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Abstract. Let G be a group with identity e. Let R be a G-graded commutative ring and
M a graded R-module. A proper graded submodule N of M is called a graded classical prime
if whenever r, s ∈ h(R) and m ∈ h(M) with rsm ∈ N , then either rm ∈ N or sm ∈ N . The
graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical
prime submodules of M . In this paper, we introduce and study a topology on Cl.Specg(M),
which generalizes the Zariski topology of graded ring R to graded module M , called Zariski
topology of M , and investigate several properties of the topology.

1. Introduction

The scope of this paper is devoted to the theory of graded modules over graded
commutative rings. There is a wide variety of applications of graded algebras in
geometry and physics, (for example see [27, Introduction].)

The concept of graded prime ideal was introduced by M. Refai, M. Hailat and S.
Obiedat in [26] and studied in [24,25].

In the literature, there are several different generalizations of the notion of graded
prime ideal to graded module. The concept of graded prime submodule was introduced
by S.E. Atani in [9] and studied in [2, 4, 5, 10, 11, 23]. Also, the concept of graded
classical prime submodule was introduced by A.Y Darani and S. Motmaen in [13]
and studied in [1, 3, 4]. Every graded prime submodule is a graded classical prime
submodule, but the converse is not true in general (see [4, Example 2.3].)

Zariski topology on the prime spectrum of a module over a commutative ring,
have been already studied in [6–8, 16, 17, 19]. Also, some topologies on the spectrum
of graded prime submodules of a graded module over a graded commutative ring
has been studied in [12, 22]. Moreover, some topologies on the spectrum of graded
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classical prime submodules of a graded module over a graded commutative ring have
been studied in [13]. These results will be used in order to obtain the main aims of
this paper.

In this paper, we rely on the graded classical prime submodules, and then introduce
and study a new topology on the graded classical prime spectrum, which generalizes
the Zariski topology of a graded ring R to a graded R-module M , called Zariski
topology of M and investigate several properties of the topology.

2. Preliminaries

Throughout this paper all rings are commutative with identity and all modules are
unitary.

First, we recall some basic properties of graded rings and modules which will
be used in the sequel. We refer to [14, 20, 21] for these basic properties and more
information on graded rings and modules.

Let G be a group with identity e and R be a commutative ring with identity
1R. Then R is a G-graded ring if there exist additive subgroups Rg of R such that
R =

⊕
g∈GRg and RgRh ⊆ Rgh for all g, h ∈ G. The elements of Rg are said to

be homogeneous of degree g where Rg’s are additive subgroups of R indexed by the
elements g ∈ G. If x ∈ R, then x can be written uniquely as

∑
g∈G xg, where xg

is the component of x in Rg. Moreover, h(R) =
⋃
g∈GRg. Let I be an ideal of R.

Then I is called a graded ideal of (R,G) if I =
⊕

g∈G(I
⋂
Rg). Thus, if x ∈ I, then

x =
∑
g∈G xg with xg ∈ I. An ideal of a G-graded ring need not be G-graded.

Let R be a G-graded ring and M an R-module. We say that M is a G-graded
R-module (or graded R-module) if there exists a family of subgroups {Mg}g∈G of M
such that M =

⊕
g∈GMg (as abelian groups) and RgMh ⊆Mgh for all g, h ∈ G. Here,

RgMh denotes the additive subgroup of M consisting of all finite sums of elements
rgsh with rg ∈ Rg and sh ∈ Mh. Also, we write h(M) =

⋃
g∈GMg and the elements

of h(M) are said to be homogeneous. Let M =
⊕

g∈GMg be a graded R-module and
N a submodule of M . Then N is called a graded submodule of M if N =

⊕
g∈GNg

where Ng = N ∩Mg for g ∈ G. In this case, Ng is called the g-component of N .
Let R be a G-graded ring and M a graded R-module. A proper graded ideal

