МАТЕМАТІČКІ VESNIK МАТЕМАТИЧКИ ВЕСНИК 70, 2 (2018), 176–182 June 2018

research paper оригинални научни рад

A NOTE ON IA-AUTOMORPHISMS OF A FINITE p-GROUP

Rasoul Soleimani

Abstract. Let G be a finite group. An automorphism α of G is called an IA-automorphism if $x^{-1}x^{\alpha} \in G'$ for all $x \in G$. The set of all IA-automorphisms of G is denoted by $\operatorname{Aut}^{G'}(G)$. A group G is called semicomplete if and only if $\operatorname{Aut}^{G'}(G) = \operatorname{Inn}(G)$. In this paper, we obtain certain results on a finite p-group to be semicomplete.

1. Introduction

Let G be a finite group and N a characteristic subgroup of G. Let α be an automorphism of G. If $Ng^{\alpha} = Ng$ for all g in G, we shall say that α centralizes G/N. We let $\operatorname{Aut}^{N}(G) = \operatorname{Aut}(G, N)$ denote the centralizer in $\operatorname{Aut}(G)$ of G/N. Clearly $\operatorname{Aut}^{N}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$, the automorphism group of G, and $\alpha \in \operatorname{Aut}^{N}(G)$ if and only if $x^{-1}x^{\alpha} \in N$ for all $x \in G$. The group $\operatorname{Aut}^{G'}(G)$ have been studied by several authors, where G' stands for the derived subgroup of G, see for example [3, 5, 6, 9, 10, 15–17]. Now let M be a normal subgroup of G. We let $\operatorname{Aut}_{M}(G)$ denote the group of all automorphisms of G centralizing M. Moreover, $\operatorname{Aut}_{M}^{N}(G) = \operatorname{Aut}_{M}(G, N) = \operatorname{Aut}^{N}(G) \cap \operatorname{Aut}_{M}(G)$. It is well-known that if G is a finite p-group, then so is the group $\operatorname{Aut}^{G'}(G)$.

In this paper, we study closely the group $\operatorname{Aut}^{G'}(G)$ for a finite *p*-group *G*. In Section 2 we give some basic results that are needed for the main results of the paper. In Sections 3 and 4 we prove the main results of the paper and give necessary and sufficient condition for a finite *p*-group *G* to be semicomplete when (G, Z(G)) is a Camina pair and *G'* is cyclic.

Throughout the paper all groups are assumed to be finite groups. We use standard notation in group theory. In particular, we use the notation $\operatorname{Hom}(G, A)$ to denote the group of homomorphisms of G into an abelian group A. A group G of order p^m is said to be of maximal class if m > 2 and the nilpotency class of G is m-1. A *p*-group G is said to be extraspecial if $G' = Z(G) = \Phi(G)$ is of order p. Also, a non-abelian group

²⁰¹⁰ Mathematics Subject Classification: 20D45, 20D15

Keywords and phrases: Automorphism group; p-group; semicomplete group.

R. Soleimani

that has no non-trivial abelian direct factor is said to be purely non-abelian. Recall that a group G is called an (internal) central product of its subgroups G_1, \ldots, G_n if $G = G_1 \dots G_n$ and $[G_i, G_j] = 1$ for all $1 \le i < j \le n$. In this situation, we shall write $G = G_1 * \ldots * G_n$. The terms of the lower central series and the upper central series of a group G are respectively denoted as $\Gamma_i(G)$ and $Z_i(G)$. If α is an automorphism of G and x is an element of G, we write x^{α} for the image of x under α . For a finite group G, $\Omega_i(G)$, d(G), $\mathcal{M}(G)$, $\exp(G)$ and $\operatorname{cl}(G)$ respectively denote the subgroup of G generated by its elements of order dividing p^i , minimal number of generators, the set of all maximal subgroups, the exponent and the nilpotency class of G. Also the size of a finite group G is shown by |G|, o(x) for the order of $x \in G$, C_n is the cyclic group of order n and X_{p^3} for non-abelian p-group of order p^3 and exponent p, where p is an odd prime. For $s \ge 1$, we use the notation G^{*s} for the iterated central product defined by $G^{*s} = G * G^{*(s-1)}$ with $G^{*1} = G$, where G is a finite p-group. We also make the convention $G^{*0} = 1$.

