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Abstract. A well known result by O. Kowalski and J. Szenthe says that any homoge-
neous Riemannian manifold admits a homogeneous geodesic through any point. This was
proved by the algebraic method using the reductive decomposition of the Lie algebra of the
isometry group. In previous papers by the author, the existence of a homogeneous geodesic in
any homogeneous pseudo-Riemannian manifold and also in any homogeneous affine manifold
was proved. In this setting, a new method based on affine Killing vector fields was developed.
Using this method, it was further proved that any homogeneous Lorentzian manifold of even
dimension admits a light-like homogeneous geodesic and any homogeneous Finsler space of
odd dimension admits a homogeneous geodesic. In the present paper, the affine method is
further refined for Finsler spaces and it is proved that any homogeneous Berwald space or
homogeneous reversible Finsler space admits a homogeneous geodesic through any point.

1. Introduction

Let M be either a pseudo-Riemannian manifold (M, g), or a Finsler space (M,F ), or
an affine manifold (M,∇). If there is a connected Lie group G which acts transitively
on M as a group of isometries, respectively, of affine diffeomorphisms, then M is
called a homogeneous manifold . It can be naturally identified with the homogeneous
space G/H, where H is the isotropy group of the origin p ∈M .

A geodesic γ(s) through the point p is homogeneous if it is an orbit of a one-
parameter group of isometries, respectively, of affine diffeomorphisms. More explicitly,
if s is an affine parameter and γ(s) is defined in an open interval J , there exists a
diffeomorphism s = ϕ(t) between the real line and the open interval J and a nonzero
vector X ∈ g such that γ(ϕ(t)) = exp(tX)(p) for all t ∈ R. The vector X is called a
geodesic vector. The diffeomorphism ϕ(t) may be nontrivial only for null geodesics in
a properly pseudo-Riemannian manifold or for geodesics in affine manifolds.
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A homogeneous Riemannian manifold (M, g) or a homogeneous Finsler space
(M,F ) is always a reductive homogeneous space: We denote by g and h the Lie alge-
bras of G and H respectively and consider the adjoint representation Ad: H × g→ g
of H on g. There exists a reductive decomposition of the form g = m+ h where m ⊂ g
is a vector subspace such that Ad(H)(m) ⊂ m. For a fixed reductive decomposition
g = m + h there is the natural identification of m ⊂ g = TeG with the tangent space
TpM via the projection π : G→ G/H = M . Using this natural identification and the
scalar product or the Minkovski norm on TpM , we obtain the invariant scalar product
〈 , 〉 or the invariant Minkowski norm denoted again by F and its fundamental tensor
g on m. It will be clear from the context whether g means the pseudo-Riemannian
metric on the manifold or the fundamental tensor on m coming from the Finsler met-
ric. In the second case, it is used usually with the subscript in the form gX . In the
pseudo-Riemannian reductive case, geodesic vectors are characterized by the following
geodesic lemma.

Lemma 1.1 ( [9,11,13]). Let (G/H, g) be a reductive homogeneous pseudo-Riemannian
manifold and X ∈ g. Then the curve γ(t) = exp(tX)(p) is geodesic with respect to
some parameter s if and only if 〈[X,Z]m, Xm〉 = k〈Xm, Z〉, for all Z ∈ m and for
some constant k ∈ R. If k = 0, then t is an affine parameter for this geodesic. If
k 6= 0, then s = e−kt is an affine parameter for the geodesic. The second case can
occur only if the curve γ(t) is a null curve in a properly pseudo-Riemannian space.

In the above formula, the subscript m refers to the m-component of vectors from g.
The Finslerian version of this lemma was proved in [14].

Lemma 1.2 ( [14]). Let (G/H,F ) be a homogeneous Finsler space. The vector X ∈ g
is a geodesic vector if and only if it holds gXm

([X,Z]m, Xm) = 0, for all Z ∈ m.