I of R is said to be a graded prime ideal if whenever rs ∈ I, we have r ∈ I or
s ∈ I, where r, s ∈ h(R) (see [26].) Let Specg(R) denote the set of all graded prime
ideals of R. The graded radical of I, denoted by Gr(I), is the set of all x ∈ R
such that for each g ∈ G there exists ng > 0 with xng ∈ I. Note that, if r is a
homogeneous element, then r ∈ Gr(I) if and only if rn ∈ I for some n ∈ N (see [26].)
It is shown in [26, Proposition 2.5] that Gr(I) is the intersection of all graded prime
ideals of R containing I. A proper graded submodule N of M is said to be a graded
prime submodule if whenever r ∈ h(R) and m ∈ h(M) with rm ∈ N , then either
r ∈ (N :R M) = {r ∈ R : rM ⊆ N} or m ∈ N (see [9].) It is shown in [9,
Proposition 2.7] that if N is a graded prime submodule of M , then P := (N :R M) is
a graded prime ideal of R, and N is called graded P -prime submodule. Let Specg(M)
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denote the set of all graded prime submodules of M .

A proper graded submodule N of M is called a graded classical prime submod-
ule if whenever r, s ∈ h(R) and m ∈ h(M) with rsm ∈ N , then either rm ∈ N or
sm ∈ N (see [4, 13].) Of course, every graded prime submodule is a graded classical
prime submodule, but the converse is not true in general (see [4, Example 2.3].) Let
Cl.Specg(M) denote the set of all graded classical prime submodules of M . Obvi-
ously, some graded R-modules M have no graded classical prime submodules; such
modules are called g-Cl.primeless. We know that Specg(M) ⊆ Cl.Specg(M). As it is
mentioned in [4, Example 2.3]), it happens sometimes that this containment is strict.
We call M a graded compatible R-module if its graded classical prime submodules and
graded prime submodules coincide, that is if Specg(M) = Cl.Specg(M) (for example
see [4, Theorem 3.2 and 3.3]). If R is a G-graded ring, then every graded classical
prime ideal of R is a graded prime ideal. So, if we consider R as a graded R-module,
it is graded compatible.

3. Topologies on the graded classical prime spectrum

Let R be a G-graded ring and M a graded R-module. For each graded ideal I of R,
the graded variety of I is the set V gR(I) = {P ∈ Specg(R) | I ⊆ P}. Then the set
ξg(R) = {V gR(I) | I is a graded ideal of R} satisfies the axioms for the closed sets of
a topology on Specg(R), called the Zariski topology on Specg(R) (see [25,26]).

In [12], Specg(M) was endowed with quasi-Zariski topology. For each graded
submodule N of M , let V g∗ (N) = {P ∈ Specg(M) | N ⊆ P}. In this case, the
set ζg∗ (M) = {V g∗ (N) | N is a graded submodule of M} contains the empty set and
Specg(M), and it is closed under arbitrary intersections, but it is not necessarily
closed under finite unions. The graded R-module M is said to be a g-Top module if
ζg∗ (M) is closed under finite unions. In this case ζg∗ (M) satisfies the axioms for the
closed sets of a unique topology τg∗ on Specg(M). The topology τg∗ (M) on Specg(M)
is called the quasi-Zariski topology.

In [13], Cl.Specg(M) was endowed with quasi-Zariski topology. For each graded
submodule N of M , let Vg∗(N) = {C ∈ Cl.Specg(M) | N ⊆ C}. In this case, the
set ηg∗(M) = {Vg∗(N) | N is a graded submodule of M} contains the empty set and
Cl.Specg(M), and it is closed under arbitrary intersections, but it is not necessarily
closed under finite unions. The graded R-module M is said to be a g-Cl.Top module
module if ηg∗(M) is closed under finite unions. In this case ηg∗(M) satisfies the axioms
for the closed sets of a unique topology %g∗ on Cl.Specg(M). In this case, the topology
%g∗(M) on Cl.Specg(M) is called the quasi-Zariski topology.

Now we define another variety for a graded submodule N of a graded R-module
M . We define the variety of N to be Vg(N) = {C ∈ Cl.Specg(M) : (C :R M) ⊇
(N :R M)}.

