2sjq‖fjSjχj‖qLp(Pk,ν)
)1/q

.

Using the inequality ‖Sjχj‖∞ ≤ c‖χj‖∞ (∀j ≥ 0), and the embedding Bs∞,q(Rn) ↪→
L∞(Rn) (s > 0), we get ‖fjSjχj‖Lp(Pk,ν) ≤ c‖fj‖Lp(Pk,ν)‖χj‖Bs∞,q(Rn) and ‖g1‖Bs,τp,q (Rn)
is bounded by cA supj≥0 ‖χj‖Bs∞,q(Rn).

Step 2: estimate of g2. The function F(
∑m−1
j=0 fjQmχj) is supported by the ball

|ξ| ≤ (b/2 + 3/2)2m where m ≥ 1. Then Proposition 2.4 gives us

‖g2‖Bs,τp,q (Rn) ≤ c sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
m≥1+k+

2smq
∥∥∥m−1∑
j=0

fjQmχj

∥∥∥q
Lp(Pk,ν)

)1/q
. (18)

We continue the proof by the following substeps with respect to p and q.

Substep 2.1: the case p ≥ 1 and q ≥ 1. By Minkowski inequality with respect to
`q(N), we get

‖g2‖Bs,τp,q (Rn) ≤ c1 sup
k∈Z

sup
ν∈Zn

2nτk
∑
j≥0

( ∑
m≥j+1

2qsm‖fjQmχj‖qLp(Pk,ν)
)1/q

.

Now we have easily( ∑
m≥j+1

2qsm‖fjQmχj‖qLp(Pk,ν)
)1/q

≤
( ∑
m≥0

2qsm‖Qmχj‖q∞
)1/q
‖fj‖Lp(Pk,ν),

and then we obtain that ‖g2‖Bs,τp,q (Rn) is bounded by c2 supj≥0 ‖χj‖Bs∞,q(Rn)(A1 +A2)

where A1 := sup
k∈Z

sup
ν∈Zn

2nτk
∑

j≥1+k+

‖fj‖Lp(Pk,ν) and A2 := sup
k∈Z

sup
ν∈Zn

2nτk
k+∑
j=0

‖fj‖Lp(Pk,ν).

Then, by Hölder inequality it holds

A1 ≤ sup
k∈Z

sup
ν∈Zn

2nτk
∑
j≥k+

2−sj(2sj‖fj‖Lp(Pk,ν)) ≤ cA. (19)

Now we prove that A2 ≤ cA. By the inequality ‖fj‖Lp(Pk,ν) ≤ 2−kn/p‖fj‖∞ we

get A2 ≤ supk∈Z 2kn(τ−1/p)
∑k+
j=0 ‖fj‖∞. For the estimate of ‖fj‖∞, we use the same

calculus given in the proof of [16, Proposition 2.6, p. 46]. We obtain ‖fj‖∞ ≤
c2j(n/p−nτ−s)A for all j ≥ 0, and by assumptions 0 ≤ τ ≤ 1/p and s > 0 we get that

A2 ≤ c1A sup
k∈Z

2kn(τ−1/p)
k+∑
j=0

2−jn(τ−1/p)2−sj

≤ c1A
(

1 + sup
k≥1

2kn(τ−1/p)
k∑
j=0

2−jn(τ−1/p)2−sj
)
≤ c2A. (20)
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Now, by (19) and (20) it follows that ‖g2‖Bs,τp,q (Rn) is bounded by cA supj≥0 ‖χj‖Bs∞,q(Rn).

Substep 2.2: the case p ≥ 1 and 0 < q < 1. In (18) using (7) with α := q, we have

‖g2‖Bs,τp,q (Rn) ≤ c sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
m≥1+k+

m−1∑
j=0

2smq‖fjQmχj‖qLp(Pk,ν)
)1/q

.

Using the following estimate

‖fjQmχj‖Lp(Pk,ν) ≤ ‖Qmχj‖∞‖fj‖Lp(Pk,ν), (21)

we obtain ‖g2‖Bs,τp,q (Rn) ≤ c sup
j≥0
‖χj‖Bs∞,q(Rn)(A3 +A4), (22)

where A3 := supk∈Z supν∈Zn 2nτk
(∑

j≥1+k+ ‖fj‖
q
Lp(Pk,ν)

)1/q
,

A4 := supk∈Z supν∈Zn 2nτk
(∑k+

j=0 ‖fj‖
q
Lp(Pk,ν)

)1/q
. The estimates of A3 and A4 are

completely similar to that of A1 and A2, respectively.

