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Abstract. In this note we construct a commutative diagram in filtered Lagrangian
Floer homology that involves a product of certain Lagrangian submanifolds. As a corol-
lary, we prove the Künneth formula for Lagrangian Floer homology. We also prove that
the Künneth formula for Lagrangian Floer homology lifts through a Lagrangian type of
Piunikhin-Salamon-Schwarz map to the Künneth formula for Morse homology.

1. Introduction

Floer [5] introduced Lagrangian Floer homology as an infinite dimensional version of
Morse homology. He used this theory to prove the Arnol’d conjecture. This homology
was further developed by Oh in [18] and Fukaya, Oh, Ohta and Ono [6,7] in a very gen-
eral situation. It is well known that, in the case when it is defined, Lagrangian Floer
homology neither depends on the choice of a Hamiltonian nor of a compatible almost
complex structure. The existence of the action functional allows us to define filtered
Lagrangian Floer homology as a homology of an appropriate (filtered) subcomplex.
However, this homology does depend on the choice of a Hamiltonian. Filtered ho-
mology plays an important role in the study of Hamiltonian spectral invariants (see
[4, 13,15,18,19,23]).

The Künneth formula is a well known and useful algebraic tool. Here, we prove
this formula in the Lagrangian Floer homology context (we work with Z2 coefficients)
as a corollary of our main theorem. Our proof is rather elementary. The existence of
an appropriate commutative diagram between the chain maps (see Theorem 1.3) and
the direct limit as our parameters tend to infinity gives us the Künneth formula in
Lagrangian Floer homology. This formula was also proved by Li [16] in the monotone
case and by Amorim [2] in the more general Fukaya-Oh-Ohta-Ono setup. Both of
them, Li and Amorim, used the framework of spectral sequences.
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Before stating the main result we define the class of Lagrangian submanifolds we
are considering in this paper.

Definition 1.1. Let (M,ωM ) be a closed symplectic manifold and let LM be a
closed Lagrangian submanifold of M . We say that LM is relatively symplectically
aspherical if

[ωM ]|π2(M,LM ) = 0, µLM |π2(M,LM ) = 0, (1)

where µLM is the Maslov class.

One very nice example of a relatively symplectically aspherical submanifold is the
subtorus L = Tk × {0} of the torus T2k. In this case (1) holds since π2(T2k, L) = 0.
More examples of such submanifolds can be derived using the plumbing construction
(see [24]).

Remark 1.2. All our statements also hold in the monotone case. We say that a
Lagrangian submanifold is monotone if it satisfies [ωM ]|π2(M,LM ) = τµLM |π2(M,LM ) for
some positive constant τ . In that case the PSS map (see Section 4 for the definition)
is only a homomorphism in general. For the sake of brevity, we use the stronger
assumption (1).

Throughout this paper we assume that LM ⊂ M and LN ⊂ N are relatively
symplectically aspherical submanifolds of closed symplectic manifolds (M,ωM ) and
(N,ωN ). Their product L := LM × LN is a relatively symplectically aspherical
submanifold of (P = M ×N,ωM ⊕ωN ) (see Subsection 2.4 for the precise definition).

Let H : M × [0, 1] → R be a smooth Hamiltonian such that the intersection
LM ∩ φ1H(LM ) is transversal. The first condition in (1) gives us a well defined action
functional (see Subsection 2.1). The latter provides a filtration on the Floer homol-
ogy for Lagrangian intersections, CF (−∞,a)(LM , φ

1
H(LM )) (see Subsection 2.2). We

also pick a smooth time-dependent Hamiltonian K on the manifold N such that the
intersection LN ∩ φ1K(LN ) is transverse.

The following theorem is the main result of this paper.

Theorem 1.3. For all a, b ∈ R there exists a commutative diagram

⊕
r+s=p CF

(−∞,a)
r (LM , φ1

H (LM )) ⊗ CF
(−∞,b)
s (LN , φ

1
K(LN ))

ı
a,ã
M
⊗ıb,b̃
N

��

Ψa,b // CF (−∞,a+b)
p (L, φ1

H⊕K(L))

ı
a+b,ã+b̃
P

��
Φa+b,ã,b̃

ss⊕
r+s=p CF

(−∞,ã)
r (LM , φ1

H (LM )) ⊗ CF
(−∞,b̃)
s (LN , φ

1
K(LN ))

Ψã,b̃ // CF (−∞,ã+b̃)
p (L, φ1

H⊕K(L)),

(2)

where ã ≥ max{a, a + b −min CritAK} and b̃ ≥ max{b, a + b −min CritAH}. The
vertical arrows are inclusions of chain complexes and the maps Ψ·,· and Φ·,·,· are chain
maps.