2. Some basic results

In this section, we give some known results which will be used in the rest of the paper.

An automorphism α of a group G is called central if $x^{-1}x^{\alpha} \in Z(G)$ for all $x \in G$. The set of all central automorphisms of G is denoted by $\operatorname{Aut}^{Z}(G)$, where Z = Z(G). The following well-known results will be later used in the paper.

THEOREM 2.1. ([2, Theorem 1]) For a finite purely non-abelian group G, there is a 1-1 correspondence between $\operatorname{Hom}(G, Z(G))$ and $\operatorname{Aut}^{Z}(G)$, whence $|\operatorname{Hom}(G/G', Z(G))| =$ $|\operatorname{Aut}^Z(G)|$.

LEMMA 2.2. ([1, Lemma 2.1]) Let G be a finite group and N be a normal subgroup of G such that G/N is abelian. Let $G/N = \langle x_1 N \rangle \times \ldots \times \langle x_d N \rangle$, where $x_1, \ldots, x_d \in G$ and d = d(G/N). If $u_1, \dots, u_d \in Z(N)$ such that $\begin{cases}
(x_i u_i)^{n_i} = x_i^{n_i} & 1 \le i \le d \\
[x_i, u_j] = [x_j, u_i] & 1 \le i < j \le d
\end{cases}$

where $n_i = o(x_i N)$, then the mapping $x_i \mapsto x_i u_i, 1 \leq i \leq d$, can be extended to an automorphism of G leaving N elementwise fixed.

LEMMA 2.3. ([17, Lemma 2.2] Let G be a group and M, N be normal subgroups of G with $N \leq M$ and $C_N(M) \leq Z(G)$. Then $\operatorname{Aut}_M^N(G) \cong \operatorname{Hom}(G/M, C_N(M))$.

3. Main results

In this section, we study the group $\operatorname{Aut}^{G'}(G)$ for a finite p-group G. For simplicity, we let $\Gamma_i = \Gamma_i(G)$, for all *i*.

A note on *IA*-automorphisms of a finite *p*-group

LEMMA 3.1. Let G be a finite nilpotent group. If $\alpha \in \operatorname{Aut}^{G'}(G)$ and $a \in \Gamma_i$ (i = 1, ...), then $a^{\alpha} \equiv a \pmod{\Gamma_{i+1}}$.

Proof. The result is clearly true for i = 1. Proceeding by induction on i, and assume the validity of the lemma for some i. Let $a \in \Gamma_{i+1}$. Then a is a product of terms b = [y, g], such that $y \in \Gamma_i$ and $g \in G$. Now

$b^{lpha} = [y^{lpha}, g^{lpha}] = [yd, gx],$	$(d \in \Gamma_{i+1}, x \in G')$
$= [y, gx]^d [d, gx] \equiv [y, gx]^d$	$(mod \Gamma_{i+2})$
$= ([y, x][y, g]^x)^d = [y, x]^d [y, g]^{xd} \equiv [y, g]^{xd}$	$(mod \Gamma_{i+2})$
$= [y,g][[y,g],xd] \equiv [y,g] = b$	$(mod \Gamma_{i+2}),$

and the lemma follows.

THEOREM 3.2. Let G be a finite nilpotent group of class c. Then

- (i) $\operatorname{Aut}^{G'}(G) = \operatorname{Aut}_{\Gamma_c}^{G'}(G);$
- (*ii*) $\operatorname{Aut}^{\Gamma_c}(G) \leq Z(\operatorname{Aut}^{G'}(G));$
- (iii) $\operatorname{Aut}^{G'}(G)/\operatorname{Aut}^{\Gamma_c}(G)$ is isomorphic to the subgroup of automorphisms in $\operatorname{Aut}^{G'/\Gamma_c}(G/\Gamma_c)$.

Proof. (i) Follows from Lemma 3.1.

