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ON SOME MULTIVARIATE SUMMATORY FUNCTIONS OF THE
EULER PHI-FUNCTION

Khola Algali

Abstract. In this note we obtain an asymptotic formula with a power saving error term
for the summation function of Euler phi-function evaluated at iterated and generalized least
common multiples of four integer variables.

1. Introduction

In this paper we denote by [n1, . . . , nk] the least common multiple and by (n1, . . . ,
nk) the greatest common divisor of positive integers n1, . . . , nk. In [2], Diaconis and
Erdős obtained asymptotic formulas for summatory functions∑

m,n≤x

(m,n) and
∑

m,n≤x

[m,n]

of the greatest common divisor and the least common multiple. More recently,
Hilberdink in [6] investigated in more details the arithmetic function ◦ : N× N→ N,

defined by m◦n := [m,n]
(m,n) , which has several very interesting properties. For example,

the set of squarefree positive integers is an abelian group with respect to the opera-
tion ◦. Moreover, for any squarefree integer k ∈ N, the set D(k) of all divisors of k
is a finite abelian group under the restriction of ◦ on D(k). Hilberdink investigated
in depth discrete Fourier analysis and multiplicative functions on these finite groups
D(k). One particularly interesting feature is that the restriction of Möbius function
µ on D(k) is one of the characters of this group.

Quotients [m,n]
(m,n) of the least common multiple and the greatest common divisor of

integers m and n appear in many papers in linear algebra (dealing with “arithmetical
matrices”) and in number theory, see for example [3–5, 7]. Recently, T. Hilberdink

2010 Mathematics Subject Classification: 11A25, 11N37,11N60,11A05

Keywords and phrases: Euler phi-function; multiplicative functions; least common multiple;
greatest common divisor; asymptotic formula.

344



K. Algali 345

and L. Tóth in [8] considered the problem of establishing an asymptotic formula for

the summation function of [m,n]
(m,n) and obtained the formula∑

m,n≤x

[m,n]

(m,n)
=
π2

60
x4 +O(x3 log x).

Moreover, the authors in [8] derived more general asymptotic formulas, where the
analogous summation is taken over k ≥ 3 arguments. For an arithmetic function
f from a suitable class of multiplicative functions, the authors of [8] obtained the
asymptotic formulas for∑

n1,...,nk≤x

f ([n1, . . . , nk]) and
∑

n1,...,nk≤x

f

(
[n1, . . . , nk]

(n1, . . . , nk)

)
,

with the power saving of O(x1/2−ε) in the error terms in both cases.
The author of the present note in [1] considered further summatory function for

the following “generalized” least common multiple
[
[n1,...,nk]

a

(n1,...,nk)c
, [nk+1,...,nk+`]

b

(nk+1,...,nk+`)d

]
, for

integers a ≥ c ≥ 1 and b ≥ d ≥ 0, which is a multiplicative function of k+ ` variables.
Our goal in this note is to give similar generalization for the summation of Euler
phi-function ϕ, where for simplicity of notation, we restrict ourselves to the case
k = ` = 2.

Theorem 1.1. For integers a, b, c, d ≥ 0, a, b ≥ 1, a ≥ c, b ≥ d and for any 0 < ε < 1
2

we have∑
n1,n2,n3,n4≤x

ϕ

([
[n1, n2]a

(n1, n2)c
,

[n3, n4]b

(n3, n4)d

])
=

Ca,c;b,d
(a+ 1)2(b+ 1)2

x2a+2b+4 +Oε

(
x2a+2b+ 7

2+ε
)
,

where the implied constant depends only on ε and the constant Ca,c;b,d is given by the
Euler product∏

p

(
1− 1

p

)4 ∞∑
ν1,ν2,ν3,ν4=0

ϕ
(
pmax{(amax−cmin){ν1,ν2},(bmax−dmin){ν3,ν4}}

)
p(a+1)(ν1+ν2)+(b+1)(ν3+ν4)

.