The following proposition shows that this variety satisfies the topology axioms for
closed sets.
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Theorem 3.1. Let R be a G-graded ring and M a graded R-module. Then the fol-
lowing hold:
(i) Vg(0) = Cl.Specg(M), and Vg(M) = ∅.
(ii) If {Nλ}λ∈∆ is a family of graded submodules of M , then⋂

λ∈∆

Vg(Nλ) = Vg
(∑
λ∈∆

(Nλ :R M)M

)
.

(iii) For every pair N and K of graded submodules of M , we have

Vg(N) ∪ Vg(K) = Vg(N ∩K).

Proof. (i) It is clear.
(ii) Let C ∈

⋂
λ∈∆

Vg(Nλ). Then (Nλ :R M) ⊆ (C :R M), for all λ ∈ ∆. It follows

that (Nλ :R M)M ⊆ (C :R M)M , for all λ ∈ ∆ and consequently
∑
λ∈∆(Nλ :R

M)M ⊆ (C :R M)M . Since (C :R M)M ⊆ C, we conclude that (
∑

λ∈∆
(Nλ :R

M)M :R M) ⊆ (C :R M). Therefore C ∈ Vg(
∑

λ∈∆
(Nλ :R M)M). Conversely,

let C ∈ Vg(
∑
λ∈∆(Nλ :R M)M). Then (Nλ :R M) ⊆ ((Nλ :R M)M :R M) ⊆

(
∑
λ∈∆(Nλ :R M)M :R M) ⊆ (C :R M). It follows that (Nλ :R M) ⊆ (C :R M) for

all λ ∈ ∆. Thus C ∈ Vg(Nλ) for all λ ∈ ∆. Hence P ∈
⋂
λ∈∆

Vg(Nλ).

(iii) Let C ∈ Vg(N ∩K). Then (N ∩K :R M) ⊆ (C :R M), so that (N :R M) (K :R
M) ⊆ (N ∩ K :R M) ⊆ (C :R M). Since C is a graded classical prime submodule
by [4, Lemma 3.1], we have that (C :R M) is a graded prime ideal of R. It follows
that (N :R M) ⊆ (C :R M) or (K :R M) ⊆ (C :R M) by [26, Proposition 1.2]. Thus
C ∈ Vg(N) or C ∈ Vg(K). Hence C ∈ Vg(N) ∪ Vg(K). The opposite inclusion is
easily seen.

Definition 3.2. LetR be aG-graded ring andM a gradedR-module. Since ηg(M) =
{Vg(N) | N is a graded submodule of M} is closed under finite union, the family
ηg(M) satisfies the axioms of topological space for closed sets. So, there exists a
topology on Cl.Specg(M) called the Zariski topology and denoted by %g.

Let M be a G-graded R-Module and Y a subset of Cl.Specg(M). We will denote⋂
C∈Y C by =(Y ) (note that if Y = ∅, then =(Y ) = M).

The assertions in the following lemma are straightforward to prove.

Lemma 3.3. Let R be a G-graded ring and M a graded R-module. Then:
(i) Vg∗(N) ⊆ Vg(N) for every graded submodule N of M .
(ii) If Y1 ⊆ Y2, then =(Y1) ⊇ =(Y2).
(iii) Y ⊆ Vg∗(=(Y )) ⊆ Vg(=(Y )), for every Y ⊆ Cl.Specg(M).
(iv) If N ⊆ K ⊆M , then Vg(N) ⊇ Vg(K) and Vg∗(N) ⊇ Vg∗(K).
(v) For Y ⊆ Cl.Specg(M), we have =(Vg(=(Y ))) ⊆ =(Vg∗(=(Y ))) = =(Y ); in general
the inclusion might be proper.
(vi) Equalities Vg(N) = Vg(=(Vg(N))) and Vg∗(N) = Vg∗(=(Vg∗(N))) hold for any
graded submodule N of M .

