
MATEMATIČKI VESNIK
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Abstract. The present paper is devoted to investigation of the isometry group of the
Gromov–Hausdorff space, i.e., the metric space of compact metric spaces considered up to
isometry and endowed with the Gromov–Hausdorff metric. The main goal is to present a
complete proof of the following result by G. Lowther (2015): the isometry group of the
Gromov–Hausdorff space is trivial.

1. Introduction

In the present paper the isometry group of the Gromov–Hausdorff space, i.e., the
metric space consisting of isometry classes of compact metric spaces and endowed
with the Gromov–Hausdorff metric is investigated. The Main Theorem belonging to
G. Lowther [7] states that this group is trivial, in spite of the fact that the Gromov–
Hausdorff space is rather symmetric in a local sense.

The interest to “spaces of subsets” is inspired not only by evident mathematical
importance, but also by applications such as pattern recognition and comparison,
constructing of continuous deformations of one geometrical object into another, etc.,
see for example [16,17]. A metric on such spaces can be considered as a “measure of
similarity” between two objects. In 1914 F. Hausdorff [6] defined a symmetric, non-
negative function on pairs of non-empty subsets of a metric space that gives a metric
on the set of all its closed bounded subsets. The Gromov–Hausdorff distance between
any metric spaces generalises the Hausdorff metric to the case of arbitrary metric
spaces using isometric embeddings in arbitrary metric spaces (see below an exact def-
inition). Let us mention, see a historical review in [18], that this function was defined
by D. Edwards [3] in 1975 and then rediscovered and generalized by M. Gromov [5] in
1981. The Gromov–Hausdorff distance converts the set of isometry classes of compact
metric spaces into a metric space that is usually referred as the Gromov–Hausdorff
space or as the superspace and below is denoted byM. The geometry of this space is
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rather complicated that attracts attention of many specialists. It is well-known that
the space M is path-connected, complete, separable, see for example [1]. Recently it
has been proved that it is also geodesic, i.e., any two points ofM can be connected by
a shortest curve, whose length is equal to the distance between these points, see [10].
An introduction to geometry of Gromov–Hausdorff space can be found, for example
in [1].

Isometry groups of metric spaces are very important as for understanding of their
geometry, so as for such practical problems as distance calculation, geodesic construc-
tion, etc. It turns out that the Gromov–Hausdorff space is rather symmetric in the
local sense, in particular, sufficiently small balls of the same radii centered at n-point
generic spaces (the ones, where all non-zero distances are pairwise distinct and all tri-
angle inequalities are strict) are isometric to each other, see [8]. The isometry group
of a sufficiently small ball centered at such space contains a subgroup isomorphic to
the permutation group of an n-element set [8]. But it turns out that there are no any
global isometries, namely, the following result holds.

Main Theorem. The isometry group of the Gromov–Hausdorff space is trivial.

Let us say a few words about the background of this statement and of the proof
presented below. In 2015 S. Iliadis (Lomonosov Moscow State University) told us
about his conjecture concerning the triviality of the isometry group of the Gromov–
Hausdorff space. We have googled this subject and found a blog mathoverflow.net,
see [7], where N. Schweber (UW-Madison) formulated the same conjecture. Among
comments we have found a positive “solution” given by G. Lowther1. The text pre-
sented by G. Lowther turns out to be a draft, where many proofs are omitted (that
is natural for a draft), but the text also contains some wrong statements2.

The present paper is a result of our critical retreat of the ideas of G. Lowther
from [7]. Unfortunately G. Lowther has not published any other text on this subject
during more than 2 years passed. We add some new constructions, reformulate some
statements from [7] in a correct way and, besides, give geometrical interpretations,
making some statements from [7] more clear to our opinion.

The proof turns out to be rather long, so for convenience we give here a short
scheme of the paper. In Preliminaries we introduce basic concepts, notations, and list
well-known results concerning Hausdorff and Gromov-Hausdorff distances. In partic-
ular, we describe technique of irreducible correspondences that turns out to be useful
in Gromov–Hausdorff distance studying. As an application we include some formulas
for the Gromov–Hausdorff distance between a compact metric space and so-called
simplex (a finite metric space such that all non-zero distances in it are the same).
In Section 3 we consider pointed metric spaces and their isometries. These objects
are applied in Section 4 to prove invariance of the family of all finite metric spaces

1According to the same blog: “Apparently, this user prefers to keep an air of mystery about
them”.