Substep 2.3: the case 0 < q ≤ p < 1. From (18), and using twice (7) with respect
to `p({0, . . . ,m− 1}) and with respect to `q/p({k+ + 1, k+ + 2, . . .}), we have

‖g2‖Bs,τp,q (Rn) ≤ c sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
m≥1+k+

(m−1∑
j=0

∫
Pk,ν

2psm|fjQmχj(x)|pdx
)q/p)1/q

≤ c sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
m≥1+k+

m−1∑
j=0

2smq‖fjQmχj‖qLp(Pk,ν)
)1/q

.

Then, again we proceed as in (21) and (22).

Substep 2.4: the case 0 < p < 1, p < q and 0 < q ≤ ∞. Here also from (18) and
using (7) with respect to `p({0, . . . ,m− 1}), we obtain

‖g2‖Bs,τp,q (Rn) ≤ c sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
m≥1+k+

(m−1∑
j=0

∫
Pk,ν

2smp|fjQmχj(x)|pdx
)q/p)1/q

≤ c sup
k∈Z

sup
ν∈Zn

2nτk
({ ∑

m≥k+

(∑
j≥0

2smp‖fjQmχj‖pLp(Pk,ν)
)q/p}p/q)1/p

.

Now by Minkowski inequality with respect to `q/p(N), it holds

‖g2‖Bs,τp,q (Rn) ≤ c sup
k∈Z

sup
ν∈Zn

2nτk
{∑
j≥0

( ∑
m≥k+

2smq‖fjQmχj‖qLp(Pk,ν)
)p/q}1/p

,

and by (21) we obtain the bound c supj≥0 ‖χj‖Bs∞,q(Rn)(A5 +A6) where

A5 := sup
k∈Z

sup
ν∈Zn

2nτk
( ∑
j≥1+k+

‖fj‖pLp(Pk,ν)
)1/p

, A6 := sup
k∈Z

sup
ν∈Zn

2nτk
( k+∑
j=0

‖fj‖pLp(Pk,ν)
)1/p

,

and the estimates of A5 and A6 are similar to that of A1 and A2, respectively, however
some technical changes are needed. Indeed, by Hölder inequality with exponents q/p
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and q/(q − p), it holds∑
j≥1+k+

‖fj‖pLp(Pk,ν) =
∑

j≥1+k+

2−sjp(2sj‖fj‖Lp(Pk,ν))
p ≤ c

( ∑
j≥k+

(2sj‖fj‖Lp(Pk,ν))
q
)p/q

for all k ∈ Z, which yields A5 ≤ cA. For A6, by using the estimate ‖fj‖Lp(Pj,ν) ≤
c2−j(nτ+s)A (∀j ≥ 0, ∀ν ∈ Zn), then as in (20) we get

A6 ≤ c1A
(

1 + sup
k≥1

2kn(τp−1)
k∑
j=0

2−jn(τp−1)2−sjp
)1/p

≤ c2A.

The proof is complete. �

Proof (Proof of Theorem 1.1). Let g be a function in W 1
∞(Rn)∩Bs,τp,q (Rn), s < 1, (in

the case s > 1 the function g is taken in Bs∞,q(Rn) ∩ Bs,τp,q (Rn)). We easily get, both
limj→∞ f ◦ Sjg = f ◦ g in L∞(Rn) and the following linearization:

f ◦ g = f ◦ S0g +
∑
j≥0

(f ◦ Sj+1g − f ◦ Sjg), (23)

(for more details, see [8, 9]). Now, we introduce a sequence of operators (Rj)j∈N
defined by R0(f, g) :=

∫ 1

0
f ◦ (zS0g)dz, Rj(f, g) :=

∫ 1

0
f ◦ (Sj−1g + zQjg)dz (j =

1, 2, . . .). From (23) we have

f ◦ g =
∑
j≥0

Rj(f
′, g)Qjg. (24)

On the other hand, there exist two positive constants c1 and c2 such that

‖S0g‖∞ ≤ c1‖g‖∞ and ‖Sj−1g + zQjg‖∞ ≤ c2‖g‖∞ (∀z ∈ [0, 1], j = 1, 2, . . .).

By taking t ≥ max(1, c1‖g‖∞, c2‖g‖∞) we arrive at

Rj(f
′, g) = Rj(ϕtf

′, g), (25)

where the cut-off function ϕ is defined in the beginning of this section. The function
f ′ϕt belongs to Bs∞,q(R). Indeed, we may write f ′ϕt = (fϕt)

′ − fϕ′t, then both
(fϕt)

′ ∈ Bs∞,q(R) and fϕ′t ∈ Bs+1
∞,q(R) ↪→ Bs∞,q(R) yield the desired assertion. Now

we establish the following claim: the sequence (Rj(f
′, g))j∈N is bounded in Bs∞,q(Rn).