Theorem 3.4. Let R be a G-graded ring and M a graded R-module. Let N be a
graded submodule of M and I a graded ideal of R. Then Vg(IM)∪Vg(N) = Vg(IN) =
Vg(IM ∩N).
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Proof. Clearly Vg(IM) ∪ Vg(N) ⊆ Vg(IM ∩N) ⊆ Vg(IN). Let C ∈ Vg(IN). Then
(IN :R M) ⊆ (C :R M). It is easily seen that I(N :R M) ⊆ (IN :R M). Since C is a
graded classical prime submodule by [4, Lemma 3.1], we have (C :R M) is a graded
prime ideal of R. Since I(N :R M) ⊆ (C :R M) by [26, Proposition 1.2], we have
I ⊆ (C :R M) or (N :R M) ⊆ (C :R M) and consequently (IM :R M) ⊆ (C :R M) or
(N :R M) ⊆ (C :R M). Hence C ∈ Vg(IM) or C ∈ Vg(N), i.e. C ∈ Vg(IM)∪Vg(N).
Thus Vg(IN) ⊆ Vg(IM) ∪ Vg(N). �

Corollary 3.5. Let R be a G-graded ring and M a graded R-module. Let I and J
be graded ideals of R. Then Vg(IM) ∪ Vg(JM) = Vg(IJM) = Vg(IM ∩ JM).

Lemma 3.6. Let R be a G-graded ring and M a graded R-module. Let N be a graded
submodule of M and I a graded ideal of R. Then:
(i) If (N :R M) = (K :R M), then Vg(N) = Vg(K) for all graded submodules N and
K of M . The converse is true if N and K are graded classical prime submodules.
(ii) Vg(IM) = Vg(Gr(I)M) = Vg∗(IM) = Vg∗(Gr(I)M);
(iii) Vg(N) = Vg((N :R M)M) = Vg(Gr((N :R M))M) = Vg∗((N :R M)M) =
Vg∗(Gr((N :R M))M).

Proof. (i) It is clear.
(ii) Clearly Vg∗(Gr(I)M) ⊆ Vg∗(IM) ⊆ Vg(IM) by Lemma 3.3(i) and (iv). Next we
claim that Vg(IM) ⊆ Vg∗(Gr(I)M). To see this, let C ∈ Vg(IM). Then I ⊆ (IM :R
M) ⊆ (C :R M). Since C is a graded classical prime submodule by [4, Lemma 3.1],
we have that (C :R M) is a graded prime ideal of R. It follows that Gr(I) ⊆ Gr((C :R
M)) = (C : M) by [26, Proposition 2.4(5)]. Thus Gr(I)M ⊆ (C :R M)M ⊆ C. Hence
C ∈ Vg∗(Gr(I)M). Consequently, we have Vg∗(Gr(I)M) ⊆ Vg∗(IM) ⊆ Vg(IM) ⊆
Vg∗(Gr(I)M), and so these terms are all equal. Replacing the middle I by Gr(I), we
get (i).
(iii) It suffices to show that Vg(N) = Vg((N :R M)M) by (i). Clearly ((N :R
M)M :R M) = (N :R M). Now C ∈ Vg(N) ⇔ ((N :R M)M :R M) = (N :R M) ⊆
(C :R M)⇔ C ∈ Vg((N :R M)M).

Throughout the rest of this paper, we assume that Cl.Specg(M) is non-empty,
unless stated otherwise, and is equipped with Zarisky topology for every graded R-
module under consideration.

The map ψ : Cl.Specg(M) −→ Specg(R) where R = R/Ann(M) defined by

ψ(C) = (C :R M) for every C ∈ Cl.Specg(M) will be called the natural map of
Cl.Specg(M).

Theorem 3.7. Let R be a G-graded ring and M a graded R-module. The natu-
ral map ψ of Cl.Specg(M) is continuous for the Zariski topologies; more precisely,
ψ−1(V g

R
(I)) = Vg(IM) for every graded ideal I of R containing Ann(M).

Proof. Let I be a graded ideal of R, V g
R

(I) ∈ ξg(R) and C ∈ ψ−1(V g
R

(I)). Then

ψ(C) = (C :R M) ∈ V g
R

(I), hence I ⊆ (C :R M). This implies I ⊆ (C :R M). So

IM ⊆ (C :R M)M ⊆ C and hence C ∈ Vg∗(IM). By Lemma 3.6(ii), C ∈ Vg∗(IM) =
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Vg(IM). Therefore ψ−1(V g
R

(I)) ⊆ Vg(IM). For the converse inclusion, let C ∈
Vg(IM). Thus IM ⊆ C ∈ Cl.Specg(M) and so I ⊆ (C :R M) ⊆ Specg(R) by [4,

Lemma 3.1]. So we get ψ(C) = (C :R M) ∈ V g
R

(I). It follows that C ∈ ψ−1(V g
R

(I)).