We provide explicit definitions of the maps Ψ·,· and Φ·,·,· in Section 3 and prove
Theorem 1.3 therein. The existence of the commutative diagram (2) is potentially
important in the theory of spectral invariants.
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Since Ψ and Φ are chain maps there is a commutative diagram in homology

Hp
[
CFa(LM )⊗ CF b(LN )

]
(ı
a,ã
M
⊗ıb,b̃
N

)∗

��

Ψ
a,b
∗ // HFa+b

p (L)

ı
a+b,ã+b̃
P∗
��

Φ
a+b,ã,b̃
∗

vv
Hp

[
CF ã(LM )⊗ CF b̃(LN )

] Ψ
ã,b̃
∗ // HF ã+b̃

p (L).

For brevity, we use the notation CF a(LM ) instead of CF (−∞,a)(LM , φ
1
H(LM )) and

HF a+bp (L) instead of HF
(−∞,a+b)
p (L, φ1H⊕K(L)). Taking the direct limit as a→ +∞

and b→ +∞ we obtain the diagram

lim−−−−−→
a→+∞ lim−−−−−→

b→+∞Hp
[
CFa(LM )⊗ CF b(LN )

]
∼=

��

Ψ∗ // HFp(L, φ1
H⊕K(L))

∼=

��

Φ∗

tt
lim−−−−−→

ã→+∞ lim−−−−−→
b̃→+∞

Hp
[
CF ã(LM )⊗ CF b̃(LN )

] Ψ∗ // HFp(L, φ1
H⊕K(L)).

Since we work with Z2 coefficients and our homology groups are finite dimensional
vector spaces the direct limit commutes with homology. For parameters a and b big
enough the vertical arrows are therefore induced by the identity and so in homology
they are isomorphisms. Thus, the diagonal arrow is an isomorphism, as well as Ψa,b

∗ ,
for a and b big enough. As a corollary of this commutative diagram we obtain the
Künneth formula for Lagrangian Floer homology.

Corollary 1.4. Let (M,ωM ) and (N,ωN ) be closed symplectic manifolds and LM ⊂
M , LN ⊂ N closed relatively symplectically aspherical Lagrangian submanifolds. For
generic Hamiltonians H ∈ C∞(M × [0, 1]) and K ∈ C∞(N × [0, 1]) it holds

HFp(LM × LN , φ1H⊕K(LM × LN )) ∼=
⊕
r+s=p

HFr(LM , φ
1
H(LM ))⊗HFs(LN , φ1K(LN )).

This isomorphism provides us some examples of non-displaceable Lagrangian sub-
manifolds.

Definition 1.5. We say that a closed Lagrangian submanifold LM is displaceable if
there exists a Hamiltonian diffeomorphism φH : M →M such that LM∩φH(LM ) = ∅.

We know that the Floer homology of a displaceable Lagrangian submanifold equals
zero. Combining this with Corollary 1.4 we obtain non-displaceable Lagrangian sub-
manifolds.

Corollary 1.6. Given symplectic manifolds with Lagrangian submanifolds as in
Corollary 1.4, if LM is not displaceable in M , then LM × LN is not displaceable
in M ×N .

Specially, the Lagrangian subtorus Tk × {0} is not displaceable in T2k. It follows
because T1×{0} is not displaceable in T2 (T1×{0} has non-vanishing Floer homology).

A commutative diagram similar to the one from Theorem 1.3 was obtained by
Oancea [17]. Oancea proved the Künneth formula for Floer homology for periodic
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Hamiltonian orbits for manifolds with restricted contact type boundary. The Künneth
formula was also discussed in [9].