Another possible approach is to study the manifold M using a more fundamental
affine method, which was proposed by the present author, O. Kowalski and Z. Vlášek
in [7, 10]. It is based on the well known fact that a homogeneous manifold M with
the origin p admits n = dimM fundamental vector fields (Killing vector fields) which
are linearly independent at each point of some neighbourhood of p. Also, in a homo-
geneous space M = G/H with an invariant affine connection ∇, each regular orbit of
a 1-parameter subgroup gt ⊂ G on M is an integral curve of an affine Killing vector
field on M .

Lemma 1.3 ( [10]). The integral curve γ of a nonvanishing Killing vector field Z on
M = (G/H,∇) is geodesic if and only if ∇Zγ(t)Z = kγ · Zγ(t) holds along γ, where
kγ ∈ R is a constant. If kγ = 0, then t is the affine parameter of geodesic γ. If
kγ 6= 0, then the affine parameter of this geodesic is s = ekγt.

In the paper [12], O. Kowalski and J. Szenthe proved that any homogeneous
Riemannian manifold admits a homogeneous geodesic through the origin. The gener-
alization to the pseudo-Riemannian (reductive and nonreductive) case was obtained
by the present author in [5] in the framework of a more general result, which says that



18 Homogeneous geodesics in special homogeneous Finsler spaces

any homogeneous affine manifold (M,∇) admits a homogeneous geodesic through the
origin. Here the affine method from [7, 10], based on the study of integral curves of
Killing vector fields, was used. The proof is also using differential topology, namely
smooth mappings Sn → Sn.

In the paper [6] by the present author, the affine method used in [5, 7, 10] for
the study of homogeneous affine manifolds was adapted to the pseudo-Riemannian
case and it was shown that any Lorentzian homogeneous manifold of even dimension
admits a light-like homogeneous geodesic through the origin.

Recently, in a paper by Z. Yan, the existence of a homogeneous geodesic in ho-
mogeneous Finsler space of odd dimension was claimed. Unfortuantely, the proof
in this paper, using the algebraic method by O. Kowalski and J. Szenthe, is wrong.
The correct proof was given in [8] by adapting the affine method to the Finslerian
situation.

In the present paper, the affine method for the Finslerian situation is further
refined and used to prove that in a homogeneous Berwald space and in a homogeneous
reversible Finsler space, a homogeneous geodesic always exists.

2. Basic settings

Recall that a Minkowski norm on the vector space V is a nonnegative function
F : V→ R which is smooth on V \ {0}, positively homogeneous (F (λy) = λF (y)
for any λ > 0) and whose Hessian gij = ( 1

2F
2)yiyj is positively definite on V \ {0}.

Here (yi) are the components of a vector y ∈ V with respect to a fixed basis B of V
and putting yi to a subscript means the patrial derivative. Then the pair (V, F ) is
called the Minkowski space. The tensor gy with components gij(y) is the fundamental
tensor. The Cartan tensor Cy has components Cijk(y) = ( 1

4F
2)yiyjyk . A Finsler met-

ric on the smooth manifold M is a function F on TM which is smooth on TM \ {0}
and whose restriction to any tangent space TxM is a Minkowski norm. Then the pair
(M,F ) is called the Finsler space. On a Finsler space, functions gij and Cijk depend
smoothly on x ∈M and on o 6= y ∈ TxM .

Further, we recall that the slit tangent bundle TM0 is defined as TM0 = TM \{0}.
Using the restriction of the natural projection π : TM → M to TM0, we naturally
construct the pullback vector bundle π∗TM over TM0, as indicated in the following
diagram:

π∗TM

��

TM

π

��
TM0

π // M

For a given local coordinate system (x1, . . . , xn) on U ⊂ M , at any x ∈ M , one
has a natural basis { ∂

∂x1 , . . . ,
∂
∂xn } of TxM . It is natural to express tangent vectors

y ∈ TxM with respect to this basis. Then (xi, yi) is the natural coordinate system on
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TU0. We define further functions on TU0, namely the formal Christoffel symbols γijk
and the nonlinear connection N i

j , by the formulas

γijk = gis
1

2

(∂gsj
∂xk

− ∂gjk
∂xs

+
∂gks
∂xj

)
, N i

j = γijky
k − Cijkγkrsyrys. (1)

The Chern connection is the unique linear connection on the vector bundle π∗TM
which is torsion free and almost g-compatible, hence its connection forms satisfy

dxj ∧ ωij = 0, dgij − gkjωki − gikωkj = 2Cijs(dy
s +Ns

kdx
k).