Therefore ψ−1(V g
R

(I)) = Vg(IM). �

Let R be a G-graded ring and M be a graded R-module and p ∈ Specg(R). Then
the set Cl.Specpg(M) is defined to be {P ∈ Cl.Specg(M) | (P :R M) = p}.

Theorem 3.8. Let R be a G-graded ring and M a graded R-module. The following
statements are equivalent for any C, D ∈ Cl.Specg(M):
(i) The natural map ψ : Cl.Specg(M) −→ Specg(R) is injective.
(ii) If Vg(C) = Vg(D), then C = D.
(iii) |Cl.Specpg(M)| ≤ 1 for every graded prime ideal p of R.

Proof. (i)⇒ (ii): Suppose that Vg(C) = Vg(D). Since C,D ∈ Cl.Specg(M) by

Lemma 3.6(i), we have (C :R M) = (D :R M) and hence (C :R M) = (D :R M).
Thus ψ(C) = ψ(D). Since ψ is injective, C = D.
(ii)⇒ (iii): Let |Cl.Specpg(M)| > 1 and let C,D ∈ Cl.Specpg(M) be such that C 6= D.
Thus (C :R M) = (D :R M) = p. By Lemma 3.6(i), Vg(D) = Vg(C) and by the
hypothesis we get D = C, which is a contradiction.
(iii)⇒ (i): Suppose that ψ(C) = ψ(D). Hence (C :R M) = (D :R M). By [4,
Lemma 3.1], we conclude that (C :R M) = (D :R M) = p for some graded prime
ideal p of R and since |Cl.Specpg(M)| ≤ 1, we get D = C. �

Theorem 3.9. Let R be a G-graded ring and M a graded R-module. Let
ψ : Cl.Specg(M) −→ Specg(R) be the natural map of Cl.Specg(M). If ψ is sur-
jective, then ψ is both closed and open. More precisely, for every graded submodule
N of M , ψ(Vg(N)) = V g

R
((N :R M)) and ψ(Cl.Specg(M) − Vg(N)) = Specg(R) −

V g
R

((N :R M)).

Proof. By Theorem 3.7, ψ is a continuous map such that ψ−1(V g
R

(I)) = Vg(IM) for

every graded ideal I of R containing Ann(M). Hence for every graded submodule
N of M , ψ−1(V g

R
((N :R M))) = Vg((N :R M)M) = Vg(N) (Lemma 3.6(iii)). It

follows that ψ((Vg(N)) = ψ ◦ ψ−1(V g
R

((N :R M))) = V g
R

((N :R M)) as ψ is surjec-

tive. Similarly, ψ(Cl.Specg(M)−Vg(N)) = ψ(ψ−1(Specg(R))−ψ−1(V g
R

(N :R M))) =

ψ(ψ−1(Specg(R)−V g
R

((N :R M))) = ψ◦ψ−1(Specg(R)−V g
R

((N :R M))) = Specg(R)−
V g
R

((N :R M)). �

4. Zariski Topology on Cl.Specg(M) and spectral spaces

For any r ∈ h(R), the set GXr = Specg(R) −V gR(rR) is open in Specg(R) and
the family z = {GXt : t ∈ h(R)} forms a base for the Zariski topology on Specg(R)
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(see [26, Proposition 3.4]). Each GXr is known to be quasi-compact (see [26, Proposi-
tion 3.8]). In this section, we introduce a base for the Zariski topology on Cl.Specg(M)
for any graded R-module M , which is similar to that on Specg(R). Let r ∈ h(R),
we define GXcl

r = Cl.Specg(M) −Vg((rM). Then every GXcl
r is an open set of

Cl.Specg(M), GXcl
0 = ∅, and GXcl

1 = Cl.Specg(M).

Theorem 4.1. Let R be a G-graded ring and M a graded R-module with natural map
ψ : Cl.Specg(M) −→ Specg(R) and r ∈ h(R). Then:

(i) ψ−1(GXr) = GXcl
r .

