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A NOTE ON IA-AUTOMORPHISMS OF A FINITE p-GROUP

Rasoul Soleimani

Abstract. Let G be a finite group. An automorphism α of G is called an IA-automor-
phism if x−1xα ∈ G′ for all x ∈ G. The set of all IA-automorphisms of G is denoted by
AutG

′
(G). A group G is called semicomplete if and only if AutG

′
(G) = Inn(G). In this

paper, we obtain certain results on a finite p-group to be semicomplete.

1. Introduction

Let G be a finite group and N a characteristic subgroup of G. Let α be an au-
tomorphism of G. If Ngα = Ng for all g in G, we shall say that α centralizes
G/N . We let AutN (G) = Aut(G,N) denote the centralizer in Aut(G) of G/N .
Clearly AutN (G) is a normal subgroup of Aut(G), the automorphism group of G,

and α ∈ AutN (G) if and only if x−1xα ∈ N for all x ∈ G. The group AutG
′
(G)

have been studied by several authors, where G′ stands for the derived subgroup of
G, see for example [3, 5, 6, 9, 10, 15–17]. Now let M be a normal subgroup of G. We
let AutM (G) denote the group of all automorphisms of G centralizing M . Moreover,
AutNM (G) = AutM (G,N) = AutN (G) ∩ AutM (G). It is well-known that if G is a

finite p-group, then so is the group AutG
′
(G).

In this paper, we study closely the group AutG
′
(G) for a finite p-group G. In

Section 2 we give some basic results that are needed for the main results of the paper.
In Sections 3 and 4 we prove the main results of the paper and give necessary and
sufficient condition for a finite p-group G to be semicomplete when (G,Z(G)) is a
Camina pair and G′ is cyclic.

Throughout the paper all groups are assumed to be finite groups. We use standard
notation in group theory. In particular, we use the notation Hom(G,A) to denote the
group of homomorphisms of G into an abelian group A. A group G of order pm is said
to be of maximal class if m > 2 and the nilpotency class of G is m−1. A p-group G is
said to be extraspecial if G′ = Z(G) = Φ(G) is of order p. Also, a non-abelian group
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that has no non-trivial abelian direct factor is said to be purely non-abelian. Recall
that a group G is called an (internal) central product of its subgroups G1, . . . , Gn if
G = G1 . . . Gn and [Gi, Gj ] = 1 for all 1 ≤ i < j ≤ n. In this situation, we shall write
G = G1 ∗ . . . ∗Gn. The terms of the lower central series and the upper central series
of a group G are respectively denoted as Γi(G) and Zi(G). If α is an automorphism
of G and x is an element of G, we write xα for the image of x under α. For a finite
group G, Ωi(G), d(G), M(G), exp(G) and cl(G) respectively denote the subgroup of
G generated by its elements of order dividing pi, minimal number of generators, the
set of all maximal subgroups, the exponent and the nilpotency class of G. Also the
size of a finite group G is shown by |G|, o(x) for the order of x ∈ G, Cn is the cyclic
group of order n and Xp3 for non-abelian p-group of order p3 and exponent p, where
p is an odd prime. For s ≥ 1, we use the notation G∗s for the iterated central product
defined by G∗s = G ∗ G∗(s−1) with G∗1 = G, where G is a finite p-group. We also
make the convention G∗0 = 1.

2. Some basic results

In this section, we give some known results which will be used in the rest of the paper.
An automorphism α of a group G is called central if x−1xα ∈ Z(G) for all x ∈ G.

The set of all central automorphisms of G is denoted by AutZ(G), where Z = Z(G).
The following well-known results will be later used in the paper.

Theorem 2.1. ( [2, Theorem 1]) For a finite purely non-abelian group G, there is a
1-1 correspondence between Hom(G,Z(G)) and AutZ(G), whence |Hom(G/G′, Z(G))| =
|AutZ(G)|.

Lemma 2.2. ( [1, Lemma 2.1]) Let G be a finite group and N be a normal subgroup
of G such that G/N is abelian. Let G/N = 〈x1N〉× . . .×〈xdN〉, where x1, . . . , xd ∈ G
and d = d(G/N). If u1, . . . , ud ∈ Z(N) such that{

(xiui)
ni = xni

i 1 ≤ i ≤ d
[xi, uj ] = [xj , ui] 1 ≤ i < j ≤ d

where ni = o(xiN), then the mapping xi 7→ xiui, 1 ≤ i ≤ d, can be extended to an
automorphism of G leaving N elementwise fixed.

Lemma 2.3. ( [17, Lemma 2.2] Let G be a group and M , N be normal subgroups of
G with N ≤M and CN (M) ≤ Z(G). Then AutNM (G) ∼= Hom(G/M,CN (M)).

