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ON THE CLASSES OF FUNCTIONS OF BOUNDED PARTIAL AND
TOTAL Λ-VARIATION

A. N. Bakhvalov

Abstract. The inclusions of classes of functions with bounded partial Λ-variation into
the classes of functions with bounded total harmonic variation are established. The result is
applied to the problem of convergence of rectangular partial sums for multiple Fourier series.

1. Introduction

In 1970s, Goffman and Waterman studied the class of functions whose trigonometric
Fourier series remained convergent after any change of variable. This led to the
concept of Λ-bounded variation (or bounded Λ-variation) in one-dimensional case,
which was first introduced in [10].

Later on, this class was generalized by Sahakian [9] for two-dimensional case, and
by Sablin [7] for functions of three and more variables.

Unlike other classes of generalized bounded variation, the class ΛBV of functions
of Λ-bounded variation has an important (in certain questions) subclass CΛV of
functions continuous in Λ-variation. The continuity in Λ-variation was introduced by
Waterman [11] for functions of one variable, and by the author [1] and Dragoshan-
skii [3] for functions of two and more variables.

The author obtained the following result [1, Theorems 3,4] on the convergence of
multiple trigonometric Fourier series, that generalizes the one-dimensional result of
Waterman [10] and the two-dimensional result of Sahakian [9].

Theorem 1.1. Let m > 3. Let a continuous function f belong to the class CHV (Tm)
of functions, continuous in harmonic variation (see Definition 2.5). Then its Fourier
series converges uniformly in the sense of Pringsheim. There is a continuous function
f in the class HBV (Tm) for any m > 3 (see Definition 2.3), such that the cubic partial
sums of its Fourier series diverge at the point 0.
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258 On the classes of functions of bounded partial and total Λ-variation

Goginava and Sahakian in a number of papers (see, e.g. [4–6]) introduced and
studied the classes PΛBV (Tm) of functions of bounded partial Λ-variation, i.e. the
functions with bounded Λ-variation with respect to every single variable.

Our aim is to study the classes PdΛBV (Tm) of functions with bounded Λ-variation
with respect to every set of q variables, 1 6 q 6 d < m. These classes are intermediate
between PΛBV (Tm) and ΛBV (Tm). We expand several results of Goginava and
Sahakian to the classes PdΛBV (Tm).

The paper is organized in the following way. In Section 2 we give detailed defini-
tions of the notions and precise statements of theorems that we use or generalize in
our work. In Section 3 we prove the result on inclusion of the classes and the con-
sequent result on convergence of Fourier series. In Section 4 we prove the result on
divergence of Fourier series and the consequent result on non-inclusion of the classes.

2. Preliminaries

Let ∆ be an interval on the real line. By Ω(∆) we denote the set of all finite systems
{In}Nn=1 of pairwise disjoint open intervals such that In ⊂ ∆.

Let Ik = (ak, bk). Consider a function f(x) on Rm, m > 1. By definition, put

∆x,s,j(f) = f(x + sej)− f(x)

and f(I) = f(I1 × · · · × Im) = ∆a,b1−a1,1 ◦ · · · ◦∆a,bm−am,m(f).

It is well known that the operators ∆x,s,j(f) commute with each other for different
j’s. Therefore, the mixed difference f(I) is symmetric with respect to rearrangements
of the variables.

Let the set {1, . . . ,m} be divided into two non-intersecting subsets ξ and τ with p
and m− p elements respectively (we write |ξ| = p). Given a x = (x1, . . . , xm), by xξ

denote the vector from Rp with the coordinates xj , j ∈ ξ. For a segment I =
⊗m

j=1 I
j

we write Iξ =
⊗

j∈ξ I
j .

By f(Iξ, xτ ) or f(xτ , Iξ) denote the mixed difference of f as a function of the
variables xj , j ∈ ξ, on Iξ for the fixed values of xk, k ∈ τ , i.e., if ξ = {j1, . . . , jp} and
Ijk = (ajk , bjk), then f(Iξ, aτ ) = ∆a,bj1−aj1 ,j1 ◦ · · · ◦∆a,bjp−ajp ,jp(f). We also denote

T = [−π, π].