(ii) ψ(GXcl
r ) ⊆ GXr; the equality holds if ψ is surjective.

(iii) GXcl
rs = GXcl

r ∩GXcl
s , for any r, s ∈ h(R).

Proof. (i) ψ−1(GXr) = ψ−1(Specg(R) − V g
R

(rR)) = Cl.Specg(M) − ψ−1(V g
R

(rR)).

By Theorem 3.7, we have ψ−1(V g
R

(rR)) = Vg(rM). It follows that ψ−1(GXr) =

Cl.Specg(M)− Vg(rM) = GXcl
r .

(ii) Follows from (i).
(iii) By (i), GXcl

rs = ψ−1(GXrs). By [26, Proposition 3.6(1)], GXrs = GXr ∩ GXs.
Thus GXcl

rs = ψ−1(GXrs) = ψ−1(GXr ∩ GXs) = ψ−1(GXr)∩ ψ−1(GXs) = GXcl
r ∩

GXcl
s .

Theorem 4.2. Let R be a G-graded ring and M a graded R-module. The set B =
{GXcl

r : r ∈ h(R)} is a base for the Zariski topology on Cl.Specg(M).

Proof. Let U be any open set in Cl.Specg(M). By Lemma 3.6, U = Cl.Specg(M)−
Vg(IM) for some graded ideal I of R. Note that Vg(IM) = Vg(

∑
ri∈h(I) riM) =

Vg(
∑
ri∈h(I)(riM : M)M) =

⋂
ri∈h(I) Vg(riM) by Theorem 3.1(ii). Hence U =

Cl.Specg(M)−Vg(IM) = Cl.Specg(M)−
⋂
ri∈h(I) Vg(riM) =

⋃
ri∈h(I)GX

cl
ri . There-

fore the set B is a base for for the Zariski topology on Cl.Specg(M). �

Theorem 4.3. Let R be a G-graded ring and M a graded R-module. If the natural
map ψ : Cl.Specg(M) −→ Specg(R) is surjective, then the open set GXcl

r is quasi-
compact for each r ∈ h(R); In particular, the space Cl.Specg(M) is quasi-compact.

Proof. Since B = {GXcl
r : r ∈ h(R)} forms a base for the Zariski topology on

Cl.Specg(M) by Theorem 4.2, for every open cover of GXcl
r , there is a set {rα ∈

h(R) | α ∈ Λ} such that GXcl
r ⊆

⋃
α∈ΛGX

cl
rα . By Theorem 4.1(ii) GXr = ψ(GXcl

r ) ⊆⋃
α∈Λ ψ(GXcl

rα) =
⋃
α∈ΛGXrα . Since GXr is quasi-compact ( [26, Proposition 3.8]),

there exists a finite subset Λ′ ⊂ Λ such that GXr ⊆
⋃
α∈Λ′ GXrα . By Theorem 4.1(i),

we get GXcl
r = ψ−1(GXr) ⊆

⋃
α∈Λ′ GXcl

rα . �

Let M be a G-graded R-module and Y be any subset of Cl.Specg(M). We will
denote the closure of Y in Cl.Specg(M) for the Zariski topology by Cl(Y ).

Theorem 4.4. Let R be a G-graded ring, M a graded R-module and Y ⊆ Cl.Specg(M).
Then Vg(=(Y )) = Cl(Y ). In particular, Y is closed if and only if Vg(=(Y )) = Y .
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Proof. By Lemma 3.3(iii), Y ⊆ Vg(=(Y )). Let Vg(N) be any closed subset of
Cl.Specg(M) containing Y . Then (N :R M) ⊆ (C :R M) for every C ∈ Y . This
implies that (N :R M) ⊆

⋂
C∈Y (C :R M) ⊆ (=(Y ) :R M). Hence, for every

D ∈ Vg(=(Y )), (N :R M) ⊆ (=(Y ) :R M) ⊆ (D :R M), that is, Vg(=(Y )) ⊆
Vg(N). Hence Vg(=(Y )) is the smallest closed subset of Cl.Specg(M) including Y ,
so Vg(=(Y )) = Cl(Y ). �

Theorem 4.5. Let R be a G-graded ring, M a graded R-module and C ∈ Cl.Specg(M).
Then:
(i) Cl({C}) = Vg(C).
(ii) For any D ∈ Cl.Specg(M), D ∈ Cl({C}), if and only if (C :R M) ⊆ (D :R M)
if and only if Vg(D) ⊆ Vg(C).