In general, Lagrangian Floer homology is not isomorphic to the singular homology
of the Lagrangian submanifold (or to Morse homology, which is isomorphic to the
singular one). In [1] Albers constructed, for certain degrees, homomorphisms between
these two homologies. He generalized the well known construction carrried out by
Piunikhin, Salamon and Schwarz [20] (see also [3,10–12] for other generalisations). We
recall the definition of Albers’ homomorphism (which we denote by PSS throughout
the rest of the paper) in Section 4. In our setup, the PSS homomorphisms are actually
isomorphisms. Using the direct sum of Morse functions Schwarz [22] proved the
Künneth formula for Morse homology (see Section 4 for details).

The next theorem states that the PSS isomorphism lifts the Künneth formula in
Morse homology to the Künneth formula in Lagrangian Floer homology.

Theorem 1.7. There exists a commutative diagram⊕
r+s=pHFr(LM , φ

1
H(LM ))⊗HFs(LN , φ1

K(LN ))
Ψ∗ // HFp(L, φ1

H⊕K(L))

⊕
r+s=pHMr(fM )⊗HMs(fN )

Ψ∗ //

PSS
LM∗ ⊗PSS

LN∗

OO

HMp(fM ⊕ fN ),

PSSL∗

OO
(3)

where PSS· denotes the PSS isomorphism of the appropriate Lagrangian submanifold
and Ψ∗ is an isomorphism of Künneth type in Morse homology.

We prove this theorem in Section 4. Leclercq [14] proved the same statement but
in a different context. He proved that the PSS isomorphism agrees with the Künneth
formula in Floer homology of periodic orbits.

2. Definitions

Let H : M × [0, 1]→ R be a smooth Hamiltonian, and XH the corresponding Hamil-
tonian vector field, defined by ωM (XH , ·) = −dH(·).

Denote by φtH the family of symplectomorphisms, φH : M×[0, 1]→M , which rep-
resents the flow of the vector field XH , d

dtφ
t
H(x) = XH(φtH(x)), φ0H = Id . Throughout

this paper we assume that LM is transverse to φ1H(LM ).
We also pick an almost complex structure JM which is ωM−compatible, meaning

that ωM (·, JM ·) defines Riemannian metric. In addition, the pair (H,JM ) satisfies a
regularity condition. We say that a pair (H,JM ) is a regular pair if the linearization of
the perturbed Cauchy-Riemann operator at every holomorphic strip with Lagrangian
boundary condition is surjective (see [5]).

2.1 Action functional

Define the action functional AH : Ω0(M,LM )→ R on

Ω0(M,LM ) := {γ ∈ C∞([0, 1],M) | γ(0), γ(1) ∈ LM , [γ] = 0 ∈ π1(M,LM )}
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as AH(γ) := −
∫∫

D2
+

h∗ω +

∫ 1

0

H(γ(t), t) dt. (4)

Here, an extension h is any map from the upper half-disc

h : D2
+ = {z ∈ C | |z| ≤ 1, Imz ≥ 0} →M,

such that h(eiπt) = γ(t) and h(t) ∈ LM for t ∈ [−1, 1]. Since [ωM ]|π2(M,LM ) = 0, the
first integral in (4) does not depend on the extension h.

2.2 (Filtered) Lagrangian Floer homology

The set of critical points ofAH , denoted by CritAH = {γ ∈ Ω0(M,LM ) | γ̇ = XH(γ)},
is in one-to-one correspondence with the set LM ∩φ1H(LM ) (which is finite). The con-
dition µLM |π2(M,LM ) = 0 ensures that the relative Maslov index µLM (x) is well defined
for all x ∈ CritAH (see [21] for details). For x, y ∈ CritAH we form the moduli space

M(x, y;H,JM ) :=

u : R× [0, 1]→M

∣∣∣∣∣∣
∂su+ JM (∂tu−XH(u)) = 0,
u(R× {0}), u(R× {1}) ⊆ LM ,
u(−∞, t) = x(t), u(+∞, t) = y(t)

 .