2The most striking example: it is stated that the Gromov–Hausdorff distance between finite
metric spaces of the same cardinality is attained on a bijective correspondence (but simple computer
simulation shows that it is not true in general).
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under arbitrary isometries of the Gromov–Hausdorff space M. Section 5 contains
necessary information concerning groups actions on metric spaces. In Section 6 we
consider a subspace M[n] ⊂ M of n-point metric spaces, and describe small neigh-
bourhoods of each point X from M[n] in this space. We prove that each sufficiently
small neighbourhood U ⊂M[n] is isometric either to the intersection of a ball in the
normed space RN∞ with so-called metric cone C, or to a quotient of such intersection
over the action of the stabilizer of the permutation subgroup G action. Here N =
n(n− 1)/2, the cone C consists of the vectors corresponding to distance n× n matri-
ces, and G acts on M[n] by changing of the numeration of the points from X. If the
space X is generic, then the neighbourhood is isometric to the whole ball. Moreover,
the subset of generic metric spaces is path connected in M[n]. In Section 7 we prove
that the subspaces M[n] are invariant under an arbitrary isometry of the space M.
In Section 8 we apply John’s generalisation of Mazur-Uhlam Theorem saying that
any local isometry of a real normed space is generated by an affine mapping to prove
that the local isometries of the balls fromM[n], generated by a global isometry of the
spaceM are generated by the same linear mapping H. Such linear mapping generates
a permutation of basic vectors from RN∞, and in Section 9 we accumulate necessary
information concerning the permutation groups. In Section 10 we demonstrate that
the permutation generated by the linear mapping H is generated by changing a nu-
meration of the points from X, and hence, any isometry of M takes each generic
finite metric space to itself. Since generic finite metric spaces are everywhere dense
in M, the latter completes the proof of the Main Theorem.

2. Preliminaries

Let X be a set. By #X we denote the cardinality of X.

Now, let X be an arbitrary metric space. The distance between its points x and
y is denoted by |xy|. If A,B ⊂ X are non-empty subsets, then put |AB| = inf

{
|ab| :

a ∈ A, b ∈ B
}

. If A = {a}, then we write |aB| = |Ba| instead of |{a}B| = |B{a}|.
Let us fix the notations for the following standard objects related to a metric

space X:

• for x ∈ X and r > 0 by Ur(x) = {y ∈ X : |xy| < r} we denote the open ball
centered at x of radius r;

• for x ∈ X and r ≥ 0 by Br(x) = {y ∈ X : |xy| ≤ r} and Sr(x) = {y ∈ X : |xy| = r}
we denote the closed ball and the sphere centered at x of radius r, respectively;

• for a non-empty subset A ⊂ X and r > 0 by Ur(A) = {x ∈ X : |xA| < r} we
denote the open neighbourhood of A of radius r;

• for a non-empty subset A ⊂ X and r ≥ 0 by Br(A) = {x ∈ X : |xA| ≤ r} and
Sr(A) = {x ∈ X : |xA| = r} we denote the closed neighbourhood and the equidistant
set of A of radius r.
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2.1 Hausdorff distance and Gromov–Hausdorff distance

For non-empty A, B ⊂ X put

dH(A,B) = inf
{
r > 0 : A ⊂ Ur(B) and B ⊂ Ur(A)

}
= max

{
sup
a∈A
|aB|, sup

b∈B
|Ab|

}
.

This value is called the Hausdorff distance between A and B. It is well-known, see [1],
that the Hausdorff distance forms a metric on the set of all non-empty closed bounded
subsets of X.

Let X and Y be metric spaces. A triple (X ′, Y ′, Z) consisting of a metric space Z
and two its subsets X ′ and Y ′ that are isometric to X and Y , respectively, is called
a realization of the pair (X,Y ) in Z. The Gromov–Hausdorff distance dGH(X,Y )
between X and Y is the infimum of r such that there exists a realization (X ′, Y ′, Z)
of the pair (X,Y ) with dH(X ′, Y ′) ≤ r.

ByM we denote the set of all compact metric spaces considered up to an isometry.

Theorem 2.1 ([1, 10]). Being restricted on M, the distance dGH is a metric. The
metric space M is complete, separable, and geodesic (given any two points, there
exists a curve connecting them, whose length equals the distance between the points).

The next result is an immediate consequence of the definitions.

Proposition 2.2 ([1]). For an arbitrary non-empty subset Y of a metric space X the
inequality dGH(X,Y ) ≤ dH(X,Y ) holds. In particular, if Y is an ε-net in X, then
dGH(X,Y ) ≤ ε.

