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ON THE CLASSES OF FUNCTIONS OF BOUNDED PARTIAL AND
TOTAL A-VARIATION

A. N. Bakhvalov

Abstract. The inclusions of classes of functions with bounded partial A-variation into
the classes of functions with bounded total harmonic variation are established. The result is
applied to the problem of convergence of rectangular partial sums for multiple Fourier series.

1. Introduction

In 1970s, Goffman and Waterman studied the class of functions whose trigonometric
Fourier series remained convergent after any change of variable. This led to the
concept of A-bounded variation (or bounded A-variation) in one-dimensional case,
which was first introduced in [10].

Later on, this class was generalized by Sahakian [9] for two-dimensional case, and
by Sablin [7] for functions of three and more variables.

Unlike other classes of generalized bounded variation, the class ABV of functions
of A-bounded variation has an important (in certain questions) subclass CAV of
functions continuous in A-variation. The continuity in A-variation was introduced by
Waterman [11] for functions of one variable, and by the author [1] and Dragoshan-
skii [3] for functions of two and more variables.

The author obtained the following result [1, Theorems 3,4] on the convergence of
multiple trigonometric Fourier series, that generalizes the one-dimensional result of
Waterman [10] and the two-dimensional result of Sahakian [9].

THEOREM 1.1. Let m > 3. Let a continuous function [ belong to the class CHV (T™)
of functions, continuous in harmonic variation (see Definition 2.5). Then its Fourier
series converges uniformly in the sense of Pringsheim. There is a continuous function
f in the class HBV (T™) for anym > 3 (see Definition 2.3), such that the cubic partial
sums of its Fourier series diverge at the point 0.
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258 On the classes of functions of bounded partial and total A-variation

Goginava and Sahakian in a number of papers (see, e.g. [4-6]) introduced and
studied the classes PABV (T™) of functions of bounded partial A-variation, i.e. the
functions with bounded A-variation with respect to every single variable.

Our aim is to study the classes P4ABV (T™) of functions with bounded A-variation
with respect to every set of ¢ variables, 1 < ¢ < d < m. These classes are intermediate
between PABV (T™) and ABV(T™). We expand several results of Goginava and
Sahakian to the classes P;ABV (T™).

The paper is organized in the following way. In Section 2 we give detailed defini-
tions of the notions and precise statements of theorems that we use or generalize in
our work. In Section 3 we prove the result on inclusion of the classes and the con-
sequent result on convergence of Fourier series. In Section 4 we prove the result on
divergence of Fourier series and the consequent result on non-inclusion of the classes.

2. Preliminaries

Let A be an interval on the real line. By Q(A) we denote the set of all finite systems
{I,,})_, of pairwise disjoint open intervals such that I,, C A.
Let I* = (a*,b*). Consider a function f(x) on R™, m > 1. By definition, put
Ax,s,j(f) = f(X+ Sej) - f(X)
and f(I) = f(ll X X Im) = Aa,blfal,l 0--:0 Aa,bm—a"",m(f)'

It is well known that the operators Ay s ;(f) commute with each other for different
j’s. Therefore, the mixed difference f(I) is symmetric with respect to rearrangements
of the variables.

Let the set {1,...,m} be divided into two non-intersecting subsets £ and 7 with p
and m — p elements respectively (we write |¢| = p). Given a x = (2!,...,2™), by z¢
denote the vector from RP with the coordinates 27, j € £. For a segment [ = ®;ﬂ:1 I
we write [¢ = Qe I

By f(I¢,27) or f(x7,I¢) denote the mixed difference of f as a function of the
variables acj,_j € &, on I¢ for the fixed values of z*, k € 7, i.e., if £ = {j1,...,7,} and
v = (a’*,b%), then f([57 a’) = Aaybjl_ajlhjl 0---0 Aaybjp_ajp Jn (f). We also denote
T=[-m,mn].