Here and through the paper, (amax−cmin){ν1, ν2} denotes a · max{ν1, ν2}−
c · min{ν1, ν2}. We recall that ϕ is a multiplicative function which is on prime
powers given by ϕ(pa) = pa − pa−1. Because of multiplicativity of ϕ, the function

(n1, n2, n3, n4) 7→ ϕ
([

[n1,n2]
a

(n1,n2)c
, [n3,n4]

b

(n3,n4)d

])
will be a multiplicative function of 4 vari-

ables, enabling us to adapt the method from [8]. We recall that a function f : N4 → C
is multiplicative if it satisfies

f(m1n1,m2n2,m3n3,m4n4) = f(m1,m2,m3,m4)f(n1, n2, n3, n4)

whenever (m1m2m3m4, n1n2n3n4) = 1.

2. Proof of Theorem 1.1

To prove this theorem we need the following lemma:
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Lemma 2.1. For integers a, b, c, d ≥ 0, a, b ≥ 1, a ≥ c, b ≥ d and complex numbers
zj , 1 ≤ j ≤ 4 such that

<z1,<z2 > a+
1

2
and <z3,<z4 > b+

1

2
(1)

we have

L(z1, z2, z3, z4) :=

∞∑
n1,n2,n3,n4=1

ϕ
([

[n1,n2]
a

(n1,n2)c
, [n3,n4]

b

(n3,n4)d

])
nz11 n

z2
2 n

z3
3 n

z4
4

=ζ(z1 − a)ζ(z2 − a)ζ(z3 − b)ζ(z4 − b)H(z1, z2, z3, z4), (2)

where H(z1, z2, z3, z4) is a certain multiple Dirichlet series defined in the proof and
absolutely convergent in the region (1).

Proof. Because of the multiplicativity of the function

(n1, n2, n3, n4) 7−→ ϕ

([
[n1, n2]a

(n1, n2)c
,

[n3, n4]b

(n3, n4)d

])
,

by [9, Proposition 11] the multiple Dirichlet series L(z1, z2, z3, z4) has the following
Euler product expansion:

L(z1, z2, z3, z4) =
∏
p

∞∑
ν1,ν2,ν3,ν4=0

ϕ
(
pmax{(amax−cmin){ν1,ν2},(bmax−dmin){ν3,ν4}}

)
pν1z1+ν2z2+ν3z3+ν4z4

.

In each Euler’s factor corresponding to a prime p, we single out the contribution of
the terms for which ν1 + ν2 + ν3 + ν4 ≤ 1:

L(z1, z2, z3, z4) =
∏
p

(
1 +

pa − pa−1

pz1
+
pa − pa−1

pz2
+
pb − pb−1

pz3
+
pb − pb−1

pz4

+
∑

ν1,ν2,ν3,ν4≥0
ν1+ν2+ν3+ν4≥2

ϕ
(
pmax{(amax−cmin){ν1,ν2},(bmax−dmin){ν3,ν4}}

)
pν1z1+ν2z2+ν3z3+ν4z4

 . (3)

Next, for fixed δ1 > a and δ2 > b, in the region <z1,<z2 ≥ δ1 > a and <z3,<z4 ≥
δ2 > b, we have that∣∣∣∣∣ϕ

(
pmax{(amax−cmin){ν1,ν2},(bmax−dmin){ν3,ν4}}

)
pν1z1+ν2z2+ν3z3+ν4z4

∣∣∣∣∣
≤ pa(ν1+ν2)+b(ν3+ν4)

pδ1(ν1+ν2)+δ2(ν3+ν4)
=

1

p(δ1−a)(ν1+ν2)+(δ2−b)(ν3+ν4)
.

Since the number of solutions of ν1 + ν2 = m in nonnegative integers ν1, ν2 is m+ 1,
the sum over ν1 + ν2 + ν3 + ν4 ≥ 2 in equation (3) is bounded by∑

m+n≥2

(m+ 1)(n+ 1)

p(δ1−a)m+(δ2−b)n
= O

(
1

p2(δ1−a)
+

1

p2(δ2−b)

)
.