To prove (ii), take $\alpha \in \operatorname{Aut}^{\Gamma_c}(G)$ and $\beta \in \operatorname{Aut}^{G'}(G)$. Then for $g \in G$, $g^{\alpha} = gd$ and $g^{\beta} = gx$, where $d \in \Gamma_c$ and $x \in G'$. Thus $g^{\alpha\beta} = (gd)^{\beta} = gxd = gdx$ and $g^{\beta\alpha} = (gx)^{\alpha} = gdx$, by (i) and since $\operatorname{Aut}(G, \Gamma_c) = \operatorname{Aut}_{G'}(G, \Gamma_c)$. Hence $\alpha\beta = \beta\alpha$ and $\alpha \in Z(\operatorname{Aut}^{G'}(G))$.

(iii) Clearly $\alpha \in \operatorname{Aut}^{G'}(G)$ induces an automorphism $\overline{\alpha}$ in $\frac{G}{\Gamma_c}$, defined by $(g\Gamma_c)^{\overline{\alpha}} = g^{\alpha}\Gamma_c$. It is easy to see that the mapping $\alpha \mapsto \overline{\alpha}$ defines a homomorphism of $\operatorname{Aut}^{G'}(G)$ into $\operatorname{Aut}(\frac{G}{\Gamma_c}, \frac{G'}{\Gamma_c})$. The kernel of this homomorphism is $\operatorname{Aut}^{\Gamma_c}(G)$, for $\overline{\alpha} = \overline{1}$ if and only if $g^{-1}g^{\alpha} \in \Gamma_c$, for all $g \in G$, which means that $\alpha \in \operatorname{Aut}(G, \Gamma_c)$.

THEOREM 3.3. Let G be a finite nilpotent group. Then $cl(Aut^{G'}(G)) = cl(G) - 1$.

Proof. Suppose that $\operatorname{cl}(G) = c$. We use induction on c. For c = 1, it is clearly true. Assume that the result holds for any finite nilpotent group of nilpotency class less than c. Hence $\operatorname{cl}(\operatorname{Aut}(\frac{G}{\Gamma_c}, \frac{G'}{\Gamma_c})) = \operatorname{cl}(\frac{G}{\Gamma_c}) - 1 \leq \operatorname{cl}(G) - 2$. Since $\operatorname{Inn}(G) \leq \operatorname{Aut}^{G'}(G)$, $\operatorname{cl}(G) - 1 \leq \operatorname{cl}(\operatorname{Aut}^{G'}(G))$. Now by Theorem 3.2 (ii) and (iii) we have $\operatorname{cl}(G) - 2 \leq \operatorname{cl}(\operatorname{Aut}^{G'}(G)) - 1 = \operatorname{cl}(\frac{\operatorname{Aut}^{G'}(G)}{Z(\operatorname{Aut}^{G'}(G))}) \leq \operatorname{cl}(\frac{\operatorname{Aut}^{G'}(G)}{\operatorname{Aut}(G,\Gamma_c)}) \leq \operatorname{cl}(\operatorname{Aut}(\frac{G}{\Gamma_c}, \frac{G'}{\Gamma_c})) \leq \operatorname{cl}(G) - 2$.

Consequently,
$$cl(Aut^G(G)) - 1 = cl(G) - 2$$
 and $cl(Aut^G(G)) = cl(G) - 1$.

COROLLARY 3.4. Let G be a finite p-group of order p^n . Then G is of maximal class if and only if $cl(Aut^{G'}(G)) = n - 2$.

178

R. Soleimani

THEOREM 3.5. Let G be a finite p-group of class c. Then $\operatorname{Aut}_{Z}^{\Gamma_{c}}(\Gamma_{c-1}) = \operatorname{Inn}(\Gamma_{c-1})$ if and only if Γ_{c} is cyclic, where $Z = Z(\Gamma_{c-1})$.

