MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 70, 4 (2018), 344–349 December 2018

research paper оригинални научни рад

ON SOME MULTIVARIATE SUMMATORY FUNCTIONS OF THE EULER PHI-FUNCTION

Khola Algali

Abstract. In this note we obtain an asymptotic formula with a power saving error term for the summation function of Euler phi-function evaluated at iterated and generalized least common multiples of four integer variables.

1. Introduction

In this paper we denote by $[n_1, \ldots, n_k]$ the least common multiple and by (n_1, \ldots, n_k) the greatest common divisor of positive integers n_1, \ldots, n_k . In [2], Diaconis and Erdős obtained asymptotic formulas for summatory functions

$$\sum_{m,n\leq x}(m,n) \qquad \text{and} \qquad \sum_{m,n\leq x}[m,n]$$

of the greatest common divisor and the least common multiple. More recently, Hilberdink in [6] investigated in more details the arithmetic function $\circ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, defined by $m \circ n := \frac{[m,n]}{(m,n)}$, which has several very interesting properties. For example, the set of squarefree positive integers is an abelian group with respect to the operation \circ . Moreover, for any squarefree integer $k \in \mathbb{N}$, the set D(k) of all divisors of kis a finite abelian group under the restriction of \circ on D(k). Hilberdink investigated in depth discrete Fourier analysis and multiplicative functions on these finite groups D(k). One particularly interesting feature is that the restriction of Möbius function μ on D(k) is one of the characters of this group.

Quotients $\frac{[m,n]}{(m,n)}$ of the least common multiple and the greatest common divisor of integers m and n appear in many papers in linear algebra (dealing with "arithmetical matrices") and in number theory, see for example [3–5,7]. Recently, T. Hilberdink

²⁰¹⁰ Mathematics Subject Classification: 11A25, 11N37,11N60,11A05

Keywords and phrases: Euler phi-function; multiplicative functions; least common multiple; greatest common divisor; asymptotic formula.

K. Algali

and L. Tóth in [8] considered the problem of establishing an asymptotic formula for the summation function of $\frac{[m,n]}{(m,n)}$ and obtained the formula

$$\sum_{m,n \le x} \frac{[m,n]}{(m,n)} = \frac{\pi^2}{60} x^4 + O(x^3 \log x).$$

Moreover, the authors in [8] derived more general asymptotic formulas, where the analogous summation is taken over $k \geq 3$ arguments. For an arithmetic function f from a suitable class of multiplicative functions, the authors of [8] obtained the asymptotic formulas for

$$\sum_{n_1,\dots,n_k \le x} f\left([n_1,\dots,n_k]\right) \quad \text{and} \quad \sum_{n_1,\dots,n_k \le x} f\left(\frac{[n_1,\dots,n_k]}{(n_1,\dots,n_k)}\right),$$

with the power saving of $O(x^{1/2-\epsilon})$ in the error terms in both cases.

The author of the present note in [1] considered further summatory function for the following "generalized" least common multiple $\left[\frac{[n_1,\ldots,n_k]^a}{(n_1,\ldots,n_k)^c},\frac{[n_{k+1},\ldots,n_{k+\ell}]^b}{(n_{k+1},\ldots,n_{k+\ell})^d}\right]$, for integers $a \ge c \ge 1$ and $b \ge d \ge 0$, which is a multiplicative function of $k + \ell$ variables. Our goal in this note is to give similar generalization for the summation of Euler phi-function φ , where for simplicity of notation, we restrict ourselves to the case $k = \ell = 2$.

Theorem 1.1. For integers $a, b, c, d \ge 0$, $a, b \ge 1$, $a \ge c$, $b \ge d$ and for any $0 < \epsilon < \frac{1}{2}$ we have

$$\sum_{n_1,n_2,n_3,n_4 \le x} \varphi\left(\left[\frac{[n_1,n_2]^a}{(n_1,n_2)^c}, \frac{[n_3,n_4]^b}{(n_3,n_4)^d}\right]\right) = \frac{C_{a,c;b,d}}{(a+1)^2(b+1)^2} \ x^{2a+2b+4} + O_\epsilon\left(x^{2a+2b+\frac{7}{2}+\epsilon}\right)$$

where the implied constant depends only on ϵ and the constant $C_{a,c;b,d}$ is given by the Euler product

$$\prod_{p} \left(1 - \frac{1}{p}\right)^{4} \sum_{\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4} = 0}^{\infty} \frac{\varphi\left(p^{\max\{(a \max - c \min)\{\nu_{1}, \nu_{2}\}, (b \max - d \min)\{\nu_{3}, \nu_{4}\}\}\right)}{p^{(a+1)(\nu_{1} + \nu_{2}) + (b+1)(\nu_{3} + \nu_{4})}}$$