For a generic choice of the pair (H,JM ) these moduli spaces are smooth mani-
folds of dimension µLM (x) − µLM (y) carrying a free R−action if x 6= y. We set
M(x, y;H,JM )[d] to be the union of the d−dimensional components. The moduli

space M̂(x, y;H,JM )[d−1] := M(x, y;H,JM )[d]/R (modulo R-action) is compact if
d = 1. If d = 2 it is compact up to a simple breaking, i.e. it admits a compactifi-
cation (denoted by the same symbol) such that the boundary decomposes as follows

∂M̂(x, z;H,JM )[1] =
⋃

y∈CritAĤ
M(x, y;H,JM )[0] × M̂(y, z;H,JM )[0], see [5] for details.

The Floer complex CFk(LM , φ
1
H(LM );H,JM ) is generated over Z2 by the set of

Hamiltonian chords (i.e. by the set of critical values of the action functional)

CFk(LM , φ
1
H(LM );H,JM ) := Z2〈x ∈ CritAH |µLM (x) = k 〉.

The boundary operator ∂ is defined on generators x ∈ CFk(LM , φ
1
H(LM );H,JM ) by

∂(x) :=
∑

y∈CritAH
]2M̂(x, y;H,JM )[0] · y, where ]2M̂(x, y;H,JM )[0] denotes the (mod 2)

number of elements in M̂(x, y;H,JM )[0]. The Lagrangian Floer homology groups are
HF∗(LM , φ

1
H(LM )) := H∗(CF (LM , φ

1
H(LM );H,JM ), ∂). Floer homology does not

depend on a generic choice of compatible almost complex structure and it is invariant
under Hamiltonian perturbations, i.e. HF∗(LM , φ

1
H(LM )) ∼= HF∗(LM , φ

1
H′(LM )) for

any two Hamiltonians H,H ′ as far as φ1H(LM ) and φ1H′(LM ) are transverse to LM .
Since the action functional decreases along the perturbed holomorphic strips u ∈

M(x, y;H,JM ), the differential ∂ preserves the filtration given by AH . Thus we can
define filtered Lagrangian Floer homology as

CF
(−∞,λ)
k (LM , φ

1
H(LM )) := Z2〈x ∈ CritAH |µLM (x) = k, AH(x) < λ 〉,

∂λ := ∂|
CF

(−∞,λ)
∗ (LM ,φ1

H(LM ))
,

HF
(−∞,λ)
∗ (LM , φ

1
H(LM )) := H∗(CF

(−∞,λ)(LM , φ
1
H(LM )), ∂λ).
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2.3 Morse homology

We only sketch the construction of the Morse homology and we refer to [22] for details.
Let X be a closed, smooth manifold and f : X → R a Morse function. For a critical
point p of f , mf (p) denotes its Morse index. We define the Morse chain complex as
the Z2-vector space generated by the set of critical points of f

CMk(f) = Z2〈 p | p ∈ Crit(f), mf (p) = k 〉.
It is graded by the Morse index of a critical point. The boundary operator is given by
∂M (p) =

∑
q∈CM∗(f)

n(p, q) q, where n(p, q) is the (mod 2) number of gradient trajectories

γ : R→ X, γ̇ = −∇f(γ), such that γ(−∞) = p and γ(+∞) = q. Morse homology is
defined as the homology of the complex CM∗ with respect to the boundary operator
∂M HM∗(f) = H∗(CM∗(f), ∂M ).

2.4 Product of symplectic manifolds

Let (M,ωM ) and (N,ωN ) be closed symplectic manifolds and LM ⊂ M , LN ⊂ N
its closed Lagrangian submanifolds. Suppose that the condition (1) holds for both
pairs (M,LM ) and (N,LN ). Denote by P := M ×N, and π1 : P → M , π2 : P → N
the corresponding projections. Then ω(X,Y ) = ωM (π1∗X,π1∗Y ) + ωN (π2∗X,π2∗Y ),
X,Y ∈ TP ∼= TM × TN , defines a symplectic form on P , usually denoted by
ω = ωM ⊕ ωN . It is obvious that L := LM × LN is a closed Lagrangian submani-
fold of (P, ω).

Let K be a time-dependent Hamiltonian function on N , XK the corresponding
vector field and φtK its flow. We can defined a time-dependent Hamiltonian function on
P by (H⊕K)(x, y, t) = H(x, t)+K(y, t). Its Hamiltonian vector field XH⊕K satisfies
XH⊕K(a, b) = (XH(a), XK(b)) ∈ T(a,b)P , for all a ∈ M and b ∈ N . Obviously, its
flow is φtH⊕K(a, b) = (φtH(a), φtK(b)).