Proof. (i) Apply Theorem 4.4 by taking Y = {C}. (ii) This follows from (i). �

A topological space X is called irreducible if X 6= ∅ and every finite intersection
of non-empty open sets of X is non-empty. A (non-empty) subset Y of a topology
space X is called an irreducible set if the subspace Y of X is irreducible, equivalently
if Y1 and Y2 are closed subsets of X and satisfy Y ⊆ Y1 ∪ Y2, then Y ⊆ Y1 or Y ⊆ Y2

(see [18].)
The following corollary is a result of Theorem 4.5(i).

Corollary 4.6. Let R be a G-graded ring and M a graded R-module. Then for
every graded classical prime submodule C of M , Vg(C) is an irreducible closed subset
of Cl.Specg(M).

Theorem 4.7. Let R be a G-graded ring, M a graded R-module and Y ⊆ Cl.Specg(M).
If =(Y ) is a graded classical prime submodule of M , then Y is irreducible.

Proof. Assume that C := =(Y ) is a graded classical prime submodule of M . By
Theorem 4.4, cl(Y ) = Vg(C). Now let Y ⊆ Y1 ∪ Y2, where Y1, Y2 are closed sets.
Then we have Vg(C) = cl(Y ) ⊆ Y1 ∪Y2. Since Vg(C) ⊆ Y1 ∪Y2 and by Corollary 4.6,
Vg(C) is irreducible, Vg(C) ⊆ Y1 or Vg(C) ⊆ Y2. Hence, Y ⊆ Y1 or Y ⊆ Y2. Thus Y
is irreducible. �

Theorem 4.8. Let R be a G-graded ring, M a graded R-module and Y ⊆ Cl.Specg(M)
such that (=(Y ) :R M) = p is a graded prime ideal of R. If Cl.Specpg(M) 6= ∅, then
Y is irreducible.

Proof. Let C ∈ Cl.Specpg(M). Since (C :R M) = p = (=(Y ) :R M) by Lemma 3.6(i),
we have Vg(C) = Vg(=(Y ). Then Vg(C) = Vg(=(Y )) = Cl(Y ) by Theorem 4.4.
Therefore, Cl(Y ) is irreducible and so is Y . �

Let Y be a closed subset of a topological space. An element y ∈ Y is called
a generic point of Y if Y = cl({y}). Note that a generic point of the irreducible
closed subset Y of a topological space is unique if the topological space is a T0-space
(see [15]).

Theorem 4.9. Let R be a G-graded ring and M a graded R-module. Then:
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(i) Every C ∈ Cl.Specg(M) is a generic point of the irreducible closed subset Vg(C).
(ii) Every finite irreducible closed subset of Cl.Specg(M) has a generic point.

Proof. (i) is clear by Theorem 4.5(i).
(ii) Let Y be a finite irreducible closed subset of Cl.Specg(M) and Y = {C1, . . . , Cn},
where Ci ∈ Cl.Specg(M), n ∈ N. Then Y = cl(Y ) = Vg(C1 ∩ · · · ∩ Cn) = Vg(C1) ∪
· · ·∪Vg(Cn) by Theorem 4.4 and Theorem 3.1(iii). Since Y is irreducible, Y = Vg(Ci)
for some i(1 ≤ i ≤ n). Now by (i), Ci is a generic point of Y .

Theorem 4.10. Let R be a G-graded ring and M a graded R-module. Then the
following statements are equivalent for any C,D ∈ Cl.Specg(M):
(i) Cl.Specg(M) is a T0-space.
(ii) The natural map ψ : Cl.Specg(M) −→ Specg(R) is injective.
(iii) If Vg(C) = Vg(D), then C = D.
(iv) | Cl.Specpg(M) |≤ 1 for every graded prime ideal p of R.