In the case q ≥ 1, the equality (25) and Proposition 3.1 give the claim. However,
this argument does not work in the case 0 < q < 1 since it is not possible to apply
the Minkowski inequality. Then the integral (in Rj) can be interpreted as the limit
of Riemann sums, i.e. we first prove

R0(f ′, g) = lim
m→∞

1

m

m−1∑
k=0

f ′
( k
m
S0g
)

in S ′(Rn). (26)

We set Um,(0) := 1
m

∑m−1
k=0 f

′( k
mS0g

)
. Indeed, using Proposition 3.1 (see also (17)),

there exits a continuous increasing function φ : R+ → R+ depending only on n, q and
s, such that∥∥∥f ′( k

m
S0g
)∥∥∥

Bs∞,q(Rn)
≤ ‖f ′ϕt‖Bs∞,q(R)φ(N (S0g)) (k = 0, . . . ,m− 1). (27)
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Here we have used φ
(
N
(
k
mS0g

))
≤ φ(N (S0g)), where

t ≥ max(1, c‖g‖∞) ≥ max(1, ‖S0g‖∞) ≥ max
(

1,
∥∥∥ k
m
S0g
∥∥∥
∞

)
,

and N (·) is defined in Proposition 3.1, i.e., N (S0g) ≤ c‖g‖W 1
∞(Rn) if s < 1, or

N (S0g) ≤ c‖g‖Bs∞,q(Rn) if s > 1, (they follow from ‖S0g‖∞ ≤ c‖g‖∞), so we con-

clude that N (S0g) ≤ cN (g) in each case, and consequently

‖Um,(0)‖Bs∞,q(Rn) ≤ ‖f
′ϕt‖Bs∞,q(R)φ(cN (g)) (∀m ≥ 1). (28)

Now, by the embedding Bs∞,q(Rn) ↪→ L∞(Rn) the estimate (27) yields

‖Um,(0)‖∞ ≤ ‖f ′ϕt‖Bs∞,q(R)φ(cN (g)) (∀m ≥ 1), (29)

where t ≥ max(1, c‖g‖∞) and the right-hand side of (29) is independent of m. Let
now ψ ∈ S(Rn). We apply Dominated Convergence Theorem, and we deduce that

lim
m→∞

〈Um,(0), ψ〉 =

∫
Rn

lim
m→∞

Um,(0)(x)ψ(x) dx = 〈R0(f ′, g), ψ〉,

and (26) is proved. Now we put Um,(j) := 1
m

∑m−1
k=0 f

′(Sj−1g+ k
mQjg

)
, (j = 1, 2, . . .),

and the same proof yields the following:

‖Um,(j)‖Bs∞,q(Rn) ≤ ‖f
′ϕt‖Bs∞,q(R)φ(cN (g)) (∀j ≥ 1, ∀m ≥ 1), (30)

‖Um,(j)‖∞ ≤ ‖fϕt‖Bs∞,q(R)φ(cN (g)) (∀j,m ≥ 1), (31)

lim
m→∞

Um,(j) = Rj(f
′, g) in S ′(Rn). (32)

Applying the Fatou property to the sequence (Um,(j))m∈N, by (26)–(32), we get

‖Rj(f ′, g)‖Bs∞,q(Rn) ≤ c1‖f
′ϕt‖Bs∞,q(R)φ(c2N (g)) (∀j ≥ 0),

where t ≥ max(1, ‖g‖∞), and the claim is proved. Finally, by applying Proposition
3.3 to the series (24) (with χj := Rj(f

′, g) and fj := Qjg), we obtain

‖Tf (g)‖Bs,τp,q (Rn) ≤ c1‖fϕt‖Bs+1
∞,q(R)φ(c2N (g))‖g‖Bs,τp,q (Rn), (33)

where t and N (g) are defined above. Here we have also used ‖f ′ϕt‖Bs∞,q(R) ≤
c‖fϕt‖Bs+1

∞,q(R) for all t > 0. Now concerning the assumption f(0) = 0, by testing

the zero function in (33), we obtain this condition, and the proof of Theorem 1.1 is
complete. �

4. Some extensions and remarks

Now, we deal with the case s = 1, where we need the following notation: we denote
by Ẇm

∞(Rn) (m = 1, 2, . . .) the homogeneous Sobolev space of f ∈ S ′(Rn) such
that f (α) ∈ L∞(Rn) for |α| = m, and endowed with the semi-norm ‖f‖Ẇm

∞(Rn) :=∑
|α|=m ‖f (α)‖∞. We have ‖f + P‖Ẇm

∞(Rn) = ‖f‖Ẇm
∞(Rn) for all polynomials P of

degree less than m. So, we formulate the following statement.