Here and through the paper, $(a \max - c \min)\{\nu_1, \nu_2\}$ denotes $a \cdot \max\{\nu_1, \nu_2\} - c \cdot \min\{\nu_1, \nu_2\}$. We recall that φ is a multiplicative function which is on prime powers given by $\varphi(p^a) = p^a - p^{a-1}$. Because of multiplicativity of φ , the function $(n_1, n_2, n_3, n_4) \mapsto \varphi\left(\left[\frac{[n_1, n_2]^a}{(n_1, n_2)^c}, \frac{[n_3, n_4]^b}{(n_3, n_4)^d}\right]\right)$ will be a multiplicative function of 4 variables, enabling us to adapt the method from [8]. We recall that a function $f: \mathbb{N}^4 \to \mathbb{C}$ is multiplicative if it satisfies

 $f(m_1n_1, m_2n_2, m_3n_3, m_4n_4) = f(m_1, m_2, m_3, m_4)f(n_1, n_2, n_3, n_4)$ whenever $(m_1m_2m_3m_4, n_1n_2n_3n_4) = 1$.

2. Proof of Theorem 1.1

To prove this theorem we need the following lemma:

346 On some multivariate summatory functions of the Euler phi-function

LEMMA 2.1. For integers $a, b, c, d \ge 0$, $a, b \ge 1$, $a \ge c$, $b \ge d$ and complex numbers $z_j, 1 \le j \le 4$ such that

$$\Re z_1, \Re z_2 > a + \frac{1}{2}$$
 and $\Re z_3, \Re z_4 > b + \frac{1}{2}$ (1)

we have

$$L(z_1, z_2, z_3, z_4) := \sum_{\substack{n_1, n_2, n_3, n_4 = 1 \\ = \zeta(z_1 - a)\zeta(z_2 - a)\zeta(z_2 - a)\zeta(z_3 - b)\zeta(z_4 - b)H(z_1, z_2, z_3, z_4),} \frac{\varphi\left(\left[\frac{[n_1, n_2]^a}{(n_1, n_2)^c}, \frac{[n_3, n_4]^b}{(n_3, n_4)^d}\right]\right)}{n_1^{z_1}n_2^{z_2}n_3^{z_3}n_4^{z_4}}$$

where $H(z_1, z_2, z_3, z_4)$ is a certain multiple Dirichlet series defined in the proof and absolutely convergent in the region (1).

Proof. Because of the multiplicativity of the function

$$(n_1, n_2, n_3, n_4) \longmapsto \varphi \left(\left[\frac{[n_1, n_2]^a}{(n_1, n_2)^c}, \frac{[n_3, n_4]^b}{(n_3, n_4)^d} \right] \right),$$

by [9, Proposition 11] the multiple Dirichlet series $L(z_1, z_2, z_3, z_4)$ has the following Euler product expansion:

$$L(z_1, z_2, z_3, z_4) = \prod_p \sum_{\nu_1, \nu_2, \nu_3, \nu_4 = 0}^{\infty} \frac{\varphi \left(p^{\max\{(a \max - c \min)\{\nu_1, \nu_2\}, (b \max - d \min)\{\nu_3, \nu_4\}\}} \right)}{p^{\nu_1 z_1 + \nu_2 z_2 + \nu_3 z_3 + \nu_4 z_4}}.$$