Proof. By Lemma 2.3, $\operatorname{Aut}_{Z}^{\Gamma_{c}}(\Gamma_{c-1}) \cong \operatorname{Hom}(\Gamma_{c-1}/Z(\Gamma_{c-1}),\Gamma_{c})$. It is sufficient to prove that $\exp(\Gamma_{c-1}/Z(\Gamma_{c-1})) \leq \exp(\Gamma_{c})$. Suppose that $\exp(\Gamma_{c}) = p^{n}$ and $g \in \Gamma_{c-1}$ such that $o(gZ(\Gamma_{c-1})) = \exp(\Gamma_{c-1}/Z(\Gamma_{c-1}))$. Now $[g^{p^{n}}, x] = [g, x]^{p^{n}} = 1$ for all $x \in G$. So $g^{p^{n}} \in Z(\Gamma_{c-1})$ and the proof is complete.

As an application of Theorem 3.5, we get the following corollary which is the same as [17, Proposition 3.2].

COROLLARY 3.6. Let G be a finite p-group of class 2. Then $\operatorname{Aut}_{Z}^{G'}(G) = \operatorname{Inn}(G)$ if and only if G' is cyclic, where Z = Z(G).

THEOREM 3.7. Let G be a finite p-group of class c. Then $\operatorname{Aut}_{\Gamma_c}^{\Gamma_c}(\Gamma_{c-1}) = \operatorname{Inn}(\Gamma_{c-1})$ if and only if Γ_c is cyclic and $Z(\Gamma_{c-1}) = \Gamma_c \Gamma_{c-1}^{p^n}$, where $|\Gamma_c| = p^n$.

Proof. Assume that Γ_c is cyclic and of order p^n . By Theorem 3.5, it is sufficient to prove that $\operatorname{Aut}_{\Gamma_c}^{\Gamma_c}(\Gamma_{c-1}) = \operatorname{Aut}_{Z}^{\Gamma_c}(\Gamma_{c-1})$, where $Z = Z(\Gamma_{c-1})$. Let $\alpha \in \operatorname{Aut}_{\Gamma_c}^{\Gamma_c}(\Gamma_{c-1})$ and $x \in \Gamma_{c-1}$. We may write $(x^{p^n})^{\alpha} = (xd)^{p^n} = x^{p^n}$ with $d \in \Gamma_c$, which shows that α fixes any element of $Z(\Gamma_{c-1})$, since $Z(\Gamma_{c-1}) = \Gamma_c \Gamma_{c-1}^{p^n}$. Consequently $\operatorname{Aut}_{\Gamma_c}^{\Gamma_c}(\Gamma_{c-1}) = \operatorname{Aut}_{Z}^{\Gamma_c}(\Gamma_{c-1}) = \operatorname{Inn}(\Gamma_{c-1})$.

Conversely, suppose that $\operatorname{Aut}_{\Gamma_c}^{\Gamma_c}(\Gamma_{c-1}) = \operatorname{Inn}(\Gamma_{c-1})$. By Theorem 3.5, Γ_c is cyclic. Since $\Gamma_c \leq \Gamma_c \Gamma_{c-1}^{p^n} \leq Z(\Gamma_{c-1}) \leq \Gamma_{c-1}$, it follows that

$$\operatorname{Inn}(\Gamma_{c-1}) \cong \operatorname{Hom}(\Gamma_{c-1}/Z(\Gamma_{c-1}),\Gamma_c) \rightarrowtail \operatorname{Hom}(\Gamma_{c-1}/(\Gamma_c \Gamma_{c-1}^{p^n}),\Gamma_c) \Longrightarrow \operatorname{Hom}(\Gamma_{c-1}/\Gamma_c,\Gamma_c) \cong \operatorname{Aut}_{\Gamma_c}(\Gamma_{c-1},\Gamma_c) = \operatorname{Inn}(\Gamma_{c-1}).$$

Therefore $\operatorname{Hom}(\Gamma_{c-1}/(\Gamma_c \Gamma_{c-1}^{p^n}), \Gamma_c) \cong \operatorname{Inn}(\Gamma_{c-1})$, which gives $|\Gamma_{c-1}/(\Gamma_c \Gamma_{c-1}^{p^n})| = |\Gamma_{c-1}/Z(\Gamma_{c-1})|$. So $Z(\Gamma_{c-1}) = \Gamma_c \Gamma_{c-1}^{p^n}$, as required.