Proposition 4.1. Let 0 < q ≤ ∞. If a function f : R → R belongs to (Ẇ 1
∞(R) ∩
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B1
∞,q(R))loc, then Tf takes Ẇ 1

∞(Rn)∩B1
∞,q(Rn) to B1

∞,q(Rn). Moreover, there exists
a constant c = c(n, q) > 0 such that

‖Tf (g)‖B1
∞,q(Rn) ≤ c‖fϕt‖Ẇ 1

∞(R)∩B1
∞,q(R)

(1 + ‖g‖Ẇ 1
∞(Rn)∩B1

∞,q(Rn)
)

holds, for all such functions f and all g ∈ Ẇ 1
∞(Rn)∩B1

∞,q(Rn), where t ≥ max(1, ‖g‖∞).
The function ϕt was defined in the beginning of Section 3.

Proof. In the case 0 < q ≤ 1, we have B1
∞,q(R)∩ Ẇ 1

∞(R) = B1
∞,q(R) and B1

∞,q(Rn)∩
Ẇ 1
∞(Rn) = B1

∞,q(Rn), and the assertion is proved in [3, Theorem 5] with q = 1. The
proof given in [3, Theorem 5] can be easily extended to any q > 0 under assumptions
on f and g, since we only replace, in this proof, the L1(]0,∞[; dt/t) by Lq(]0,∞[; dt/t).

�

Based on this proposition, we obtain a result for the composition operator Tf on
the space B1,τ

p,q (Rn) which has a proof completely similar to that of Theorem 1.1.

Theorem 4.2. Let 0 < p, q ≤ ∞, (n/p−n)+ < s = 1 and 0 ≤ τ ≤ 1/p. Let f : R→ R
be a Borel measurable function such that f(0) = 0 and f ∈ (Ẇ 2

∞(R) ∩ B2
∞,q(R))loc.

Then Tf takes Ẇ 1
∞(Rn) ∩ B1

∞,q(Rn) ∩ B1,τ
p,q (Rn) to B1,τ

p,q (Rn). Moreover, there exists
a constant c = c(n, p, q, τ) > 0 such that

‖Tf (g)‖B1,τ
p,q (Rn) ≤ c‖fϕt‖Ẇ2

∞(R)∩B2
∞,q(R)

(1 + ‖g‖Ẇ 1
∞(Rn)∩B1

∞,q(Rn)
)‖g‖B1,τ

p,q (Rn)

holds, for all such functions f and all g ∈ Ẇ 1
∞(Rn)∩B1

∞,q(Rn)∩B1,τ
p,q (Rn), and where

t ≥ max(1, ‖g‖∞).

Remark 4.3. It would be interesting to extend the result in Theorem 1.1 to:

(i) The Triebel-Lizorkin-type spaces F s,τp,q (Rn), (p ∈]0,∞[, q ∈]0,∞], s, τ ∈ R), the
set of f ∈ S ′(Rn) such that

‖f‖F s,τp,q (Rn) := sup
k∈Z

sup
ν∈Zn

2knτ
∥∥∥( ∑

j≥k+

(2sj |Qjf |)q
)1/q∥∥∥

Lp(Pk,ν)
<∞.

(ii) The homogeneous Besov-type spaces Ḃs,τp,q (Rn), (p, q ∈]0,∞], s, τ ∈ R), the set
of the tempered distributions modulo polynomials f such that

‖f‖Ḃs,τp,q (Rn) := sup
k∈Z

sup
ν∈Zn

2nτk
(∑
j≥k

(2sj‖Qjf‖Lp(Pk,ν))
q
)1/q

<∞. (34)

Here Qj := γ(2−jD) for all j ∈ Z. Recall that ‖f‖Ḃs,τp,q (Rn) = ‖f + P‖Ḃs,τp,q (Rn)
for all polynomials P on Rn.
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[15] M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I: Boundedness on
spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 131–174.

[16] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel,
Lecture Notes in Mathematics vol. 2005, Springer, Berlin, 2010.

(received 03.04.2017; in revised form 20.11.2017; available online 02.02.2018)

Laboratory of Functional Analysis and Geometry Spaces, Mohamed Boudiaf University of
M’Sila, 28000 M’Sila, Algeria

E-mail: mmoussai@yahoo.fr

Laboratory of Functional Analysis and Geometry Spaces, Mohamed Boudiaf University of
M’Sila, 28000 M’Sila, Algeria

E-mail: smrabta@yahoo.fr


	Introduction and the main result
	Preliminaries
	The Besov spaces
	The Besov-type spaces

	Proof of Theorem 1.1
	Some extensions and remarks