In each Euler's factor corresponding to a prime p, we single out the contribution of the terms for which $\nu_1 + \nu_2 + \nu_3 + \nu_4 \leq 1$:

$$L(z_1, z_2, z_3, z_4) = \prod_p \left(1 + \frac{p^a - p^{a-1}}{p^{z_1}} + \frac{p^a - p^{a-1}}{p^{z_2}} + \frac{p^b - p^{b-1}}{p^{z_3}} + \frac{p^b - p^{b-1}}{p^{z_4}} + \sum_{\substack{\nu_1, \nu_2, \nu_3, \nu_4 \ge 0\\\nu_1 + \nu_2 + \nu_3 + \nu_4 \ge 2}} \frac{\varphi \left(p^{\max\{(a \max - c \min\{\nu_1, \nu_2\}, (b \max - d \min\{\nu_3, \nu_4\}\})}{p^{\nu_1 z_1 + \nu_2 z_2 + \nu_3 z_3 + \nu_4 z_4}} \right)}{p^{\nu_1 z_1 + \nu_2 z_2 + \nu_3 z_3 + \nu_4 z_4}} \right).$$
(3)

Next, for fixed $\delta_1 > a$ and $\delta_2 > b$, in the region $\Re z_1, \Re z_2 \ge \delta_1 > a$ and $\Re z_3, \Re z_4 \ge \delta_2 > b$, we have that

$$\left| \frac{\varphi \left(p^{\max\{(a \max - c \min)\{\nu_1, \nu_2\}, (b \max - d \min)\{\nu_3, \nu_4\}\}} \right)}{p^{\nu_1 z_1 + \nu_2 z_2 + \nu_3 z_3 + \nu_4 z_4}} \right| \\ \leq \frac{p^{a(\nu_1 + \nu_2) + b(\nu_3 + \nu_4)}}{p^{\delta_1(\nu_1 + \nu_2) + \delta_2(\nu_3 + \nu_4)}} = \frac{1}{p^{(\delta_1 - a)(\nu_1 + \nu_2) + (\delta_2 - b)(\nu_3 + \nu_4)}}$$

Since the number of solutions of $\nu_1 + \nu_2 = m$ in nonnegative integers ν_1, ν_2 is m + 1, the sum over $\nu_1 + \nu_2 + \nu_3 + \nu_4 \ge 2$ in equation (3) is bounded by

$$\sum_{m+n\geq 2} \frac{(m+1)(n+1)}{p^{(\delta_1-a)m+(\delta_2-b)n}} = O\left(\frac{1}{p^{2(\delta_1-a)}} + \frac{1}{p^{2(\delta_2-b)}}\right).$$

Now, in the region $\Re z_1, \Re z_2 > \max\{\delta_1, a+1\}$ and $\Re z_3, \Re z_4 > \max\{\delta_2, b+1\}$ we can

K. Algali

define the function

$$\begin{split} H(z_1, z_2, z_3, z_4) &:= \frac{L(z_1, z_2, z_3, z_4)}{\zeta(z_1 - a)\zeta(z_2 - a)\zeta(z_3 - b)\zeta(z_4 - b)},\\ \text{which in this region has the following Euler product decomposition:}\\ H(z_1, z_2, z_3, z_4) &= \prod_p \left(1 - \frac{1}{p^{z_1 - a}}\right) \left(1 - \frac{1}{p^{z_2 - a}}\right) \left(1 - \frac{1}{p^{z_3 - b}}\right) \left(1 - \frac{1}{p^{z_4 - b}}\right)\\ &\times \left(1 + \frac{1}{p^{z_1 - a}} - \frac{1}{p^{z_1 - a + 1}} + \frac{1}{p^{z_2 - a}} - \frac{1}{p^{z_2 - a + 1}} + \frac{1}{p^{z_3 - b}} - \frac{1}{p^{z_3 - b + 1}}\right)\\ &+ \frac{1}{p^{z_4 - b}} - \frac{1}{p^{z_4 - b + 1}} + O\left(\frac{1}{p^{2(\delta_1 - a)}} + \frac{1}{p^{2(\delta_2 - b)}}\right)\right)\\ &= \prod_p \left(1 + O\left(\frac{1}{p^{\delta_1 - a + 1}} + \frac{1}{p^{2(\delta_1 - a)}} + \frac{1}{p^{\delta_2 - b + 1}} + \frac{1}{p^{2(\delta_2 - b)}}\right)\right), \quad (4) \end{split}$$

since the terms $\pm \frac{1}{p^{z_j-a}}$ and $\pm \frac{1}{p^{z_j-b}}$ cancel out. On the other hand, the Euler's product in (4) converges absolutely for any $\delta_1 > a + \frac{1}{2}$ and $\delta_2 > b + \frac{1}{2}$. Therefore, the identity (2) holds in the wider region (1).