Definition 2.1. We say that a sequence Λ = {λn}∞n=1 of positive numbers is a proper

one, if it is non-decreasing (maybe for n > n0 > 1), tends to infinity and
∞∑
n=1

1
λn

=∞.

We denote H = {n}∞n=1. It follows from the definition that the sequence H is a
proper one.

Definition 2.2. Let Λ1, . . . ,Λm be proper sequences. The value

V 1,...,m
Λ1,...,Λm(f ; ∆) = sup

{{Ijkj }}
m
j=1

{Ijkj }∈Ω(∆j), j=1,...,m

∑
k1,...,km

|f(I1
k1
× · · · × Imkm)|

λ1
k1
. . . λmkm
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is called the (Λ1, . . . ,Λm)-variation of the function f(x1, . . . , xm) with respect to the
variables x1, . . . , xm on the segment ∆ = ∆1 × · · · ×∆m.

Consider a nonempty set ξ ⊂ {1, . . . ,m} that consists of elements j1 < · · · < jp
and let τ = {1, . . . ,m} \ ξ. We write Iξ

kξ
=
⊗p

l=1 I
jl
kjl

, xξ = (xj1 , . . . , xjp). By

V ξ
Λξ

(f ; ∆ξ, xτ ) = V ξ
Λξ

(f ;xτ ,∆ξ) = V
j1,...,jp
Λξ

(f ;xτ ,∆ξ) = V ξ
Λj1 ,...,Λjp

(f ; ∆ξ, xτ )

denote the (Λj1 , . . . ,Λjp)-variation of f as a function of the variables xξ with respect
to these variables on the p-dimensional segment ∆ξ = ∆j1 × · · · ×∆jp for the fixed
values xτ of other variables (if τ 6= ∅).

We define the (Λj1 , . . . ,Λjp)-variation of a function f(x1, . . . , xm) with respect to
the variables xξ on the segment ∆ = ∆1 × · · · ×∆m by the formula

V ξ
Λξ

(f ; ∆) = V ξ
Λj1 ,...,Λjp

(f ; ∆) = sup
xτ∈∆τ

V ξ
Λj1 ,...,Λjp

(f ; ∆ξ, xτ ).

Definition 2.3. The total (Λ1, . . . ,Λm)-variation of a function f(x1, . . . , xm) on the
segment ∆ = ∆1 × · · · ×∆m is defined as

VΛ1,...,Λm(f ; ∆) =
∑

ξ⊆{1,...,m}
ξ 6=∅

V ξ
Λξ

(f ; ∆)

We say that the function f has total bounded (Λ1, . . . ,Λm)-variation on ∆ and write
f ∈ (Λ1, . . . ,Λm)BV (∆), if VΛ1,...,Λm(f ; ∆) < ∞. In the case Λj = Λ for all j we

write V ξΛ , VΛ and ΛBV (∆) for short.

Definition 2.4. Let Λ be a proper sequence. We say that a function f(x) from the
class ΛBV ([a, b]) is continuous in Λ-variation (f ∈ CΛV ([a, b])), if
limn→∞ VΛn(f ; [a, b]) = 0 for the sequences Λn = {λn+k}∞k=1.

Definition 2.5. Let Λ1, . . . ,Λm be proper sequences. A function f from the class
(Λ1, . . . ,Λm)BV (∆) is said to be continuous in (Λ1, . . . ,Λm)-variation on ∆, if

lim
n→∞

V ξ
Λj1 ,...,Λjk−1 ,Λ

jk
n ,Λjk+1 ,...,Λjp

(f ; ∆) = 0, (1)

for any nonempty ξ = {j1, . . . , jp} ⊂ {1, . . . ,m} and for any jk ∈ ξ. We write
f ∈ C(Λ1, . . . ,Λm)V (∆).

Definition 2.6. The function f has bounded partial (Λ1, . . . ,Λm)-variation on ∆,
f ∈ P (Λ1, . . . ,Λm)BV (∆), if PVΛ1,...,Λm(f ; ∆) =

∑m
i=1 V

i
Λi(f ; ∆) <∞.