Now, in the region <z1,<z2 > max{δ1, a+ 1} and <z3,<z4 > max{δ2, b+ 1} we can
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define the function

H(z1, z2, z3, z4) :=
L(z1, z2, z3, z4)

ζ(z1 − a)ζ(z2 − a)ζ(z3 − b)ζ(z4 − b)
,

which in this region has the following Euler product decomposition:

H(z1, z2, z3, z4) =
∏
p

(
1− 1

pz1−a

)(
1− 1

pz2−a

)(
1− 1

pz3−b

)(
1− 1

pz4−b

)
×
(

1 +
1

pz1−a
− 1

pz1−a+1
+

1

pz2−a
− 1

pz2−a+1
+

1

pz3−b
− 1

pz3−b+1

+
1

pz4−b
− 1

pz4−b+1
+O

(
1

p2(δ1−a)
+

1

p2(δ2−b)

))
=
∏
p

(
1 +O

(
1

pδ1−a+1
+

1

p2(δ1−a)
+

1

pδ2−b+1
+

1

p2(δ2−b)

))
, (4)

since the terms ± 1
pzj−a and ± 1

pzj−b cancel out. On the other hand, the Euler’s product

in (4) converges absolutely for any δ1 > a+ 1
2 and δ2 > b+ 1

2 . Therefore, the identity
(2) holds in the wider region (1). �

Now we write the multiple Dirichlet series expansion of the functionH(z1, z2, z3, z4)
from Lemma 2.1:

H(z1, z2, z3, z4) =

∞∑
n1,n2,n3,n4=1

h(n1, n2, n3, n4)

nz11 n
z2
2 n

z3
3 n

z4
4

.

The function h(n1, n2, n3, n4) defined in this way is also a multiplicative function of
4 variables. From the identity (2) we infer the following convolution identity between
the corresponding multivariate arithmetic functions:

ϕ

([
[n1, n2]a

(n1, n2)c
,

[n3, n4]b

(n3, n4)d

])
=

∑
j1d1=n1,...,j4d4=n4

ja1 j
a
2 j
b
3j
b
4 h(d1, d2, d3, d4), (5)

where the sum runs over all 4-tuples (j1, j2, j3, j4) in which ji is a positive divisor of
ni, for all 1 ≤ i ≤ 4.

Proof. (of Theorem 1.1) We start by employing the identity (5) in our summation
function:∑
n1,n2,n3,n4≤x

ϕ

([
[n1, n2]a

(n1, n2)c
,

[n3, n4]b

(n3, n4)d

])
=

∑
j1d1≤x,...,j4d4≤x

ja1 j
a
2 j
b
3j
b
4 h(d1, d2, d3, d4)

=
∑

d1,d2,d3,d4≤x

h(d1, d2, d3, d4)
∑
j1≤ x

d1

ja1
∑
j2≤ x

d2

ja2
∑
j3≤ x

d3

jb3
∑
j4≤ x

d4

jb4

=
∑

d1,d2,d3,d4≤x

h(d1, d2, d3, d4)

(
xa+1

(a+ 1)da+1
1

+O

(
xa

da1

))

×
(

xa+1

(a+ 1)da+1
2

+O

(
xa

da2

))(
xb+1

(b+ 1)db+1
3

+O

(
xb

db3

))(
xb+1

(b+ 1)db+1
4

+

(
xb

db4

))
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=
x2a+2b+4

(a+ 1)2(b+ 1)2

∑
d1,d2,d3,d4≤x

h(d1, d2, d3, d4)

da+1
1 da+1

2 db+1
3 db+1

4

+R(x). (6)

Here, R(x) is the remainder term, which is bounded by

R(x)�
∑

u1,u2∈{a,a+1}
v1,v2∈{b,b+1}
(u1,u2,v1,v2)6=

(a+1,a+1,b+1,b+1)

xu1+u2+v1+v2
∑

d1,d2,d3,d4≤x

|h(d1, d2, d3, d4)|
du1
1 du2

2 dv13 d
v2
4

, (7)

where in the first summation at least one ui = a, i ∈ {1, 2}, or at least one vj = b,
j ∈ {1, 2}. For one such 4-tuple, for example for (u1, u2, v1, v2) = (a, a+1, b+1, b+1),
the corresponding contribution on the right hand side of (7) is bounded by