Now we write the multiple Dirichlet series expansion of the function $H(z_1, z_2, z_3, z_4)$ from Lemma 2.1:

$$H(z_1, z_2, z_3, z_4) = \sum_{n_1, n_2, n_3, n_4=1}^{\infty} \frac{h(n_1, n_2, n_3, n_4)}{n_1^{z_1} n_2^{z_2} n_3^{z_3} n_4^{z_4}}$$

The function $h(n_1, n_2, n_3, n_4)$ defined in this way is also a multiplicative function of 4 variables. From the identity (2) we infer the following convolution identity between the corresponding multivariate arithmetic functions:

$$\varphi\left(\left[\frac{[n_1, n_2]^a}{(n_1, n_2)^c}, \frac{[n_3, n_4]^b}{(n_3, n_4)^d}\right]\right) = \sum_{j_1d_1=n_1, \dots, j_4d_4=n_4} j_1^a j_2^a j_3^b j_4^b \quad h(d_1, d_2, d_3, d_4), \quad (5)$$

where the sum runs over all 4-tuples (j_1, j_2, j_3, j_4) in which j_i is a positive divisor of n_i , for all $1 \le i \le 4$.

Proof. (of Theorem 1.1) We start by employing the identity (5) in our summation function:

$$\begin{split} \sum_{n_1,n_2,n_3,n_4 \le x} \varphi \left(\left[\frac{[n_1,n_2]^a}{(n_1,n_2)^c}, \frac{[n_3,n_4]^b}{(n_3,n_4)^d} \right] \right) &= \sum_{j_1 d_1 \le x, \dots, j_4 d_4 \le x} j_1^a j_2^a j_3^b j_3^b \quad h(d_1,d_2,d_3,d_4) \\ &= \sum_{d_1,d_2,d_3,d_4 \le x} h(d_1,d_2,d_3,d_4) \sum_{j_1 \le \frac{x}{d_1}} j_1^a \sum_{j_2 \le \frac{x}{d_2}} j_2^a \sum_{j_3 \le \frac{x}{d_3}} j_3^b \sum_{j_4 \le \frac{x}{d_4}} j_4^b \\ &= \sum_{d_1,d_2,d_3,d_4 \le x} h(d_1,d_2,d_3,d_4) \left(\frac{x^{a+1}}{(a+1)d_1^{a+1}} + O\left(\frac{x^a}{d_1^a}\right) \right) \\ & \times \left(\frac{x^{a+1}}{(a+1)d_2^{a+1}} + O\left(\frac{x^a}{d_2^a}\right) \right) \left(\frac{x^{b+1}}{(b+1)d_3^{b+1}} + O\left(\frac{x^b}{d_3^b}\right) \right) \left(\frac{x^{b+1}}{(b+1)d_4^{b+1}} + \left(\frac{x^b}{d_4^b}\right) \right) \end{split}$$

347

348 On some multivariate summatory functions of the Euler phi-function

$$=\frac{x^{2a+2b+4}}{(a+1)^2(b+1)^2}\sum_{d_1,d_2,d_3,d_4\leq x}\frac{h(d_1,d_2,d_3,d_4)}{d_1^{a+1}d_2^{a+1}d_3^{b+1}d_4^{b+1}}+R(x).$$
(6)