Definition 2.7. Let d ∈ {1, . . . ,m}. Denote

V
(d)
Λ1,...,Λm(f ; ∆) =

∑
ξ⊆{1,...,m}

16|ξ|6d

V ξ
Λξ

(f ; ∆).

We write f ∈ PdΛBV (Tm) if this sum is finite.

For d = 1, we have P1ΛBV (Tm) = PΛBV (Tm); on the other hand, for d = m,
we have PmΛBV (Tm) = ΛBV (Tm).
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Though there are several results on application of generalized variation to different
orthonormal systems, our work deals with (multilple) trigonometric Fourier series
only, and we write “Fourier series” for “trigonometric Fourier series” everywhere below
in the paper.

Goginava and Sahakian proved the following result.

Theorem 2.8 ( [4, Theorem 1]). Let Λ = {λn}∞n=1 be a proper sequence,

λn
n
↓ 0 for n→∞, and

∞∑
n=1

λn lnm−2(n+ 1)

n2
<∞.

Then PΛBV (Tm) ⊂ CHV (Tm).

Together with Theorem 1.1, this implies that the Fourier series of a continuous
function from such a class converges uniformly ( [4, Theorem 3a]).

On the other hand, in the same paper Goginava and Sahakian proved the following.

Theorem 2.9 ( [4, Theorem 3b]). Let Λ be a proper sequence, λn
n be nonincreasing,

and there exists a δ > 0 such that

λn
n

= O

(
λ[nδ]

[nδ]

)
for n→∞, and

∞∑
n=1

λn lnm−2(n+ 1)

n2
=∞.

Then there is a continuous function f ∈ PΛBV (Tm), such that its Fourier series
diverges at zero. Consequently, such a class PΛBV (Tm) is not a subset of CHV (Tm).

For example, if Λ = {n lna(n + 1)}, then the inclusion PΛBV (Tm) ⊂ CHV (Tm)
holds for a < 1−m and fails for a > 1−m.

3. Inclusion of classes and convergence of Fourier series

Our first main result is the following theorem (for d = 1, this is Theorem 2.8).

Theorem 3.1. Let d ∈ {2, . . . ,m − 1}. Let a proper sequence Λ = {λn}∞n=1 satisfy
the conditions

λn
n
↓ 0 and

∞∑
n=1

(λn)d lnm−d−1(n+ 1)

nd+1
<∞.

Then PdΛBV (Tm) ⊂ CHV (Tm).

In particular, if Λ = {n lna(n+ 1)}, then the inclusion holds for a < 1− m
d .

Corollary 3.2. Let d ∈ {2, . . . ,m− 1}. Let a proper sequence Λ = {λn}∞n=1 satisfy
the conditions

λn
n
↓ 0 and

∞∑
n=1

(λn)d lnm−d−1(n+ 1)

nd+1
<∞.

Then the Fourier series of a continuous function f ∈ PdΛBV (Tm) converges uni-
formly in Pringsheim sense.
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The corollary follows immediately from Theorems 1.1 and 3.1.

We need the following result about the structure of the class CΛBV (∆).

Theorem 3.3 ( [1, Theorem 1]). The class C(Λ1, . . . ,Λm)V (∆) of functions con-
tinuous in Λ-variation is the union of classes (M1, . . . ,Mm)BV (∆) over all proper

sequences M j = {µjn} such that
µjn

λjn
→ 0 as n→∞.

Proof (of Theorem 3.1). The idea of the proof is the same as in [4, Theorem 1]. We
estimate the m-dimensional component of Γ-variation for a certain proper Γ, where
γn
n ↓ 0. It can be seen that the other components of Γ-variation are finite, therefore,
f is continuous in harmonic variation due to Theorem 3.3.

We choose positive numbers {An} such that An ↑ ∞, λnAn
n ↓ 0 and

∞∑
n=1

(λn)d(lnm−d−1(n+ 1))(An)m

nd+1
<∞. (2)

This holds if {An} increases slowly enough. Let γn = n/An, Γ = {γn}. Then λn
γn
↓ 0.

For |ξ| = j 6 k, this implies directly that

V ξ
Γξ

(f ; ∆) 6

(
λ1

γ1

)j
V ξ

Λξ
(f ; ∆) <∞.