DEFINITION 2.1. We say that a sequence A = {\,,}°2 ; of positive numbers is a proper

oo
one, if it is non-decreasing (maybe for n > ng > 1), tends to infinity and > )\i = o0.
n=1""
We denote H = {n}$2,. It follows from the definition that the sequence H is a
proper one.
DEFINITION 2.2. Let A',..., A™ be proper sequences. The value

3 |f Ty, X - X I )

1 m
AL A

1,....m . _
VAl,...,Am(va) = Sup
{{I,ij}}?‘:l Eiyeooskm
{1} yeqad), j=1,..m
J



A. N. Bakhvalov 259

is called the (Al,..., A™)-variation of the function f(x!,...,2™) with respect to the
variables z',...,2™ on the segment A = Al x ... x A™,

Consider a nonempty set & C {1,...,m} that consists of elements j; < --- < j,

and let 7 = {1,...,m} \ & We write I5 = ®/_, L at = (2, ... 2). By
1
(f; A%, 27)

denote the (A71, ..., AJ»)-variation of f as a function of the variables z¢ with respect
to these variables on the p-dimensional segment A¢ = AJt x ... x AJ» for the fixed
values x7 of other variables (if 7 # ).

We define the (A1, ..., AJ»)-variation of a function f(z',...,a™) with respect to
the variables x¢ on the segment A = A' x --- x A™ by the formula

VAi (f;4) = an,...,mp(ﬁA) - SEE Vlfjl,...,AJ'p (f; A%, 7).
xT T

Vie(f; A%,27) = Vi (f3a7, A = ViU (fia™, A% = Vi,

DEFINITION 2.3. The total (A}, ..., A™)-variation of a function f(x!,...,2™) on the
segment A = Al x .- x A™ is defined as

Var, am(f1A) = Z Vie(f; )

£C{1,....m}
40

We say that the function f has total bounded (Al,..., A™)-variation on A and write
f e A ..., A")BV(A), if Va1 am(f;A) < co. In the case AJ = A for all j we
write Vf, Vi and ABV (A) for short.

DEFINITION 2.4. Let A be a proper sequence. We say that a function f(z) from the
class ABV ([a,b]) is continuous in A-variation (f € CAV ([a,b])), if
limy, 00 Va,(f;[a, b]) = O for the sequences A, = { Ak}

DEFINITION 2.5. Let A',...,A™ be proper sequences. A function f from the class
(A',...,A™)BV(A) is said to be continuous in (A!,..., A™)-variation on A, if
lim V¢ (f;A) =0, (1)

n—oo AL, ATk=1 TR AR+ Adp
for any nonempty £ = {ji,...,jp} C {1,...,m} and for any j, € & We write
fFeCAL, ..., A™V(A).

DEFINITION 2.6. The function f has bounded partial (A!,..., A™)-variation on A,
fePAYL ..., A™MBV(A),if PVyr_ am(f;A) =301 Vid(f;A) < oo

DEFINITION 2.7. Let d € {1,...,m}. Denote

Vi) (8= > VE(FA).

£c{1,....m}
1<lél<d

We write f € P;ABV(T™) if this sum is finite.

For d = 1, we have PLABV(T™) = PABV (T™); on the other hand, for d = m,
we have P, ABV (T"™) = ABV (T™).
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Though there are several results on application of generalized variation to different
orthonormal systems, our work deals with (multilple) trigonometric Fourier series
only, and we write “Fourier series” for “trigonometric Fourier series” everywhere below
in the paper.

Goginava and Sahakian proved the following result.

THEOREM 2.8 ( [4, Theorem 1]). Let A = {\,}32, be a proper sequence,

—iOforn—)oo and ZAIH—M<OO.

n?
n=1

Then PABV (T™) ¢ CHV (T™).

Together with Theorem 1.1, this implies that the Fourier series of a continuous
function from such a class converges uniformly ( [4, Theorem 3al).
On the other hand, in the same paper Goginava and Sahakian proved the following.