If JN is an almost complex structure on N which is ωN−compatible and (K,JN ) is
a regular pair, then J(X,Y ) := (JM (X), JN (Y )), is an ω−compatible almost complex
structure on P and (H ⊕K,J) is a regular pair.

In Subsection 2.1 we saw that we can define the action functionalsAH on Ω0(M,LM )
and AK on Ω0(N,LN ). Since [ω]|π2(P,L) = 0 we can define AH⊕K on Ω0(P,L), too.
Let us find the connection between these three functionals. Take x ∈ Ω0(M,LM ),
y ∈ Ω0(N,LN ) and define z(t) = (x(t), y(t)) ∈ Ω0(P,L). We know that

AH⊕K(z) = −
∫∫

D2
+

h∗ω +

∫ 1

0

(H ⊕K)(z(t), t) dt,

= −
∫∫

D2
+

h∗ω +

∫ 1

0

(H(x(t), t) +K(y(t), t)) dt,

where h is any map from the upper half-disc D2
+ to P that restricts to z on the upper

half-circle. Denote by hx = π1 ◦ h and hy = π2 ◦ h. We see that hx is a map from the
upper half-disc D2

+ to M that restricts to x on the upper half-circle. The same holds
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for hy and y. For the 2-form h∗ω we compute

h∗ω(X,Y ) = ω(h∗X,h∗Y ) = ωM (π1∗h∗X,π1∗h∗Y ) + ωN (π2∗h∗X,π2∗h∗Y )

= ωM (hx∗X,hx∗Y ) + ωN (hy∗X,hy∗Y ) = h∗xωM (X,Y ) + h∗yωN (X,Y ).

Now,

AH⊕K(z) = −
∫∫

D2
+

h∗xωM −
∫∫

D2
+

h∗yωN +

∫ 1

0

H(x(t), t) dt+

∫ 1

0

K(y(t), t) dt

= AH(x) +AK(y). (5)

The critical points of all three action functionals are related by ż(t) = (ẋ(t), ẏ(t)) =
(XH(x), XK(y)) = XH⊕K(z), so

CritAH⊕K = CritAH × CritAK . (6)

If we denote by µL the relative Maslov index of Hamiltonian chords on P it holds
µL(z) = µLM (x) + µLN (y), (see [21] for details). It also holds µL|π2(P,L) = 0, since
µLM |π2(M,LM ) = 0 and µLN |π2(N,LN ) = 0. Therefore, L is a relatively simplectically
aspherical submanifold of P .

2.5 Product of chain complexes and the algebraic Künneth formula

Suppose we are given chain complexes of Abelian groups (C, ∂C) and (D, ∂D). Their
tensor product is defined with

(C ⊗D)n =
⊕
i+j=n

Ci ⊗Dj ,

with differential operator given by ∂(ci ⊗ dj) = ∂Cci ⊗ dj + (−1)ici ⊗ ∂Ddj , on
generators ci ⊗ dj ∈ Ci ⊗Dj . Since we work with chain complexes over Z2 the factor
(−1)i in the last formula can be omitted.

The Künneth Formula says that for every n there is a natural short exact sequence

0→
⊕
i+j=n

(Hi(C)⊗Hj(D))→ Hn(C ⊗D, ∂)→
⊕

i+j=n−1
Tor(Hi(C), Hj(D))→ 0

and this sequence splits (see [8] for details). We are discussing here Floer homologies
over Z2 so for any two Floer homologies we have Tor(HF∗, HF∗) = 0.

3. Commutative diagrams

In this section we prove Theorem 1.3. Given the relations (5) and (6), the definitions
of the maps Ψ·,· and Φ·,· are rather straightforward.

By what we have seen in Section 2.4, we can define the map Ψa,b on generators

x⊗ y ∈ CF (−∞,a)
r (LM , φ

1
H(LM ))⊗ CF (−∞,b)

s (LN , φ
1
K(LN )), by Ψa,b(x⊗ y) = (x, y).

The following lemma states that Ψa,b is a chain map.
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Lemma 3.1. The following diagram commutes.