3. Main results

In this section, we study the group AutG
′
(G) for a finite p-group G. For simplicity,

we let Γi = Γi(G), for all i.
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Lemma 3.1. Let G be a finite nilpotent group. If α ∈ AutG
′
(G) and a ∈ Γi (i = 1, . . .),

then aα ≡ a (mod Γi+1).

Proof. The result is clearly true for i = 1. Proceeding by induction on i, and assume
the validity of the lemma for some i. Let a ∈ Γi+1. Then a is a product of terms
b = [y, g], such that y ∈ Γi and g ∈ G. Now

bα = [yα, gα] = [yd, gx], (d ∈ Γi+1, x ∈ G′)
= [y, gx]d[d, gx] ≡ [y, gx]d (mod Γi+2)

= ([y, x][y, g]x)d = [y, x]d[y, g]xd ≡ [y, g]xd (mod Γi+2)

= [y, g][[y, g], xd] ≡ [y, g] = b (mod Γi+2),

and the lemma follows. �

Theorem 3.2. Let G be a finite nilpotent group of class c. Then

(i) AutG
′
(G) = AutG

′

Γc
(G);

(ii) AutΓc(G) ≤ Z(AutG
′
(G));

(iii) AutG
′
(G)/AutΓc(G) is isomorphic to the subgroup of automorphisms in

AutG
′/Γc(G/Γc).

Proof. (i) Follows from Lemma 3.1.

To prove (ii), take α ∈ AutΓc(G) and β ∈ AutG
′
(G). Then for g ∈ G, gα = gd

and gβ = gx, where d ∈ Γc and x ∈ G′. Thus gαβ = (gd)β = gxd = gdx and
gβα = (gx)α = gdx, by (i) and since Aut(G,Γc) = AutG′(G,Γc). Hence αβ = βα and

α ∈ Z(AutG
′
(G)).

(iii) Clearly α ∈ AutG
′
(G) induces an automorphism α in G

Γc
, defined by (gΓc)

α =

gαΓc. It is easy to see that the mapping α 7→ α defines a homomorphism of AutG
′
(G)

into Aut( GΓc
, G

′

Γc
). The kernel of this homomorphism is AutΓc(G), for α = 1 if and

only if g−1gα ∈ Γc, for all g ∈ G, which means that α ∈ Aut(G,Γc). �

Theorem 3.3. Let G be a finite nilpotent group. Then cl(AutG
′
(G)) = cl(G)− 1.

Proof. Suppose that cl(G) = c. We use induction on c. For c = 1, it is clearly true.
Assume that the result holds for any finite nilpotent group of nilpotency class less

than c. Hence cl(Aut( GΓc
, G

′

Γc
)) = cl( GΓc

) − 1 ≤ cl(G) − 2. Since Inn(G) ≤ AutG
′
(G),

cl(G) − 1 ≤ cl(AutG
′
(G)). Now by Theorem 3.2 (ii) and (iii) we have cl(G) − 2 ≤

cl(AutG
′
(G))− 1 = cl( AutG

′
(G)

Z(AutG
′
(G))

) ≤ cl( AutG
′
(G)

Aut(G,Γc) ) ≤ cl(Aut( GΓc
, G

′

Γc
)) ≤ cl(G)− 2.

Consequently, cl(AutG
′
(G))− 1 = cl(G)− 2 and cl(AutG

′
(G)) = cl(G)− 1. �

Corollary 3.4. Let G be a finite p-group of order pn. Then G is of maximal class

if and only if cl(AutG
′
(G)) = n− 2.
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Theorem 3.5. Let G be a finite p-group of class c. Then AutΓc

Z (Γc−1) = Inn(Γc−1)
if and only if Γc is cyclic, where Z = Z(Γc−1).

Proof. By Lemma 2.3, AutΓc

Z (Γc−1) ∼= Hom(Γc−1/Z(Γc−1),Γc). It is sufficient to
prove that exp(Γc−1/Z(Γc−1)) ≤ exp(Γc). Suppose that exp(Γc) = pn and g ∈ Γc−1

such that o(gZ(Γc−1)) = exp(Γc−1/Z(Γc−1)). Now [gp
n

, x] = [g, x]p
n

= 1 for all
x ∈ G. So gp

n ∈ Z(Γc−1) and the proof is complete. �

As an application of Theorem 3.5, we get the following corollary which is the same
as [17, Proposition 3.2].

Corollary 3.6. Let G be a finite p-group of class 2. Then AutG
′

Z (G) = Inn(G) if
and only if G′ is cyclic, where Z = Z(G).

Theorem 3.7. Let G be a finite p-group of class c. Then AutΓc

Γc
(Γc−1) = Inn(Γc−1)

if and only if Γc is cyclic and Z(Γc−1) = ΓcΓc−1
pn , where |Γc| = pn.