THEOREM 2.9 ( [4, Theorem 3b]). Let A be a proper sequence, )‘7” be nonincreasing,
and there exists a § > 0 such that

An Aln A I % (n+ 1
O<[[ 6]]) forn — oo, and Zw

n

Then there is a continuous function f € PABV(Tm), such that its Fourier series
diverges at zero. Consequently, such a class PABV (T™) is not a subset of CHV (T™).

For example, if A = {nIn“(n + 1)}, then the inclusion PABV(T™) c CHV (T™)
holds fora <1 —m and fails fora > 1 —m

3. Inclusion of classes and convergence of Fourier series

Our first main result is the following theorem (for d = 1, this is Theorem 2.8).

THEOREM 3.1. Let d € {2,.. —1}. Let a proper sequence A = {\,}32, satisfy
the conditions

An = (M) In™™ d= 1(n—|—1)
o 10  and Z RS < 00.
Then P;ABV(T™) C CHV(T™).
In particular, if A = {nIn“(n + 1)}, then the inclusion holds for a <1 — .

COROLLARY 3.2. Letd € {2,...,m —1}. Let a proper sequence A = {\,}22, satisfy
the conditions

An > (An) ™ (0 4 1)
— 10 d < 0.
- 1 an ,; v %)

Then the Fourier series of a continuous function f € P;ABV(T™) converges uni-
formly in Pringsheim sense.
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The corollary follows immediately from Theorems 1.1 and 3.1.
We need the following result about the structure of the class CABV (A).

THEOREM 3.3 ( [1, Theorem 1]). The class C(A',...,A™)V(A) of functions con-
tinuous in A-variation is the union of classes (M*Y,...,M™)BV(A) over all proper

. . J
sequences MJ = {pd} such that l;\—;‘ — 0 as n — oo.

n

Proof (of Theorem 3.1). The idea of the proof is the same as in [4, Theorem 1]. We
estimate the m-dimensional component of I'-variation for a certain proper I', where
d2 1 0. It can be seen that the other components of I'-variation are finite, therefore,
f is continuous in harmonic variation due to Theorem 3.3.

We choose positive numbers {A,,} such that A, 1 oo, % $ 0 and

i ()‘n)d(lnmidil(n + 1))(An)m < (2)

00.
nd+1

n=1
This holds if {A,,} increases slowly enough. Let v, = n/A,, I' = {7,}. Then % 1 0.
For |¢]| = j < k, this implies directly that

V(i) < (j) VE(f:A) < .

Therefore, by virtue of Theorem 3.3 the corresponding components of harmonic vari-
ation are finite and are continuous in variation.

Now we consider the case £ = {1,...,m}. As A,In(n+1) > A;In2 = C, for
g=d+1,...,m— 1 we also have

i (Aa)* (0?0 + 1)) (A4,)¢

nd+1

< 00.
n=1
Hence the following argument is also valid for g-dimensional components of variation
(¢g=d+1,...,m—1).
Consider arbitrary systems {I,J;j} € Q(AY), j = 1,...,m and the corresponding
variational sum S for the I'-variation. Then
II x...xI7

S< Z Z |f( 1 nm)|7

€T, na(l)g-ugno(m) Tna e ’Ynm

where Y, is the permutation group of an m-element set. As Y, is finite, it is sufficient
to estimate the inner sum for a single 0. For convenience, we take ¢ = id. We have

1
Sa=3 3 Y S a), 3)
n1 nz22ny Mg SNm—q_1 017 [m—d

where

S(n1,...,nm_d): Z Z |f(IT]7:1><XI:lnm)|

Tn 1 Yn
N —d+12Nm—d N, ZMm — 1 m—d+ m
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By definition, i—” = % 1 0, hence