Here, R(x) is the remainder term, which is bounded by

$$R(x) \ll \sum_{\substack{u_1, u_2 \in \{a, a+1\} \\ v_1, v_2 \in \{b, b+1\} \\ (u_1, u_2, v_1, v_2) \neq \\ (a+1, a+1, b+1, b+1)}} x^{u_1 + u_2 + v_1 + v_2} \sum_{\substack{d_1, d_2, d_3, d_4 \le x}} \frac{|h(d_1, d_2, d_3, d_4)|}{d_1^{u_1} d_2^{u_2} d_3^{v_1} d_4^{v_2}},$$
(7)

where in the first summation at least one $u_i = a, i \in \{1, 2\}$, or at least one $v_j = b$, $j \in \{1, 2\}$. For one such 4-tuple, for example for $(u_1, u_2, v_1, v_2) = (a, a+1, b+1, b+1)$, the corresponding contribution on the right hand side of (7) is bounded by

$$\ll x^{2a+2b+3} \sum_{d_1,d_2,d_3,d_4 \le x} \frac{|h(d_1,d_2,d_3,d_4)|}{d_1^a d_2^{a+1} d_3^{b+1} d_4^{b+1}} = x^{2a+2b+3} \sum_{d_1,d_2,d_3,d_4 \le x} \frac{|h(d_1,d_2,d_3,d_4)| d_1^{\frac{1}{2}+\epsilon}}{d_1^{a+\frac{1}{2}+\epsilon} d_2^{a+1} d_3^{b+1} d_4^{b+1}} \\ \le x^{2a+2b+\frac{7}{2}+\epsilon} \sum_{d_1,d_2,d_3,d_4 \le x} \frac{|h(d_1,d_2,d_3,d_4)|}{d_1^{a+\frac{1}{2}+\epsilon} d_2^{a+1} d_3^{b+1} d_4^{b+1}},$$
(8)

for any $\epsilon > 0$. Here the 4-tuple of exponents $(a + \frac{1}{2} + \epsilon, a + 1, b + 1, b + 1)$ belongs to the region of absolute convergence (1). Therefore, by Lemma 2.1 the multiple Dirichlet series (8) converges to a constant and hence we obtain the bound $O(x^{2a+2b+\frac{7}{2}+\epsilon})$. We can bound all the other terms in (7) similarly and we get

$$R(x) \ll x^{2a+2b+\frac{7}{2}+\epsilon}.$$
(9)

Finally, we return to the main term in (6). We have:

$$\sum_{\substack{d_1,d_2,d_3,d_4 \le x}} \frac{h(d_1,d_2,d_3,d_4)}{d_1^{a+1}d_2^{a+1}d_3^{b+1}d_4^{b+1}} = \sum_{\substack{d_1,d_2,d_3,d_4=1}}^{\infty} \frac{h(d_1,d_2,d_3,d_4)}{d_1^{a+1}d_2^{a+1}d_3^{b+1}d_4^{b+1}} - \sum_{\substack{I \subseteq \{1,2,3,4\}\\I \neq \emptyset}} \sum_{\substack{d_i > x, i \in I\\d_j \le x, j \notin I}} \frac{h(d_1,d_2,d_3,d_4)}{d_1^{a+1}d_2^{a+1}d_3^{b+1}d_4^{b+1}}.$$
 (10)

The complete multiple Dirichlet series in (10) converges by Lemma 2.1 and its sum is equal H(a+1, a+1, b+1, b+1). All 15 terms for subsets $I \neq \emptyset$ can be bounded similarly. For illustration, we bound the contribution in (10) corresponding to $I = \{1, 3\}$:

$$\sum_{\substack{d_1,d_3>x\\d_2,d_4\leq x}} \frac{|h(d_1,d_2,d_3,d_4)|}{d_1^{a+1}d_2^{a+1}d_3^{b+1}d_4^{b+1}} = \sum_{\substack{d_1,d_3>x\\d_2,d_4\leq x}} \frac{|h(d_1,d_2,d_3,d_4)|d_1^{-\frac{1}{2}+\epsilon}d_3^{-\frac{1}{2}+\epsilon}}{d_1^{a+\frac{1}{2}+\epsilon}d_2^{a+1}d_3^{b+\frac{1}{2}+\epsilon}d_4^{b+1}}$$
$$\leq x^{-1+2\epsilon} \sum_{\substack{d_1,d_2,d_3,d_4=1\\d_1,d_2,d_3,d_4=1}}^{\infty} \frac{|h(d_1,d_2,d_3,d_4)|}{d_1^{a+\frac{1}{2}+\epsilon}d_2^{a+1}d_3^{b+\frac{1}{2}+\epsilon}d_4^{b+1}}.$$