Proof. Assume that Γc is cyclic and of order pn. By Theorem 3.5, it is sufficient to
prove that AutΓc

Γc
(Γc−1) = AutΓc

Z (Γc−1), where Z = Z(Γc−1). Let α ∈ AutΓc

Γc
(Γc−1)

and x ∈ Γc−1. We may write (xp
n

)α = (xd)p
n

= xp
n

with d ∈ Γc, which shows

that α fixes any element of Z(Γc−1), since Z(Γc−1) = ΓcΓc−1
pn . Consequently

AutΓc

Γc
(Γc−1) = AutΓc

Z (Γc−1) = Inn(Γc−1).

Conversely, suppose that AutΓc

Γc
(Γc−1) = Inn(Γc−1). By Theorem 3.5, Γc is cyclic.

Since Γc ≤ ΓcΓc−1
pn ≤ Z(Γc−1) ≤ Γc−1, it follows that

Inn(Γc−1) ∼=Hom(Γc−1/Z(Γc−1),Γc) � Hom(Γc−1/(ΓcΓ
pn

c−1),Γc)

�Hom(Γc−1/Γc,Γc) ∼= AutΓc(Γc−1,Γc) = Inn(Γc−1).

Therefore Hom(Γc−1/(ΓcΓ
pn

c−1),Γc) ∼= Inn(Γc−1), which gives |Γc−1/(ΓcΓ
pn

c−1)| =

|Γc−1/Z(Γc−1)|. So Z(Γc−1) = ΓcΓc−1
pn , as required. �

S. Singh, D. Gumber, and H. Kalra [15] gave a necessary and sufficient condition
on a finite p-group to be semicomplete. Our next corollary, which is a particular
case of Theorem 3.7, gives an another interpretation of this result. This corollary
is [17, Theorem 3.3].

Corollary 3.8. Let G be a finite p-group of class 2. Then AutG
′
(G) = Inn(G) if

and only if G′ is cyclic and Z(G) = G′Gp
n

, where |G′| = pn.

We now give an alternative proof for [15, Corollary 2.4].

Corollary 3.9. Let G be a 2-generated finite nilpotent group of class 2. Then any
IA-automorphism of G is an inner automorphism.

Proof. Suppose that G = 〈a, b〉. Then G′ = 〈[a, b]g|g ∈ G〉 = 〈[a, b]〉 and so G′ is
cyclic. Since G is a nilpotent group, G = P1 × . . . × Pn, where Pi is the Sylow pi-
subgroup of G, for i = 1, . . . , n. Thus G′ = P ′k, Inn(G) ∼= Inn(Pk) and by Lemma 2.3,

AutG
′
(G) ∼= AutP

′
1(P1)× . . .× AutP

′
n(Pn) = AutP

′
k(Pk) ∼= Hom(Pk/P

′
k, P

′
k) for some
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1 ≤ k ≤ n. Next by [5, Theorem 3.2], |AutG
′
(G)| = |G′|2 and so |AutP

′
k(Pk)| = |P ′k|2.

Now since P ′k ≤ Z(Pk), by [ [14], Lemma 0.4], if exp(Pk/Z(Pk)) = pm = exp(P ′k), then
Pk/Z(Pk) has the form Cpm×Cpm×A for some (possibly trivial) abelian p-group A. So

by Lemma 2.3, |Aut
P ′

k

Z (Pk)| = |Hom(Pk/Z(Pk), P ′k)| ≥ |P ′k|2, where Z = Z(Pk). Thus

AutP
′
k(Pk) = Aut

P ′
k

Z (Pk), which together with Corollary 3.6 completes the proof. �

4. Groups G such that (G,Z(G)) is a Camina pair

Camina groups were introduced by A.R. Camina in [4] and were studied in past (see
for example [11–13]). Let G be a finite group and N be non-trivial proper normal
subgroup of G. Then (G,N) is called a Camina pair if xN ⊆ xG for all x ∈ G −N ,
where xG denotes the conjugacy class of x in G. It follows that (G,N) is a Camina
pair if and only if N ⊆ [x,G] for all x ∈ G−N , where [x,G] = {[x, g]|g ∈ G}.

In this section, we give necessary and sufficient condition for a finite p-group G
to be semicomplete when (G,Z(G)) is a Camina pair and G′ is cyclic. We start with
some results of I.D. Macdonald.

Lemma 4.1. ( [12, Lemma 2.1]) Let (G,H) be a Camina pair and G have class c.
Then H = Γr(G) and H = Zc−r+1(G) for some r satisfying 1 < r ≤ c.