1
S(ny Nm—d) = > ey Uy X X T ) Anyas - A
sy m—d) —
Nm—d+12Nm—d Mo ZNm —1 )\nmf"Hl e )\nm Trm—at1 -+ Tnm
1 d
Cox oy M
~
Nn—d412Nm—d  MmZNm_1 )\n’"*d“ S An, T —a

d
SV () <>\”""d> .
’ynm,fd

Now we substitute this estimate to (3) and replace n,_q by n for short. Then

u < VI m 1 (A
T RIE 00 b SR > |

S s T Ymea e \

By the definition of I" this implies

. - Ap oo An o Ay (AL
Sig < Ve (f T Z Z Z nll...nm_dd_;n < n )

ni ng> NZ2Nm—d—1

As the sequence {4;} is nondecreasmg7 the product of its elements in the numerator
does not exceed (A,)™. Changing the order of summation, we obtain that

m d
TR D o oD DT 3 e e

.n
n N —d—1=1 ni=1 mdl

Now notice that

MNm—d—1

O S S e

Nm—d—1=1Nm_q—2=1 n1=1

DD Zm < Cm, d)(in(n + 1))~

-Nm—d—1

cNMm—d—1

Nm—d—1=1nm_qg-_1=1
Substituting this into the previous estimate and then summing by o, we obtain the
final inequality

m dn(n m—d—1
S < Clm, V¥ (1T Y (An)™ (An) Sdil + 1))

n

for the variation sum S. By virtue of (2) this implies that all S’s are uniformly
bounded, i.e., that the I'-variation is finite. Due to Theorem 3.3, this gives the
continuity in harmonic variation. O

4. Divergence of Fourier series

Now we turn to the generalization of Theorem 2.9.
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THEOREM 4.1. Let d € {2,...,m —1}. Let 22 = ()\[”5]> for some § > 0 when

n [n?]
n — oo, and

) —1-d

(An)?In™ (n+1)

> i = oo. (4)
n=1

Let also )‘ﬁ < C% for all m > n and for some C. Then there exists a continuous

function in PgABV (T™) such that its Fourier series diverges unboundedly at zero.

COROLLARY 4.2. Letd € {1,...,m —1}. Let 2

n
n

=0 (l\[:;]]) for some § > 0 when

n — 0o, and

nd+1

i ()@ In™ 14 4 1)

Let also >;n < C);l for all m > n for some C. Then the class P4ABV (T™) is not a
subset of HBV (T™).

For example, if A = {nIn“(n + 1)}, then the inclusion P;,ABV(T™) C HBV (T™)
fails fora > 1 — %

Previuosly, Sablin [8] proved that for any function from H BV (T™) the rectangular
partial sums of its Fourier series are uniformly bounded. A stronger variant of this
result is proved in [2].

The corollary follows immediately from this fact and Theorem 4.1 for d > 1, or
from this fact and Theorem 2.9 for d = 1.

Proof (of Theorem 4.1). The idea of the proof is the same as in [4, Theorem 3b].
Let an integer N be sufficiently large. We define the cubes

wiy  w(ip +1) Tl (i, + 1)
Aiy iy = T i Koo X 1 1 :
N+35 N+3 N+3 N+3
Let N5 = |(N/2)'/9| and p; = [j°], where |x] is the integer part of z. Let
Wn = {(z’,l,‘...im) € N 1 < iy < Nsyij € (imsim + piy,) for j < m} and
let A(j)=>"1_, Ai

Consider the function

1 T
= Y XAy () [ sin(V + D
e (A(pi,.)) -
(11,0 im ) EWN s=1
Now we estimate the A-variation of this function with respect to any ¢ variables,
1 < g < d. Without loss of generality it is enough to estimate the A-variation with
respect to (z',...,2%) and with respect to (z™~9FtL ... ™).

In the first case, let us fix a point #* = (971 ... 2™).