S. Singh, D. Gumber, and H. Kalra [15] gave a necessary and sufficient condition on a finite p-group to be semicomplete. Our next corollary, which is a particular case of Theorem 3.7, gives an another interpretation of this result. This corollary is [17, Theorem 3.3].

COROLLARY 3.8. Let G be a finite p-group of class 2. Then $\operatorname{Aut}^{G'}(G) = \operatorname{Inn}(G)$ if and only if G' is cyclic and $Z(G) = G'G^{p^n}$, where $|G'| = p^n$.

We now give an alternative proof for [15, Corollary 2.4].

COROLLARY 3.9. Let G be a 2-generated finite nilpotent group of class 2. Then any IA-automorphism of G is an inner automorphism.

Proof. Suppose that $G = \langle a, b \rangle$. Then $G' = \langle [a, b]^g | g \in G \rangle = \langle [a, b] \rangle$ and so G' is cyclic. Since G is a nilpotent group, $G = P_1 \times \ldots \times P_n$, where P_i is the Sylow p_i -subgroup of G, for $i = 1, \ldots, n$. Thus $G' = P'_k$, $\operatorname{Inn}(G) \cong \operatorname{Inn}(P_k)$ and by Lemma 2.3, $\operatorname{Aut}^{G'}(G) \cong \operatorname{Aut}^{P'_1}(P_1) \times \ldots \times \operatorname{Aut}^{P'_n}(P_n) = \operatorname{Aut}^{P'_k}(P_k) \cong \operatorname{Hom}(P_k/P'_k, P'_k)$ for some

A note on *IA*-automorphisms of a finite *p*-group

 $1 \leq k \leq n$. Next by [5, Theorem 3.2], $|\operatorname{Aut}^{G'}(G)| = |G'|^2$ and so $|\operatorname{Aut}^{P'_k}(P_k)| = |P'_k|^2$. Now since $P'_k \leq Z(P_k)$, by [[14], Lemma 0.4], if $\exp(P_k/Z(P_k)) = p^m = \exp(P'_k)$, then $P_k/Z(P_k)$ has the form $C_{p^m} \times C_{p^m} \times A$ for some (possibly trivial) abelian *p*-group *A*. So by Lemma 2.3, $|\operatorname{Aut}_Z^{P'_k}(P_k)| = |\operatorname{Hom}(P_k/Z(P_k), P'_k)| \geq |P'_k|^2$, where $Z = Z(P_k)$. Thus $\operatorname{Aut}^{P'_k}(P_k) = \operatorname{Aut}^{P'_k}_Z(P_k)$, which together with Corollary 3.6 completes the proof. \Box

4. Groups G such that (G, Z(G)) is a Camina pair

Camina groups were introduced by A.R. Camina in [4] and were studied in past (see for example [11–13]). Let G be a finite group and N be non-trivial proper normal subgroup of G. Then (G, N) is called a *Camina pair* if $xN \subseteq x^G$ for all $x \in G - N$, where x^G denotes the conjugacy class of x in G. It follows that (G, N) is a Camina pair if and only if $N \subseteq [x, G]$ for all $x \in G - N$, where $[x, G] = \{[x, g] | g \in G\}$.

In this section, we give necessary and sufficient condition for a finite *p*-group G to be semicomplete when (G, Z(G)) is a Camina pair and G' is cyclic. We start with some results of I.D. Macdonald.

LEMMA 4.1. ([12, Lemma 2.1]) Let (G, H) be a Camina pair and G have class c. Then $H = \Gamma_r(G)$ and $H = Z_{c-r+1}(G)$ for some r satisfying $1 < r \le c$.

THEOREM 4.2. ([12, Theorem 2.2]) Let (G, H) be a Camina pair, H = Z(G), and G have class c. Then $Z_r(G)/Z_{r-1}(G)$ has exponent p whenever $1 \le r \le c$.