⊕
r+s=p

[
CFar (LM )⊗ CF bs (LN )

]
∂=∂M,a⊗∂N,b

��

Ψa,b // CFa+b
p (L)

∂P,a+b

��⊕
r+s=p−1

[
CFar (LM ))⊗ CF bs (LN )

]
Ψa,b // CFa+b

p−1 (L),

(7)

Proof. It suffices to prove this property on generators x⊗ y:

(Ψa,b ◦ ∂)(x⊗ y) = Ψa,b(∂M,ax⊗ y + x⊗ ∂N,by)

= Ψa,b


[∑
x′

]2M̂(x, x′)[0] · x′
]
⊗ y + x⊗

∑
y′

]2M̂(y, y′)[0] · y′


= Ψa,b[
∑
x′

]2M̂(x, x′;H,JM )[0]x
′ ⊗ y +

∑
y′

]2M̂(y, y′;K,JN )[0]x⊗ y′]

=
∑

x′∈CFar−1

]2M̂(x, x′;H,JM )[0](x
′, y) +

∑
y′∈CF bs−1

]2M̂(y, y′;K,JN )[0](x, y
′). (8)

On the other side

(∂P,a+b ◦Ψa,b)(x⊗ y) = ∂P,a+b(x, y) =
∑

z′∈CFa+b
p−1 (L)

]2M̂(z, z′;H ⊕K,J)[0] · z′, (9)

where z(t) = (x(t), y(t)).
If u ∈ M(z, z′;H ⊕ K,J) is a holomorphic strip that connects z = (x, y) and

z′ = (x′, y′) then it splits into two holomorphic strips uH = π1 ◦ u ∈M(x, x′;H,JM )
and uK = π2 ◦ u ∈ M(y, y′;K,JN ). And vice versa, if uH ∈ M(x, x′;H,JM ) and
uK ∈ M(y, y′;K,JN ) then u = (uH , uK) ∈ M(z, z′;H ⊕ K,J). We conclude that
M(z, z′;H ⊕ K,J) = M(x, x′;H,JM ) ×M(y, y′;K,JN ). We want to describe the
free R−action on the 1-dimensional components of the previous moduli space in order
to count the number of elements of the set M̂(z, z′;H⊕K,J)[0]. From the dimension
formula of product spaces we conclude that

M(z, z′;H ⊕K,J)[1] =M(x, x′;H,JM )[0] ×M(y, y′;K,JN )[1]⋃
M(x, x′;H,JM )[1] ×M(y, y′;K,JN )[0].

After dividing by the R−action we are only left with those strips u for which x = x′

or y = y′. Since µL(z) − µL(z′) = 1, in the case when x = x′ we get µLN (y′) =
µL(z′)− µLM (x′) = p− 1− r = s− 1.

Similarly, in the case y = y′ we get µLM (x′) = r − 1. So,∑
z′∈CFa+b

p−1 (L)

]2M̂(z, z′;H ⊕K,J)[0] · z′ =

∑
x′∈CFar−1

]2M̂(x, x′;H,JM )[0](x
′, y) +

∑
y′∈CF bs−1

]2M̂(y, y′;K,JN )[0](x, y
′). (10)

From equations (8), (9) and (10) we get the commutativity of diagram (7). �
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The chain map Ψa,b induces the map at the homology level

Ψa,b
∗ : Hp

[
CF a(LM )⊗ CF b(LN )

]
→ HF a+bp (L).

It is obvious that after a direct limit as a, b → +∞ the map Ψ∗ = lim−−−−−→
a→+∞

lim−−−−−→
b→+∞

Ψa,b
∗

becomes Ψ∗([x]⊗ [y]) = [(x, y)].

Let us define the map Φa+b,ã,̃b. Take z ∈ CF
(−∞,a+b)
p (L, φ1H⊕K(L)). Define

x = π1 ◦ z, y = π2 ◦ z. We know that µL(z) = µLM (x) + µLN (y) = p, so x ∈
CFr(LM , φ

1
H(LM )) and y ∈ CFs(LN , φ1K(LN )) for some r + s = p. Since AH(x) +

AK(y) < a+b and AK(y) ≥ min CritAK it follows AH(x) < a+b−min CritAK ≤ ã.