It follows that the following holds

ωij = Γijkdx
k, Γijk = Γikj , Γljk = γljk − gli(CijsNs

k − CjksNs
i + CkisN

s
j ), (2)

(for details, see for example [1, 3]). If we fix a nowhere vanishing vector field V on
M , we obtain an affine connection ∇V on M . In the local chart, it is expressed with
respect to arbitrary vector fields W1 = W i

1
∂
∂xi and W2 = W i

2
∂
∂xi by the formula

∇VW1
W2|x =

[
W1(W i

2) +W j
2W1

kΓijk(x, V )
] ∂

∂xi
. (3)

The affine connection ∇V on M is torsion free and almost metric compatible, which
means

∇VW1
W2 −∇VW2

W1 = [W1,W2],

WgV (W1,W2) = gV (∇VWW1,W2) + gV (W1,∇VWW2) + 2CV (∇VWV,W1,W2),
(4)

for arbitrary vector fields W,W1,W2. Using the affine connection ∇V , we define the
derivative along a curve γ(t) with velocity vector field T . Let W1,W2 be vector fields
along γ; we define

DW1W2 = ∇T
′

W ′1
W ′2, (5)

where the vector fields T ′, W ′1 and W ′2 on the right-hand side are smooth extensions
of T , W1 and W2 to the neighbourhood of γ(t). The definition above does not depend
on the particular extension. A regular smooth curve γ with tangent vector field T
is a geodesic if DT ( T

F (T ) ) = 0. In particular, a geodesic of constant speed satisfies

DTT = 0.

3. Homogeneous Finsler spaces

First, let us formulate simple observations which follow from homogeneity of the
Finsler metric F .

Proposition 3.1 ( [8]). Let (M,F ) be a homogeneous Finsler space, G be a group
of isometries acting transitively on M , X∗ be a Killing vector field generated by the
vector X ∈ g, φ(t) = exp(tX) and γ(t) be the integral curve of X∗ through p ∈ M .
Along the curve γ(t), it holds

φ(t)(p) = γ(t), φ(t)∗(X
∗(p)) = X∗(γ(t))

and
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F (φ(t)(p), φ(t)∗V ) = F (p, V ),

g(γ(t),X∗(γ(t)))(φ(t)∗U, φ(t)∗V ) = g(p,X∗(p))(U, V ),

for all t ∈ R and for all U, V ∈ TpM .

Proposition 3.2 ( [8]). With the same assumptions as in Proposition 3.1, along the
curve γ(t), it holds

g(γ(t),X∗(γ(t))(DX∗X
∗∣∣
γ(t)

, φ(t)∗U) = g(p,X∗(p))(DX∗X
∗∣∣
p
, U),

for all t ∈ R and for all U ∈ TpM . Consequently, if

DX∗X
∗∣∣
p

= 0, (6)

then the curve γ(t) is a homogeneous geodesic.

Let us now recall that the Finsler metric F is called a Berwald metric if the
Christoffel symbols Γijk(x, y) of the Chern connection in natural coordinates do not

depend on the direction y, hence Γijk(x, y) = Γijk(x). We further recall that the Finsler
metric F is reversible if, for any point x ∈ M and for any vector y ∈ TxM , it holds
F (x, y) = F (x,−y).

Proposition 3.3. Let (M,F ) be a homogeneous Berwald space or a homogeneous
reversible Finsler space. With the same assumptions as in Proposition 3.1, for any
Killing vector field X∗, it holds

DX∗X
∗ = ∇X

∗

X∗X
∗ = ∇−X

∗

−X∗−X
∗ = D−X∗−X∗. (7)

Proof. If the Finsler metric F is Berwald, using formulas (3) and (5) we easily deduce
that for any Killing vector field X∗, formula (7) is valid.