Therefore, by virtue of Theorem 3.3 the corresponding components of harmonic vari-
ation are finite and are continuous in variation.

Now we consider the case ξ = {1, . . . ,m}. As An ln(n + 1) > A1 ln 2 = C, for
q = d+ 1, . . . ,m− 1 we also have

∞∑
n=1

(λn)d(lnq−d−1(n+ 1))(An)q

nd+1
<∞.

Hence the following argument is also valid for q-dimensional components of variation
(q = d+ 1, . . . ,m− 1).

Consider arbitrary systems {Ijnj} ∈ Ω(∆j), j = 1, . . . ,m and the corresponding
variational sum S for the Γ-variation. Then

S 6
∑
σ∈Σm

∑
nσ(1)6...6nσ(m)

|f(I1
n1
× · · · × Imnm)|

γn1
. . . γnm

,

where Σm is the permutation group of an m-element set. As Σm is finite, it is sufficient
to estimate the inner sum for a single σ. For convenience, we take σ = id. We have

Sid =
∑
n1

∑
n2>n1

· · ·
∑

nm−d>nm−d−1

1

γn1
. . . γnm−d

S(n1, . . . , nm−d), (3)

where

S(n1, . . . , nm−d) =
∑

nm−d+1>nm−d

· · ·
∑

nm>nm−1

|f(I1
n1
× · · · × Imnm)|

γnm−d+1
. . . γnm

.
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By definition, λn
γn

= λnAn
n ↓ 0, hence

S(n1, . . . , nm−d) =
∑

nm−d+1>nm−d

· · ·
∑

nm>nm−1

|f(I1
n1
× · · · × Imnm)|

λnm−d+1
. . . λnm

·
λnm−d+1

. . . λnm
γnm−d+1

. . . γnm

6
∑

nm−d+1>nm−d

· · ·
∑

nm>nm−1

|f(I1
n1
× · · · × Imnm)|

λnm−d+1
. . . λnm

·
(
λnm−d

γnm−d

)d

6 V m−d+1,...,m
Λ (f ;Tm) ·

(
λnm−d

γnm−d

)d
.

Now we substitute this estimate to (3) and replace nm−d by n for short. Then

Sid 6 V
m−d+1,...,m
Λ (f ;Tm) ·

∑
n1

∑
n2>n1

· · ·
∑

n>nm−d−1

1

γn1 . . . γnm−d−1
γn
·
(
λn
γn

)d
.

By the definition of Γ this implies

Sid 6 V
m−d+1,...,m
Λ (f ;Tm) ·

∑
n1

∑
n2>n1

· · ·
∑

n>nm−d−1

An1
. . . Anm−d−1

An

n1 . . . nm−d−1n
·
(
λnAn
n

)d
.

As the sequence {Aj} is nondecreasing, the product of its elements in the numerator
does not exceed (An)m. Changing the order of summation, we obtain that

Sid 6 V
m−d+1,...,m
Λ (f ;Tm) ·

∑
n

(An)m(λn)d

nd+1

n∑
nm−d−1=1

· · ·
n2∑
n1=1

1

n1 . . . nm−d−1
.

Now notice that
n∑

nm−d−1=1

nm−d−1∑
nm−d−2=1

· · ·
n2∑
n1=1

1

n1 . . . nm−d−1

6
n∑

nm−d−1=1

n∑
nm−d−1=1

· · ·
n∑

n1=1

1

n1 . . . nm−d−1
6 C(m, d)(ln(n+ 1))m−d−1.

Substituting this into the previous estimate and then summing by σ, we obtain the
final inequality

S 6 C(m, d)V
(d)
Λ (f ;Tm) ·

∑
n

(An)m(λn)d(ln(n+ 1))m−d−1

nd+1

for the variation sum S. By virtue of (2) this implies that all S’s are uniformly
bounded, i.e., that the Γ-variation is finite. Due to Theorem 3.3, this gives the
continuity in harmonic variation. �

4. Divergence of Fourier series

Now we turn to the generalization of Theorem 2.9.
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Theorem 4.1. Let d ∈ {2, . . . ,m − 1}. Let λn
n = O

(
λ
[nδ ]

[nδ]

)
for some δ > 0 when

n→∞, and
∞∑
n=1

(λn)d lnm−1−d(n+ 1)

nd+1
=∞. (4)

Let also λm
m 6 C λn

n for all m > n and for some C. Then there exists a continuous
function in PdΛBV (Tm) such that its Fourier series diverges unboundedly at zero.