Hence, x ∈ CF (−∞,ã)
r (LM , φ

1
H(LM )). In the same way one can show that y is in the

proper filtered complex. We define Φa+b,ã,̃b(z) = x ⊗ y. The proof of the fact that

Φa+b,ã,̃b is a chain map is similar to the proof of Lemma 3.1.

4. PSS isomorphism commutes with the Künneth formula

In this section we prove Theorem 1.7. First, we recall Albers’ construction of an
isomorphism between the Lagrangian Floer homology and the singular homology of
a Lagrangian submanifold (the so called PSS isomorphism).

Let gM be a metric and fM a Morse function on LM such that the pair (fM , gM )
is Morse-Smale. To p ∈ Crit fM and x ∈ CritAH we associate a moduli space

MfM ,H
p,x :=

(γ, u)

∣∣∣∣∣∣∣∣
−∇fM (γ(t)) = dγ

dt , γ(−∞) = p,
∂su+ JM (∂tu− β(s)XH ◦ u) = 0,
u(R× {0}), u(R× {1}) ⊆ LM ,
u(+∞, t) = x(t), u(−∞, t) = γ(0),

 ,

where∇fM denotes gradient of fM with respect to gM and β(s) is a smooth, increasing
function whose value is 0 for s ≤ 1/2 and 1 for s ≥ 1. The dimension of the manifold
MfM ,H

p,x is mfM (p)− µLM (x). The morphism

PSSLM : CMk(fM )→ CFk(LM , φ
1
H(LM )),

defined on generators by

PSSLM (p) :=
∑

x∈CFk

]2MfM ,H
p,x · x,

induces an isomorphism PSSLM∗ : HMk(LM )→ HFk(LM , φ
1
H(LM )).

Now, we give a sketch of Schwarz’s construction of a Künneth type isomorphism in
Morse homology. Let fN and gN satisfy the same condition as fM and gM . We define a
Morse function fM⊕fN on LM×LN by (fM⊕fN )(x, y) = fM (x)+fN (y). Then clearly
Critp(fM⊕fN ) =

⋃
r+s=p Critr(fM )×Crits(fN ). In [22] Schwarz proved that the map

Ψ : (CM∗(fM )⊗ CM∗(fN ))p → CMp(fM ⊕ fN ) Ψ(xr ⊗ ys) = (xr, ys), r + s = p,
defines a chain group isomorphism.
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We are left to prove Theorem 4. One composition in the diagram (3) is equal to(
Ψ∗ ◦ (PSSLM∗ ⊗ PSSLN∗ )

)
([p]⊗ [q]) =

∑
x∈CFr(LM ), y∈CFs(LN )

(
]2MfM ,H

p,x · ]2MfN ,K
q,y

)
· [(x, y)].

Here [p] is an element of the homology group HMr(fM ) and [q] is an element of the
homology group HMs(fN ). The other composition in the diagram (3) gives(

PSSL∗ ◦Ψ∗
)

([p]⊗ [q]) =
∑

z∈CFr+s(L)

]2MfM⊕fN ,H⊕K
(p,q),z · [z].

Since MfM⊕fN ,H⊕K
(p,q),z = MfM ,H

p,x × MfN ,K
q,y for z = (x, y) ∈ CFr+s(L), we get the

commutativity of the diagram (3).
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[12] J. Katić, D. Milinković, J. Nikolić, Spectral Invariants in Lagrangian Floer homology of open
subset, Diff. Geom. and its Appl. 53 (2017), 220–267.

[13] R. Leclercq, Spectral invariants in Lagrangian Floer theory, J. Modern Dynamics 2 (2008),
249–286.

[14] R. Leclercq, The Seidel morphism of Cartesian products, Algebr. Geom. Topol. 9(4) (2009),
1951–1969.

[15] R. Leclercq, F. Zapolsky, Spectral invariants for monotone Lagrangians, J. Topol. Anal. (pub-
lished online), DOI: 10.1142/S1793525318500267.



232 Filtered Lagrangian Floer homology of product manifolds

[16] W. Li, The Z–graded symplectic Floer cohomology of monotone Lagrangian submanifolds,
Algebr. Geom. Topol. 4 (2004), 647–684 (electronic).
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