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ON SOME MULTIVARIATE SUMMATORY FUNCTIONS OF THE
EULER PHI-FUNCTION

Khola Algali

Abstract. In this note we obtain an asymptotic formula with a power saving error term
for the summation function of Euler phi-function evaluated at iterated and generalized least
common multiples of four integer variables.

1. Introduction

In this paper we denote by [nq,...,ng] the least common multiple and by (ng,...,
ng) the greatest common divisor of positive integers ny,...,nk. In [2], Diaconis and
Erdos obtained asymptotic formulas for summatory functions

Z (m,n) and Z [m,n)
m,n<x m,n<x

of the greatest common divisor and the least common multiple. More recently,
Hilberdink in [6] investigated in more details the arithmetic function o : N x N — N,
defined by mon = ([22]),
the set of squarefree positive integers is an abelian group with respect to the opera-
tion o. Moreover, for any squarefree integer k € N, the set D(k) of all divisors of k
is a finite abelian group under the restriction of o on D(k). Hilberdink investigated
in depth discrete Fourier analysis and multiplicative functions on these finite groups
D(k). One particularly interesting feature is that the restriction of Mobius function
won D(k) is one of the characters of this group.

[m,n]
(m,n)
integers m and n appear in many papers in linear algebra (dealing with “arithmetical

matrices”) and in number theory, see for example [3-5,7]. Recently, T. Hilberdink

which has several very interesting properties. For example,

Quotients of the least common multiple and the greatest common divisor of
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and L. Té6th in [8] considered the problem of establishing an asymptotic formula for
[m,n]
(m,n)

m,n] w2 f
Z ([mvn]) = %az4 + O(x3log 2).

the summation function of and obtained the formula

m,n<lx
Moreover, the authors in [8] derived more general asymptotic formulas, where the
analogous summation is taken over k > 3 arguments. For an arithmetic function
f from a suitable class of multiplicative functions, the authors of [8] obtained the
asymptotic formulas for
Niy. ooy N
> f(ln,...onk])  and > f(H)
- - (n1,...,nk)
N1y o s NEST Ny, ..,NEgST
with the power saving of O(z'/27¢) in the error terms in both cases.
The author of the present note in [1] considered further summatory function for

[n1,me]® [eg1,omkge]®
(n1,e.mi)e? (nk+1,~~7nk+z)d}’ for
integers @ > ¢ > 1 and b > d > 0, which is a multiplicative function of k + ¢ variables.

Our goal in this note is to give similar generalization for the summation of Euler
phi-function ¢, where for simplicity of notation, we restrict ourselves to the case
k=0=2.

THEOREM 1.1. For integers a,b,c,d >0, a,b>1,a > ¢, b>d and for any 0 < € < %
we have

[n1,m2]*  [ng,n4)® _ Cacip,d 2a+2b+4 204264 1 te
Z @([(nlanz)“(nam)d ~(a+1)2(b+1)? . + O (3j )7

the following “generalized” least common multiple [

ni,n2,ng,ng <
where the implied constant depends only on € and the constant Cy c.b.q 15 given by the
Euler product

(-

P

4 0 © (pmax{(a maxfcmin){ul,uz},(bmax7dmin){ug,u4}})
> Z p(a+1)(V1+V2)+(b+1)(u3+y4)
v1,v2,v3,va=0
Here and through the paper, (amax —cmin){v;,r,} denotes a - max{vy,ve}—
¢ - min{vy,v5}. We recall that ¢ is a multiplicative function which is on prime
powers given by ¢(p®) = p® — p®~!. Because of multiplicativity of o, the function

a b
(n1,m2,n3,M4) = © (“2122]), ([Z:Zj])d]) will be a multiplicative function of 4 vari-

ables, enabling us to adapt the method from [8]. We recall that a function f : N* — C
is multiplicative if it satisfies

f(mlnlam2n2am3n3am4n4) - f(m17m2a m37m4)f(n17n27n37n4)

whenever (mimamsmyg, ninansng) = 1.

2. Proof of Theorem 1.1

To prove this theorem we need the following lemma:
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LEMMA 2.1. For integers a,b,c,d > 0, a,b > 1, a > ¢, b > d and complex numbers
2,1 < j <4 such that

1 1
Rz1, Rzo > a + 3 and Rzz,Rzg > b+ 3 (1)

we have

S © (“nhnz]; [’I’L3,7l4]::|>
L(Z1, 29,23, 24) = Z nzll,nfzzz 2(:3,n4)

Z4
ny'ny’ns’ng

ni,ne2,ng,na=1

=((21 — a)C(2z2 — a)((23 — b)((24 — b)H (21, 22, 23, 1), (2)
where H(z1, 29, 23,24) is a certain multiple Dirichlet series defined in the proof and
absolutely convergent in the region (1).