Corollary 4.2. Let d ∈ {1, . . . ,m − 1}. Let λn
n = O

(
λ
[nδ ]

[nδ]

)
for some δ > 0 when

n→∞, and
∞∑
n=1

(λn)d lnm−1−d(n+ 1)

nd+1
=∞.

Let also λm
m 6 C λn

n for all m > n for some C. Then the class PdΛBV (Tm) is not a
subset of HBV (Tm).

For example, if Λ = {n lna(n+ 1)}, then the inclusion PdΛBV (Tm) ⊂ HBV (Tm)
fails for a > 1− m

d .

Previuosly, Sablin [8] proved that for any function from HBV (Tm) the rectangular
partial sums of its Fourier series are uniformly bounded. A stronger variant of this
result is proved in [2].

The corollary follows immediately from this fact and Theorem 4.1 for d > 1, or
from this fact and Theorem 2.9 for d = 1.

Proof (of Theorem 4.1). The idea of the proof is the same as in [4, Theorem 3b].

Let an integer N be sufficiently large. We define the cubes

Ai1,...im =

[
πi1

N + 1
2

,
π(i1 + 1)

N + 1
2

)
× · · · ×

[
πim

N + 1
2

,
π(im + 1)

N + 1
2

)
.

Let Nδ = b(N/2)1/δc and pj = bjδc, where bxc is the integer part of x. Let
WN = {(i,1 , . . . im) ∈ Nm : 1 6 im 6 Nδ, ij ∈ (im, im + pim) for j < m} and

let Λ(j) =
∑j
i=1

1
λi

.

Consider the function

fN (x) =
∑

(i1,...im)∈WN

1

(Λ(pim))d
χAi1,...im (x)

m∏
s=1

sin(N + 1
2 )xs.

Now we estimate the Λ-variation of this function with respect to any q variables,
1 6 q 6 d. Without loss of generality it is enough to estimate the Λ-variation with
respect to (x1, . . . , xq) and with respect to (xm−q+1, . . . , xm).

In the first case, let us fix a point x∗ = (xq+1, . . . , xm).

If xm /∈
Nδ⋃
im=1

[
πim
N+ 1

2

, π(im+1)

N+ 1
2

)
, then fN (x1, . . . , xq, x∗) ≡ 0, and there is nothing to

estimate.
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Now suppose that xm ∈
[
πim
N+ 1

2

, π(im+1)

N+ 1
2

)
. Then

f(x) = sin(N + 1
2 )xm

1

(Λ(pim))d

m−1∏
j=1

gN,im(xj),

where gN,im(t) = sin(N + 1
2 )t · χ

[
π(im+1)

N+1
2

,
π(im+pim

)

N+1
2

)
(t).

Obviously, |gN,im | 6 1. Hence for arbitrary systems of intervals {Ijij} we have∣∣∣∣∣∣
∑

i1,...,iq

|f(I1
i1
× · · · × Iqiq , x

∗)|
λi1 . . . λiq

∣∣∣∣∣∣ 6 1

(Λ(pim))d
(VΛ(gN,im ;T))

q
.

It is easy to see that VΛ(gN,im ;T) 6 2

pim∑
i=1

1

λj
6 2Λ(pim).

This implies that V 1,...,q
Λ (fN ;Tm) 6 2q(Λ(pim))q · 1

(Λ(pim))d
6 2d.

Now we turn to the second case. Consider a point x∗ = (x1, . . . , xm−q). If there

exists a j in {1, . . . ,m− q} such that xj does not belong to any
[

πi
N+ 1

2

, π(i+1)

N+ 1
2

)
, where

1 < i < Nδ + pNδ , then by definition of WN the function f(x∗, xm−q+1, . . . , xm)
vanishes as a function of (xm−q+1, . . . , xm). Otherwise, there exist il, l = 1, . . . ,m−q
such that

xl ∈
[

πil

N + 1
2

,
π(il + 1)

N + 1
2

)
.