� x2a+2b+3
∑

d1,d2,d3,d4≤x

|h(d1, d2, d3, d4)|
da1d

a+1
2 db+1

3 db+1
4

= x2a+2b+3
∑

d1,d2,d3,d4≤x

|h(d1, d2, d3, d4)|d
1
2+ε
1

d
a+ 1

2+ε
1 da+1

2 db+1
3 db+1

4

≤ x2a+2b+ 7
2+ε

∑
d1,d2,d3,d4≤x

|h(d1, d2, d3, d4)|

d
a+ 1

2+ε
1 da+1

2 db+1
3 db+1

4

, (8)

for any ε > 0. Here the 4-tuple of exponents (a+ 1
2 +ε, a+1, b+1, b+1) belongs to the

region of absolute convergence (1). Therefore, by Lemma 2.1 the multiple Dirichlet

series (8) converges to a constant and hence we obtain the bound O(x2a+2b+ 7
2+ε). We

can bound all the other terms in (7) similarly and we get

R(x)� x2a+2b+ 7
2+ε. (9)

Finally, we return to the main term in (6). We have:∑
d1,d2,d3,d4≤x

h(d1, d2, d3, d4)

da+1
1 da+1

2 db+1
3 db+1

4

=

∞∑
d1,d2,d3,d4=1

h(d1, d2, d3, d4)

da+1
1 da+1

2 db+1
3 db+1

4

−
∑

I⊆{1,2,3,4}
I 6=∅

∑
di>x,i∈I
dj≤x,j /∈I

h(d1, d2, d3, d4)

da+1
1 da+1

2 db+1
3 db+1

4

. (10)

The complete multiple Dirichlet series in (10) converges by Lemma 2.1 and its sum is
equalH(a+1, a+1, b+1, b+1). All 15 terms for subsets I 6= ∅ can be bounded similarly.
For illustration, we bound the contribution in (10) corresponding to I = {1, 3}:∑

d1,d3>x
d2,d4≤x

|h(d1, d2, d3, d4)|
da+1
1 da+1

2 db+1
3 db+1

4

=
∑

d1,d3>x
d2,d4≤x

|h(d1, d2, d3, d4)|d−
1
2+ε

1 d
− 1

2+ε
3

d
a+ 1

2+ε
1 da+1

2 d
b+ 1

2+ε
3 db+1

4

≤ x−1+2ε
∞∑

d1,d2,d3,d4=1

|h(d1, d2, d3, d4)|

d
a+ 1

2+ε
1 da+1

2 d
b+ 1

2+ε
3 db+1

4

.

Here again the multiple Dirichlet series converges to a constant by Lemma 2.1, and
we get the bound O(x−1+2ε). In general we get that the contribution of the terms

corresponding to a subset I ⊆ {1, 2, 3, 4}, I 6= ∅ is bounded by O
(
x(−

1
2+ε)|I|

)
, where
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|I| denotes the cardinality of the subset I. Therefore the total error obtained by

completing the main term in (6) is O(x2a+2b+ 7
2+ε), i.e. it is the same as in (9). This

finishes the proof of the required asymptotic formula with the constant Ca,c;b,d =
H(a+ 1, a+ 1, b+ 1, b+ 1). �

Remark 2.2. Theorem 1.1 can be generalized by similar methods to other situations,
for example for summation functions of arithmetic functions of the form

(n1, . . . , nk+`+m) 7→ f

([
[n1, . . . , nk]A

(n1, . . . , nk)a
,

[nk+1, . . . , nk+`]
B

(nk+1, . . . , nk+`)b
,

[nk+`+1, . . . , nk+`+m]C

(nk+`+1, . . . , nk+`+m)c

])
for non-negative integers A ≥ a,B ≥ b, C ≥ c and for any complex valued multiplica-
tive arithmetic functions f which for some real r > 0 satisfy |f(p)−pr| = O(pr−

1
2 ) for

all primes p and |f(pν)| = O(pνr) for all p and all ν ≥ 2. Examples of such functions
are n 7→ nr, the sum-of-divisors function σr(n) =

∑
d|n d

r or the generalized Euler

function ϕr(n) =
∑
d|n µ(nd )dr.
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