Theorem 4.2. ( [12, Theorem 2.2]) Let (G,H) be a Camina pair, H = Z(G), and
G have class c. Then Zr(G)/Zr−1(G) has exponent p whenever 1 ≤ r ≤ c.

Theorem 4.3. Let G be a finite p-group such that G′ is cyclic and (G,Z(G)) is

a Camina pair. Then AutG
′
(G) = Inn(G) if and only if G is an extraspecial p-

group or G is isomorphic to a central product A ∗ X∗sp3 , for some s ≥ 0, p is an
odd prime and A is a 2-generator subgroup which is either a metacyclic group or

A = 〈a〉〈b〉〈c〉, [a, c] = [b, c] = 1, [a, b] = cbp
k

, where k ≥ 1.

Proof. Let (G,Z(G)) be a Camina pair and α ∈ AutZ(G), where Z = Z(G). Since

Z(G) ≤ G′, Z2(G)
Z(G)

∼= AutZ(G)
⋂

Inn(G) = AutZ(G) and so by Theorem 4.2, AutZ(G)

is elementary abelian. Now Z(G) < Z(M) and CG(M) = Z(M), for allM ∈M(G) [7,
Remark 2]. Assume that |G/Φ(G)| = pt and |Z(G)| = pr. By [18, Theorem 3.1],
d(Z2(G)/Z(G)) = d(G). Since G is purely non-abelian, we have pt = |AutZ(G)| =
|Hom(G/G′, Z(G))| = prt, by Theorem 2.1. Whence r = 1 and Z(G) ∼= Cp. If
G/Z(G) be an abelian then by Corollary 3.8, G′ = Z(G) = Φ(G) ∼= Cp and hence G
is extraspecial. So we may assume that G/Z(G) is not abelian.

We first assume that p > 2. Then by the main theorem of [8], we may write
G = A1 ∗ A2 ∗ . . . ∗ An ∗ B, where B is an abelian subgroup, A1, A2, . . . , An are 2-
generator subgroups, and the classes of A2, . . . , An are equal to 2. Now G = A1 ∗
A2 ∗ . . . ∗ An, since B ≤ Z(G) ≤ Φ(G). Next for 2 ≤ i ≤ n, (Ai, Z(Ai)) is a Camina
pair since xZ(Ai) = xZ(G) ⊆ xG = xA1...An = xAi , for all x ∈ Ai − Z(Ai). Thus
A′i = Z(Ai) = Z(G) ∼= Cp and Ai is an extraspecial p-group of order p3 and exponent
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p, where 2 ≤ i ≤ n. So by the theorem mentioned earlier, it follows that G ∼= A∗X∗sp3 ,
where s ≥ 0 and A is a 2-generator subgroup which is either a metacyclic group or

A = 〈a〉〈b〉〈c〉, [a, c] = [b, c] = 1, [a, b] = cbp
k

, k ≥ 1.
Suppose next that p = 2. First we show that Z(M) ≤ Z2(G), for all M ∈M(G). Let
M ∈ M(G), g ∈ G \M and x ∈ Z(M) \ Z(G). Since g2 ∈ M , [x,G] = [x,M〈g〉] =
{[x, gi]|0 ≤ i < 2}. By assumption Z(G) ⊆ [x,G] and |Z(G)| = 2. Consequently
Z(G) = [x,G] and so x ∈ Z2(G). Next let x ∈ Z2(G) \ Z(G). It follows that
M = CG(x) is a maximal subgroup of G, since |CG(x)| = |G|/|[x,G]| = |G|/2. Let
(Z2(G)∩G′)/Z(G) = 〈t̄〉 and M = CG(t), where t ∈ Z2(G)∩G′ and t̄ = tZ(G). Then
M ∈M(G) and if g ∈ G \M , it follows that [t, g] ∈ Z(G). Hence (gt)2 = g2t2[t, g] =
g2, since o(t) = 4 and [t, g] = t2. Now since t ∈ Z(M), the map α sending g 7→ gt and
m 7→ m, for all m ∈ M , can be extended to an automorphism of G by Lemma 2.2,

which is an automorphism lying in AutG
′
(G). So that α is an inner automorphism of

G induced by an element xM in G. It follows that xM ∈ CG(M) = Z(M) ≤ Z2(G).
This means that t = g−1gα = [g, xM ] ∈ Z(G), which is impossible.

Conversely, if G is an extraspecial p-group then by Lemma 2.3, AutG
′
(G) ∼=

Hom(G/G′, G′) ∼= Inn(G), and so G is semicomplete. Next let G ∼= A ∗ X∗sp3 , for

some s ≥ 0 and p > 2. Then by Theorem 3.2.(i), Lemma 4.1 and [6, Theorem 3],

AutG
′
(G) = AutG

′

Γc
(G) = AutG

′

Z (G) = Inn(G), which completes the proof. �
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