Let ˜̃ım = min{il | l = 1, . . . ,m − q}, ı̃m = maxl=1,...,m−q min{im | im + pim > il}.
If ı̃m > ˜̃ım, then again f(x∗, xm−q+1, . . . , xm) ≡ 0 as a function of (xm−q+1, . . . , xm).
Otherwise,

g(xm−q+1, . . . , xm) = f(x∗, xm−q+1, . . . , xm)

=

m−q∏
s=1

sin(N + 1
2 )xs

˜̃ım∑
im=ı̃m

χ
[ πim
N+1

2

,
π(im+1)

N+1
2

)
(xm) sin(N + 1

2 )xm

(Λ(pim))d

m−1∏
s=m−q+1

gN,im(xj).

Notice that its q-dimensional Λ-variation does not exceed

V = 2q
˜̃ım∑

im=ı̃m

1

(Λ(pim))d
1

λim−ı̃m

im+pim−1∑
im−q+1=im+1

· · ·
im+pim−1∑
im−1=im+1

1

λim−q+1−im
. . .

1

λim−1−im
.

Here the inner sum is estimated by (Λ(pim))q−1, hence

V 6 2q
˜̃ım∑

im=ı̃m

1

(Λ(pim))

1

λim−ı̃m
6 2q

1

(Λ(pı̃m))

˜̃ım−ı̃m∑
j=1

1

λj
.

Let the minimum in the definition of ˜̃ım be for l = l0; then ˜̃ım = il0 < ı̃m + pı̃m .
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Therefore, ˜̃ım − ı̃m 6 pı̃m and

V 6 2q
1

(Λ(pı̃m))

pı̃m∑
j=1

1

λj
= 2q.

This finally gives V m−q+1,...,m
Λ (fN ;Tm) 6 2q 6 2d.

Now we estimate the cubic partial sum SN,...,N (fN , 0, . . . , 0). By definition

πmSN,...,N (fN , 0, . . . , 0) =

∫
Tm

fN (x)

m∏
s=1

DN (xs) dx

=
∑

(i1,...,im)∈WN

1

Λd(pim)

∫
Ai1,...im

m∏
s=1

sin2(N + 1
2 )xs dx

> c
∑

(i1,...,im)∈W

1

imΛd(pim)

1

i1 . . . im−1

> c
Nδ∑
im=1

1

imΛd(pim)

im+pim∑
i1=im

· · ·
im+pim∑
im−1=im

1

i1 . . . im−1

> c
Nδ∑
im=1

1

imΛd(pim)
lnm−1

(
im + pim

im

)
> c(δ − 1)m−1

Nδ∑
im=1

lnm−1 im
imΛd(pim)

. (5)

Due to the conditions posed on Λ, the estimates

Λ(pj) =

pj∑
i=1

1

λi
=

pj∑
i=1

1

i
· i
λi
6 C

pj
λpj

ln(pj + 1) 6 C
j ln(j + 1)

λj

hold, hence,
ln(j + 1)

Λ(pj)
> c

λj
j
.

Raising this inequality to the dth power and substituting it into (5), we obtain

πmSN,...,N (fN , 0, . . . , 0) > c(δ − 1)m−1
Nδ∑
n=1

λdn lnm−d−1(n+ 1)

nd+1
→∞

for N →∞ due to (4).
Using a standard argument we obtain that PdΛBV (Tm) is a Banach space with

respect to the norm ‖f‖ = |f(0, . . . , 0)| + V
(d)
Λ (f ; ∆), and PdΛBV (Tm) ∩ C(Tm) is

a closed subset in it. As ‖fN‖ 6 C and SN,...,N (fN , 0, . . . , 0) → ∞ for N → ∞,
by the Banach–Steinhaus theorem we obtain that there exists a continuous function
f ∈ PdΛBV (Tm) such that SN,...,N (f, 0, . . . , 0) are unbounded. Thus the proof is
complete. �
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