For a reversible Finsler metric, one can check by the straightforward calculations
that it holds gij(x, y) = gij(x,−y), Cijk(x, y) = −Cijk(x,−y). Using formula (1),
we obtain γijk(x, y) = γijk(x,−y), N i

j(x, y) = −N i
j(x,−y) and further, using formula

(2), we obtain Γijk(x, y) = Γijk(x,−y). Finally, using formula (3), we see again that

formula (7) is valid also in this situation. �

4. The main result

Theorem 4.1. Let (M,F ) be a homogeneous Berwald space or a homogeneous re-
versible Finsler space and let p ∈ M . Then M admits a homogeneous geodesic
through p.

Proof. Let us consider the Killing vector fields K1, . . . ,Kn which are linearly in-
dependent at each point of some neighbourhood U of p and denote by B the ba-
sis {K1(p), . . . ,Kn(p)} of TpM . Any tangent vector X ∈ TpM has coordinates
(x1, . . . xn) with respect to the basis B. These coordinates determine the Killing
vector field X∗ = x1K1 + · · · + xnKn and an integral curve γ of X∗ through p. We
are going to show that there exists a vector X̄ ∈ TpM such that the integral curve γ
of X̄∗ through p is geodesic.
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Let us consider the sphere Sn−1 of vectorsX ∈ TpM whose coordinates (x1, . . . , xn)
with respect to B have the norm equal to 1 with respect to the standard Euclidean
scalar product 〈, 〉 on Rn. In other words, the scalar product 〈, 〉 is chosen in a way
that the above basis B is orthonormal. We stress that this scalar product does not
come from any Finslerian product gX .

For each X ∈ Sn−1, we denote by v(X) the derivative DX∗
γ(t)

X∗|t=0. Further, we

denote by t(X) the vector v(X) − 〈v(X), X〉X. Then, for each X ∈ Sn−1, it holds
t(X) ⊥ X with respect to the above Euclidean scalar product. We can interpret the
map X 7→ t(X) as a smooth mapping t : Sn−1 → TpM , or, as a smooth tangent vector
field on the sphere Sn−1.

The situation when n is odd was treated in the mentioned paper [8] for general
Finsler homogeneous space. Hence our particular focus here is the case when n is
even.

Let us assume that t(X) 6= 0 everywhere. Putting f(X) = t(X)/‖t(X)‖, where
the norm comes from the Euclidean scalar product 〈, 〉, we obtain a smooth map
f : Sn−1 → Sn−1 without fixed points. According to a well known statement from
differential topology, the degree of f is deg(f) = (−1)n, because f is homotopic
to the antipodal mapping. On the other hand, according to formula (7), we have
v(X) = v(−X) and hence it holds also f(X) = f(−X) for each X ∈ Sn−1. If Y
is a regular value of f , then the inverse image f−1(Y ) consists of even number of
elements. It follows that deg(f) is an even number, which is a contradiction. Hence,
the assumption t(X) 6= 0 was wrong and there exists a vector X̄ such that t(X̄) = 0.

Now we use the standard fact that CX∗(X
∗, X∗, X∗) = 0 for any Killing vector

field X∗. Applying this to formula (4), we observe that it holds

g(p,X)(v(X), X) = g(p,X)(DX∗
γ(t)

X∗
∣∣
t=0

, X∗p ) = 0,

for each X ∈ Sn−1 ⊂ TpM , and hence v(X) lies in the orthogonal complement of X
in TpM with respect to the scalar product g(p,X).

To finish the proof, we consider the above vector X̄, which satisfies t(X̄) = 0.
Because the vector t(X̄) is the projection of the vector v(X̄) to another complementary
subspace to span(X̄) in TpM , it follows that v(X̄) = 0 if and only if t(X̄) = 0. We
obtain that DX̄∗X̄

∗
∣∣
p

= v(X̄) = 0.

We see, using Proposition 3.2 and formula (6), that the integral curve of the vector
field X̄∗ through p is a homogeneous geodesic. �
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[4] Z. Dušek, Survey on homogeneous geodesics, Note Mat. 28(1) (2009), 147–168.
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