Ns ) )
Ifame¢ | JGT% , ”%’1‘21)), then fy(zt,...,29,2%) =0, and there is nothing to
im=1

estimate.
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Now suppose that z,, € [ Tim ”(;\';j_tl)). Then
2

(Alpi, ) -
where 9N im (t) = sin(N + %)t : X[w(m+1> Wmﬂ%m)(t)-

Nig T el

m—1
F) = sin(N + Dam T g (2,
Jj=1

Obviously, |gn4,,| < 1. Hence for arbitrary systems of intervals {Ifj} we have

[F(L % x I @) 1
< Valgna,; TH?.
D WO A A e AL AR
1)--0slg
Pim
. 1
It is easy to see that Va(gn,i,; T) < 22 W < 2A(pi,,)-
i=1 "7
1
This implies that Vo9 (fas T™) < 29(A(ps,, )9 - g < 27,
(A(pi,))
Now we turn to the second case. Consider a point z* = (z!,...,2™~%). If there
exists a j in {1,...,m —q} such that 27 does not belong to any [N”—J:l, ﬂjffiii) ), where
2 2
1 < i < Ns + pn;, then by definition of Wy the function f(z*, 2™ 9Tt ... z™)
vanishes as a function of (z™~9%1 ... 2™). Otherwise, there exist i;, [ = 1,...,m —q
such that
mi w(t+1
X € T ( 1 )> .
N+s35 N+3
Let 2 =min{i; [l =1,...,m —q}, I = MaX|=1,.. m—q WiN{in, | i + pi,, > i}
If %y, > %, then again f(z*, 2™~ 9L ... 2™) =0 as a function of (z™~ 4L ... ™).
Otherwise,
gla™ 9t ™) = fat, ™ ™)

7 X[ i n(im+1))(xm) Sin(N + %)l’m m—1

im
s

m—4d 1 .
= H sin(N + 3)z° Z Ttz T3 H INim (@)
1 L

s=m—q+1

Tm=1%m

Notice that its g-dimensional A-variation does not exceed

im 1 1 im+Piy, —1 im +Pip, —1 1 1
V=24 e .
Here the inner sum is estimated by (A(p;,,))?"!, hence
7 Tm—1
- 1 1 1 '— 1
V29 <29 —.
<22 G S By = %

Let the minimum in the definition of 7,, be for I = ly; then 7, = i, < m + Di,,-
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Therefore, 7, — o < pi,, and

Pim
V<
pvm Z >\
This finally gives Vﬁ7q+1""’ (fa; Tm) < 29 < 24,
Now we estimate the cubic partial sum Sy, ~(fn,0,...,0). By definition
7TmSN7m)N<fN,O,...,O) HDN dx
’]I‘m
1
= Z — / H sin®(N + 3)a® dx
o A Ppin) Ja,
(150stm ) EWN Loeeim =1
1 1
=>c - - -
- (il,...,izm)EW ZmAd(pim) 11 .- tm—1
Ns G+ Py, G+ Piny,
XD v D DD Dl s
imzl plm 11 =1%m m— 1—1m

. Ns m—1 .
205:.1117"—1(%)26(51)771 1§’u (5)

= imA(pi,,) im = i A (pi,,)

Due to the conditions posed on A, the estimates

Pj Pj . . .
~ 1 1 i D; Jjln(j+1)
e o AL NS | o it sty
: ; As ; i A A npy + 1) Aj

Dj
In(j+1 A
hold, hence, M > 2.
A(p;) j
Raising this inequality to the dth power and substituting it into (5), we obtain
. . )\dlm d— 1(TL+1)
7SN, .N(fN,0,...,0) = c(6 — 1) 12 nd+1 0

for N — oo due to (4).

Using a standard argument we obtain that PdABV(Tm) is a Banach space with
respect to the norm ||f]| = |f(0,...,0)| + VA (f A), and P;ABV(T™) N C(T™) is
a closed subset in it. As ||fN|| C’ and Sy, ~n(fn,0,...,0) = oo for N — o0,
by the Banach—Steinhaus theorem we obtain that there exists a continuous function
f € P4ABV(T™) such that Sy, n(f,0,...,0) are unbounded. Thus the proof is
complete. O
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