THEOREM 4.3. Let G be a finite p-group such that G' is cyclic and (G, Z(G)) is a Camina pair. Then $\operatorname{Aut}^{G'}(G) = \operatorname{Inn}(G)$ if and only if G is an extraspecial pgroup or G is isomorphic to a central product $A * X_{p^3}^{*s}$, for some $s \ge 0$, p is an odd prime and A is a 2-generator subgroup which is either a metacyclic group or $A = \langle a \rangle \langle b \rangle \langle c \rangle, [a, c] = [b, c] = 1, [a, b] = cb^{p^k}$, where $k \ge 1$.

Proof. Let (G, Z(G)) be a Camina pair and $\alpha \in \operatorname{Aut}^Z(G)$, where Z = Z(G). Since $Z(G) \leq G', \frac{Z_2(G)}{Z(G)} \cong \operatorname{Aut}^Z(G) \cap \operatorname{Inn}(G) = \operatorname{Aut}^Z(G)$ and so by Theorem 4.2, $\operatorname{Aut}^Z(G)$ is elementary abelian. Now Z(G) < Z(M) and $C_G(M) = Z(M)$, for all $M \in \mathcal{M}(G)$ [7, Remark 2]. Assume that $|G/\Phi(G)| = p^t$ and $|Z(G)| = p^r$. By [18, Theorem 3.1], $d(Z_2(G)/Z(G)) = d(G)$. Since G is purely non-abelian, we have $p^t = |\operatorname{Aut}^Z(G)| = |\operatorname{Hom}(G/G', Z(G))| = p^{rt}$, by Theorem 2.1. Whence r = 1 and $Z(G) \cong C_p$. If G/Z(G) be an abelian then by Corollary 3.8, $G' = Z(G) = \Phi(G) \cong C_p$ and hence G is extraspecial. So we may assume that G/Z(G) is not abelian.

We first assume that p > 2. Then by the main theorem of [8], we may write $G = A_1 * A_2 * \ldots * A_n * B$, where B is an abelian subgroup, A_1, A_2, \ldots, A_n are 2-generator subgroups, and the classes of A_2, \ldots, A_n are equal to 2. Now $G = A_1 * A_2 * \ldots * A_n$, since $B \leq Z(G) \leq \Phi(G)$. Next for $2 \leq i \leq n$, $(A_i, Z(A_i))$ is a Camina pair since $xZ(A_i) = xZ(G) \subseteq x^G = x^{A_1 \ldots A_n} = x^{A_i}$, for all $x \in A_i - Z(A_i)$. Thus $A'_i = Z(A_i) = Z(G) \cong C_p$ and A_i is an extraspecial p-group of order p^3 and exponent

180

R. Soleimani

p, where $2 \le i \le n$. So by the theorem mentioned earlier, it follows that $G \cong A * X_{p^3}^{*s}$, where $s \ge 0$ and A is a 2-generator subgroup which is either a metacyclic group or $A = \langle a \rangle \langle b \rangle \langle c \rangle, [a, c] = [b, c] = 1, [a, b] = c b^{p^k}, k \ge 1$.

Suppose next that p = 2. First we show that $Z(M) \leq Z_2(G)$, for all $M \in \mathcal{M}(G)$. Let $M \in \mathcal{M}(G), g \in G \setminus M$ and $x \in Z(M) \setminus Z(G)$. Since $g^2 \in M$, $[x, G] = [x, M \langle g \rangle] = \{[x, g^i] | 0 \leq i < 2\}$. By assumption $Z(G) \subseteq [x, G]$ and |Z(G)| = 2. Consequently Z(G) = [x, G] and so $x \in Z_2(G)$. Next let $x \in Z_2(G) \setminus Z(G)$. It follows that $M = C_G(x)$ is a maximal subgroup of G, since $|C_G(x)| = |G|/|[x, G]| = |G|/2$. Let $(Z_2(G) \cap G')/Z(G) = \langle \overline{t} \rangle$ and $M = C_G(t)$, where $t \in Z_2(G) \cap G'$ and $\overline{t} = tZ(G)$. Then $M \in \mathcal{M}(G)$ and if $g \in G \setminus M$, it follows that $[t, g] \in Z(G)$. Hence $(gt)^2 = g^2t^2[t, g] = g^2$, since o(t) = 4 and $[t, g] = t^2$. Now since $t \in Z(M)$, the map α sending $g \mapsto gt$ and $m \mapsto m$, for all $m \in M$, can be extended to an automorphism of G by Lemma 2.2, which is an automorphism lying in $\operatorname{Aut}^{G'}(G)$. So that α is an inner automorphism of G induced by an element x_M in G. It follows that $x_M \in C_G(M) = Z(M) \leq Z_2(G)$. This means that $t = g^{-1}g^{\alpha} = [g, x_M] \in Z(G)$, which is impossible.