Proof. (i)⇔ (iii) This follows from Theorem 4.5 and the fact that a topological space
is a T0-space if and only if the closures of distinct points are distinct.

The equivalences of (ii), (iii) and (iv) are proved in Theorem 3.8. �

Lemma 4.11. Let R be a G-graded ring and M a graded R-module. Let C ∈ Cl.Specg(M),
and Ω = {(D :R M) | D ∈ Cl.Specg(M)} ⊆ Specg(R). Then the set {C} is closed in
Cl.Specg(M) if and only if
(i) p = (C :R M) is a maximal element of the set Ω, and
(ii) Cl.Specpg(M) = {C}, that is, |Cl.Specpg(M)| = 1.

Proof. Assume that {C} is closed in Cl.Specg(M). By Theorem 4.5(i), we have
{C} = Cl({C}) = Vg(C). Let q ∈ Ω such that p ⊆ q. Then there exists D ∈
Cl.Specg(M) such that q = (D :R M). Hence (C :R M) = p ⊆ q = (D :R M). Thus
D ∈ Vg(C) = {C} so that D = C and p = q, which proves (i). Let C ′ ∈ Cl.Specpg(M).
Thus (C ′ :R M) = p = (C :R M) and hence C ′ ∈ Vg(C) = {C}. So C ′ = C and
(ii) follows. Conversely, we assume (i) and (ii), and show that Vg(C) ⊆ {C}. If
D ∈ Vg(C), then q = (D :R M) ⊇ (C :R M) = p. Therefore (i) implies q = p and
consequently (ii) implies D = C by (ii). Thus Vg(C) ⊆ {C}. Since C is a graded
classical prime we have {C} ⊆ Vg(C), so that Vg(C) = {C}. By Theorem 4.5(i),
Cl({C}) = {C}. Therefore the set {C} is closed in Cl.Specg(M). �

Let X be a topological space and let x1 and x2 be two points in X. We say that
x1 and x2 can be separated if each lies in an open set which does not contain the other
point. X is a T1-space if any two distinct points in X can be separated. A topological
space X is a T1-space if and only if all points of X are closed in X (see [18]).

Theorem 4.12. Let R be a G-graded ring, M a graded R-module and Ω = {(D :R
M) | D ∈ Cl.Specg(M)} ⊆ Specg(R). Then Cl.Specg(M) is a T1-space if and only if
(i) (C :R M) = p is a maximal element of Ω for all C ∈ Cl.Specg(M), and
(ii) |Cl.Specpg(M)| = 1 for every graded prime ideal p of R.
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Proof. If Cl.Specg(M) is a T1-space then the singleton sets are closed in Cl.Specg(M).
So we get (i) and (ii) by Lemma 4.11.

Conversely, (i) and (ii) are equivalent so that the singleton set {C} is closed in
Cl.Specg(M) for every C ∈ Cl.Specg(M), that is, Cl.Specg(M) is a T1-space. �

A spectral space is a topological space homomorphic to the prime spectrum of
a commutative ring equipped with the Zariski topology. Spectral spaces have been
characterized by Hochster [15] as the topological space W which satisfy the following
conditions:
(i) W is a T0-space.
(ii) W is quasi-compact.
(iii) the quasi-compact open subsets of W are closed under finite intersections and
form an open basis.
(iv) each irreducible closed subset of W has a generic point.

Theorem 4.13. Let R be a G-graded ring and M a graded R-module such that
Cl.Specg(M) is finite and |Cl.Specpg(M)| ≤ 1 for every graded prime ideal p of R.
Then Cl.Specg(M) is a spectral space.

Proof. Since Cl.Specg(M) is finite, every subset of Cl.Specg(M) is quasi-compact.
Hence the quasi-compact open sets of Cl.Specg(M) are closed under finite inter-
sections and form an open basis. Also by Theorem 4.10, Cl.Specg(M) a T0-space.
Moreover, every irreducible closed subset of Cl.Specg(M) has a generic point by
Theorem 4.9. Therefore Cl.Specg(M) is a spectral space by Hochster’s characteriza-
tion. �
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