Proof. Because of the multiplicativity of the function

[n1,n2)*  [n3, nal® D
(n1,m2)¢" (n3,ma)?] )’

by [9, Proposition 11] the multiple Dirichlet series L(z1, 22, 23, 24) has the following
Euler product expansion:

L(21722723,2’4) :H Z

P vi,v2,v3,va=0
In each Euler’s factor corresponding to a prime p, we single out the contribution of
the terms for which v; +vo + 13 + 14 < 1:

(n17n27n37n4) @ <|:

© (pmax{(a max —cmin){vy,v2},(bmax —d min){ug,y4}})

priz +vozo+trzzztraza

a __ a—1 a _ a—1 b __ . b—1 b __ . b—1
L(Zl722,2’3,24):H 1+p p +P p +p p +p p
pA1 P2 p?s po
p
) (pmax{(a max —cmin){l/l,l/g},(bmax—dmirl){l/g,y4}})
+ Z pV1Z1+VQZQ+V3z3+u4Z4 . (3)
v1,v2,vs3,v4 >0
vy ~1FV22+ 1/33 +4I/4 >2

Next, for fixed 61 > a and 5 > b, in the region Rzy, Rzo > 01 > a and Rz3, Rzy >
62 > b, we have that

o (p

max{(a max —cmin){vq,v2},(b max —d min){u37u4}})

priz +vozotvszztrazy

pa(m +v2)+b(vs+ry) 1

< p51(1/1+1/2)+52(z/3+1/4) = p((Sl7(1)(V1+V2)+(527b)(y3+l/4) .

Since the number of solutions of 17 + v5 = m in nonnegative integers vy, is m + 1,
the sum over v1 + vo + v3 + v4 > 2 in equation (3) is bounded by

81 —a)m+(6a—b)n 2(61— 2(02—b :
e, pE P2Gi—a) T 200
Now, in the region Rz1,Rzo > max{d,a + 1} and Rz, Rz4 > max{ds,b + 1} we can
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define the function
L(Zla 224,23, 24)

C(z1 — a)((z2 — a)((z3 — b)( (24 — b)7

which in this region has the following Euler product decomposition:

1 | 1 1
ez 20,20) = ] (1 - pzl“) (1 - pz”) (1 - pz”) (1 - PZ“’)

p
1 1 1 1 1 1
x 1 + pzl—a - pzl—a+1 + pZQ—(l - p22—a+1 + p23—b - p23—b+1

1 1 0 1 1
+p24—b o pZ4—b+1 + p2(61-a) + p2(62-0)

1 1 1
- H (1 +0 ( 01— a+1 p2(61—a) - pS2—b+1 + p2(52—b)>) G

since the terms + o and ipzj — cancel out. On the other hand, the Euler’s product

in (4) converges absolutely for any 61 > a+ % and 69 > b+ % Therefore, the identity
(2) holds in the wider region (1). O

H(Zla 22,23, Z4) =

Now we write the multiple Dirichlet series expansion of the function H (21, 22, 23, 24)

from Lemma 2.1:
i h(nlan23n3an4)

Z1,,22,.23
ny'ny*ny’ng

H(z1,22,23,21) =

ni,n2,n3,ng=1

The function h(ni,ng,ng,ny) defined in this way is also a multiplicative function of

4 variables. From the identity (2) we infer the following convolution identity between
the corresponding multivariate arithmetic functions:

'I’Lyna nanb 1249474
w([[ LTl e 4]d]>: Y. Gtsisih h(dyda,ds,da),  (5)

(nhnz)c (n37n4) Jidi=na,...,jada=ng

where the sum runs over all 4-tuples (j1, jo, j3,74) in which j; is a positive divisor of
n;, for all 1 <i < 4.