Conversely, if G is an extraspecial p-group then by Lemma 2.3, $\operatorname{Aut}^{G'}(G) \cong \operatorname{Hom}(G/G', G') \cong \operatorname{Inn}(G)$, and so G is semicomplete. Next let $G \cong A * X_{p^3}^{*s}$, for some $s \ge 0$ and p > 2. Then by Theorem 3.2.(i), Lemma 4.1 and [6, Theorem 3], $\operatorname{Aut}^{G'}(G) = \operatorname{Aut}_{\Gamma_c}^{G'}(G) = \operatorname{Aut}_Z^{G'}(G) = \operatorname{Inn}(G)$, which completes the proof. \Box

ACKNOWLEDGEMENT. The author is grateful to the referee for his/her valuable suggestions. The paper was revised according to these comments. This research was in part supported by a grant from Payame Noor University.

References

- A. Abdollahi, S.M. Ghoraishi, On noninner 2-automorphisms of finite 2-groups, Bull. Aust. Math. Soc. 90(2) (2014), 227–231.
- [2] J.E. Adney, T. Yen, Automorphisms of a p-group, Ill. J. Math. 9(1965), 137-143.
- S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118 (1965), 93–104.
- [4] A.R. Camina, Some conditions which almost characterize Frobenius groups, Israel J. Math. 31 (1978), 153–160.
- [5] A. Caranti, C.M. Scoppola, Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup, Arch. Math. 56 (1991), 218–227.
- Y. Cheng, On finite p-groups with cyclic commutator subgroup, Arch. Math. 39 (1982), 295–298.
- [7] M. Deaconescu, G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra, 250 (2002), 283–287.
- [8] A. A. Finogenov, Finite p-groups with a cyclic commutator subgroup, Algebra Logic 34(2) (1995), 125–129.
- [9] T. A. Fournelle, Torsion in semicomplete nilpotent groups, Math. Proc. Cambridge Philos. Soc. 94 (1983), 191–202.
- [10] C.K. Gupta, IA-automorphisms of two generator metabelian groups, Arch. Math. 37 (1981), 106–112.
- [11] M.L. Lewis, On p-group Camina pairs, J. Group Theory, 15 (2012), 469-483.
- [12] I.D. Macdonald, Some p-groups of Frobenius and extra-special type, Israel J. Math. 40 (1981), 350–364.

A note on *IA*-automorphisms of a finite *p*-group

- [13] I.D. Macdonald, More on p-groups of Frobenius type, Israel J. Math. 56 (1986), 335–344.
- [14] M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an abelian automorphism group, Comm. Algebra, 23 (1995), 2045–2065.
- [15] S. Singh, D. Gumber, H. Kalra, IA-automorphisms of finitely generated nilpotent groups, J. Algebra Appl. 13 (2014), 1450027.
- [16] M. Shabani Attar, Semicomplete finite p-groups, Algebra Colloq. 18 (Spec 1) (2011), 937–944.
- [17] R. Soleimani, On some p-subgroups of automorphism group of a finite p-group, Vietnam J. Math. 36(1) (2008), 63–69.
- [18] M.K. Yadav, On automorphisms of finite p-groups, J. Group Theory, 10 (2007), 859-866.

(received 13.06.2017; in revised form 15.01.2018; available online 02.02.2018)

Department of Mathematics, Payame Noor University (PNU), 19395-3697, Tehran, Iran *E-mail*: r_soleimani@pnu.ac.ir, rsoleimanii@yahoo.com