Here again the multiple Dirichlet series converges to a constant by Lemma 2.1, and we get the bound $O(x^{-1+2\epsilon})$. In general we get that the contribution of the terms corresponding to a subset $I \subseteq \{1, 2, 3, 4\}$, $I \neq \emptyset$ is bounded by $O\left(x^{(-\frac{1}{2}+\epsilon)|I|}\right)$, where

K. Algali

|I| denotes the cardinality of the subset I. Therefore the total error obtained by completing the main term in (6) is $O(x^{2a+2b+\frac{7}{2}+\epsilon})$, i.e. it is the same as in (9). This finishes the proof of the required asymptotic formula with the constant $C_{a,c;b,d} = H(a+1, a+1, b+1, b+1)$.

REMARK 2.2. Theorem 1.1 can be generalized by similar methods to other situations, for example for summation functions of arithmetic functions of the form

 $(n_1, \ldots, n_{k+\ell+m}) \mapsto f\left(\left[\frac{[n_1, \ldots, n_k]^A}{(n_1, \ldots, n_k)^a}, \frac{[n_{k+1}, \ldots, n_{k+\ell}]^B}{(n_{k+1}, \ldots, n_{k+\ell})^b}, \frac{[n_{k+\ell+1}, \ldots, n_{k+\ell+m}]^C}{(n_{k+\ell+1}, \ldots, n_{k+\ell+m})^c}\right]\right)$ for non-negative integers $A \ge a, B \ge b, C \ge c$ and for any complex valued multiplicative arithmetic functions f which for some real r > 0 satisfy $|f(p) - p^r| = O(p^{r-\frac{1}{2}})$ for all primes p and $|f(p^{\nu})| = O(p^{\nu r})$ for all p and all $\nu \ge 2$. Examples of such functions are $n \mapsto n^r$, the sum-of-divisors function $\sigma_r(n) = \sum_{d|n} d^r$ or the generalized Euler function $\varphi_r(n) = \sum_{d|n} \mu(\frac{n}{d})d^r$.

ACKNOWLEDGEMENT. The author would like to express her sincere thanks to the anonymous referees for a careful reading and valuable comments.

References

- K. Algali, On some multivariate LCM and GCD sums, Turk. J. Math., to appear, DOI: 10.3906/mat-1706-68
- [2] P. Diaconis, P. Erdős, On the distribution of the greatest common divisor, Technical Report No.12, Department of Statistics, Stanford University, Stanford, 1977; reprinted in: A Festschrift for Herman Rubin, in: IMS Lecture Notes Monogr. Ser., vol. 45, Inst. Math. Statist., (2004), 56–61.
- [3] T. Dyer, G. Harman, Sums involving common divisors, J. Lond. Math. Soc. 34 (1986), 1–11.
- [4] I.S. Gál, A theorem concerning Diophantine approximations, Nieuw Arch. Wiskd. 23 (1949), 13–38
- [5] P. Haukkanen, P. Ilmonen, A. Nalli, J. Sillanpää, On unitary analogs of GCD reciprocal LCM matrices, Linear Multilinear A., 58 (2010), 599–616.
- [6] T. Hilberdink, The group of squarefree integers, Linear Algebra Appl., 457 (2014), 383–399.
- [7] T. Hilberdink, An optimization problem concerning multiplicative functions, Linear Algebra Appl., 485 (2015), 289–304.
- [8] T. Hilberdink, L. Tóth, On the average value of the least common multiple of k positive integers, J. Number Theory, 169 (2016), 327–341
- [9] L. Tóth, Multiplicative Arithmetic Functions of Several Variables: A Survey, in Mathematics Without Boundaries, Surveys in Pure Mathematics, T. M. Rassias, P. M. Pardalos (eds.), Springer, 2014, 483–514

(received 20.11.2017; in revised form 10.05.2018; available online 27.07.2018)

University of Belgrade, Faculty of Mathematics, Studentski Trg 16, p.p. 550, 11000 Belgrade, Serbia

E-mail: kholaalgale@yahoo.com

349