Proof. (of Theorem 1.1) We start by employing the identity (5) in our summation
function:

ni,nol®  [ns, n4l® a0 -a b -
2 olGmr aangl) =, T, bt oo

ni,n2,n3,na<T Jj1d1<z,....,jads<z

= Z h(d17d2,d3,d4 Z ]1 Z ]2 Z ]3 Z ]4

d1,d2,d3,ds<z n<g J2<g;  4s< Jalgy

potl ¢
= Z h(dy,da, d3,ds) ((a—&—l)d““+0(dt1>>
1 1

d1,d2,d3,ds<z

.T(H_l O xa $b+1 O Ib l‘b+1 .Tb
X | =g +O0 (% ———= + 0 (5 ———
((a+1)d;+1 (%)) ((b+ 1)d5+ (d§)> ((b+1)d£1+1 (di

))
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x2a+2b+4

h(d17 d27 d3a d4)
- S + R(x). (6)
(a+1)2(b+ 1)2 dl,@%@ _p dittstaytagtt

Here, R(x) is the remainder term, which is bounded by

|h(dy,da,ds,ds)]
R((E) < Z purtuztuitos Z W, (7)

uy,uz€{a,a+1} di,d2,d3,da<z 1 "2 73 74

’U1,’U2€{b,b+1}

(u1,u2,v1,v2)#

(a+1,a+1,b+1,b+1)

where in the first summation at least one u; = a, i € {1,2}, or at least one v; = b,
J € {1,2}. For one such 4-tuple, for example for (uy, us,vy,v2) = (a,a+1,b0+1,b+1),
the corresponding contribution on the right hand side of (7) is bounded by

< gRot2bts Z |h(dy,da,ds, dy)| 202543 Z |h(dy, da, ds, dy)|d? "
a ja+1 jb+1 jb+1 atite
d1d2 d3 d4 dy,dz,d3,ds<z dlJr2+ d2+1dg+1d2+1
|h(d1,da,d3,dy)|

< p2at2b+fte 2 : A
- da+§+e
dy,dz,ds,ds<z ¢

for any € > 0. Here the 4-tuple of exponents (a+ % +e,a+1,b+1,b+1) belongs to the
region of absolute convergence (1). Therefore, by Lemma 2.1 the multiple Dirichlet
series (8) converges to a constant and hence we obtain the bound O(z20+20+3+¢) We
can bound all the other terms in (7) similarly and we get

R(l‘) < $2a+2b+%+6. (9)

Finally, we return to the main term in (6). We have:

di1,d2,d3,ds<z

(®)

)
a+1 ;b+1 30+1
d2 d3 d4

Z h(di,dy,d3,dy)

a+1 ja+1 jb+1 jb+1 —
d1,d2,d3,ds<x dl d2 d3 d4
oo
Z h(di,da,ds, da) Z Z h(dy,ds, ds, ds) (10)
da+1da+1db+1db+1 da+1da+1db+1db+1'
dq,d2,ds,dg=1 1 2 3 4 Ig{17273,4} d; >z i€l 1 2 3 4

I#0 dj<w,j¢I
The complete multiple Dirichlet series in (10) converges by Lemma 2.1 and its sum is
equal H(a+1,a+1,b+1,b+1). All 15 terms for subsets I # ) can be bounded similarly.
For illustration, we bound the contribution in (10) corresponding to I = {1, 3}:

—%-‘,—e —%-‘,—e
Z \h(dy,da, ds, ds)| Z |h(dy, do, ds, dy)|d) > dg
a+1 ja+1 jb+1 jb+1 atite jq41 btite pr1
di,dz>z 1 d2 d3 d4 dy,d3>z dl : dg dd : d4
d2,ds<z d2,ds<z
oo

< $_1+26 |h(d1ad27d37d4)|

- ati+e jq41 pti+e b1’
didy,ds,de=1 Ay 2 dy T dy ?dy

Here again the multiple Dirichlet series converges to a constant by Lemma 2.1, and
we get the bound O(z~172¢). In general we get that the contribution of the terms

corresponding to a subset I C {1,2,3,4}, I # () is bounded by O (x(*%“)u'), where
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|I] denotes the cardinality of the subset I. Therefore the total error obtained by
completing the main term in (6) is O($2“+2b+%+€), i.e. it is the same as in (9). This
finishes the proof of the required asymptotic formula with the constant Co cpq =
Ha+1l,a+1,b+1,0+1).

REMARK 2.2. Theorem 1.1 can be generalized by similar methods to other situations,
for example for summation functions of arithmetic functions of the form

( ) N f [n17 ) nk]A [nk+17 s 7nk+dB [nk+z+17 s 7nk+z+m]c
n17~"7nk‘+€+m a’ b c
(1, o)™ (Rhets ooy Mk)® T (Moot 1, s Mokt

for non-negative integers A > a, B > b,C > ¢ and for any complex valued multiplica-
tive arithmetic functions f which for some real r > 0 satisfy | f(p) —p"| = O(p"~2) for
all primes p and |f(p¥)| = O(p”") for all p and all v > 2. Examples of such functions
are n — n', the sum-of-divisors function o,(n) = >_,,, d" or the generalized Euler

function @r(n) = de N(%)dr'
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