To calculate the Gromov–Hausdorff distance it is convenient to use the technique
of correspondences.

Let X and Y be any non-empty sets. Recall that a relation between X and Y
is a subset of the Cartesian product X × Y . By P(X,Y ) we denote the set of all
non-empty relations between X and Y . Let us consider each relation σ ∈ P(X,Y )
as a multivalued mapping, whose domain could be less than the whole set X. Then,
similarly to the case of mappings, for each x ∈ X and any A ⊂ X their images σ(x)
and σ(A) are defined, and for each y ∈ Y and any B ⊂ Y their pre-images σ−1(y)
and σ−1(B) are defined as well.

A relation R ∈ P(X,Y ) is called a correspondence if, being restricted onto R, the
canonical projections πX : (x, y) 7→ x and πY : (x, y) 7→ y are surjective, or, that is
equivalent, if R(X) = Y and R−1(Y ) = X. By R(X,Y ) we denote the set of all
correspondences between X and Y .

Let X and Y be arbitrary metric spaces, and σ be a relation between them. The

value disσ = sup
{∣∣|xx′| − |yy′|∣∣ : (x, y), (x′, y′) ∈ σ

}
is called the distortion disσ of

the relation σ.

Proposition 2.3 ([1]). For any metric spaces X and Y it holds

dGH(X,Y ) =
1

2
inf
{

disR : R ∈ R(X,Y )
}
.
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For any metric space X and a real number λ > 0 by λX we denote the metric
space obtained from X by multiplication of all the distances by λ.

Proposition 2.4 ([1]). Let X and Y be metric spaces. Then
(i) if X is a single-point metric space, then dGH(X,Y ) = 1

2 diamY ;

(ii) if diamX <∞ or diamY <∞, then dGH(X,Y ) ≥ 1
2 |diamX − diamY |;

(iii) dGH(X,Y ) ≤ 1
2 max{diamX,diamY }, in particular, dGH(X,Y ) <∞ for bounded

X and Y ;

(iv) for any X ∈M and any λ ≥ 0, µ ≥ 0 we have dGH(λX, µX) = 1
2 |λ−µ|diamX;

this immediately implies that the curve γ(t) := tX is a shortest one for any pair of
its points;

(v) for any X,Y ∈ M and any λ > 0 we have dGH(λX, λY ) = λdGH(X,Y ). More-
over, for λ 6= 1 the unique space that remains the same under this operation is the
single-point space. In other words, the multiplication of a metric by a number λ > 0
is a homothety of the space M with the center at the single-point metric space.

Thus, the Gromov–Hausdorff space can be imagined as a cone with the vertex
at the single-point space, and with generators that are geodesics emanate from the
vertex, see Figure 1.

Figure 1: The Gromov–Hausdorff space: some general properties. Here ∆1 stands for the
single-point space.

2.2 Irreducible correspondences

If X and Y are finite metric spaces, then the set R(X,Y ) is finite, thus there exists an
R ∈ R(X,Y ) such that dGH(X,Y ) = 1

2 disR. Every such correspondence R is called
optimal. It turns out that optimal correspondences always exist for any compact
metric spaces X and Y , see [2, 9]. By Ropt(X,Y ) we denote the set of all optimal
correspondences between X and Y .

Proposition 2.5 ([2,9]).Let X and Y be compact metric spaces. Then Ropt(X,Y ) 6=∅.
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The inclusion relation generates the standard partial order on R(X,Y ). The
correspondences that are minimal with respect to this order are called irreducible. By
R0(X,Y ) we denote the set of all irreducible correspondences between X and Y . It
is shown in [11] that each R ∈ R(X,Y ) contains an irreducible correspondence and,
thus, the following result holds.

Proposition 2.6. For any metric spaces X and Y we have R0(X,Y ) 6= ∅.

The next result describes irreducible correspondences.

Proposition 2.7. For each R ∈ R0(X,Y ) there exist partitions RX = {Xi}i∈I and
RY = {Yi}i∈I of the spaces X and Y , respectively, such that R =

⋃
i∈I Xi × Yi.

Proof. Put RX =
⋃
y∈Y

{
R−1(y)

}
, RY =

⋃
x∈X

{
R(x)

}
, and let us show that RX and

RY are partitions. Suppose the contrary, and let, say, RY be not a partition. Since
R is a correspondence, then RY is a covering of Y such that some of its elements
R(x) and R(x′) for x 6= x′ intersect each other, but, due to definition of RY , do not
coincide. Let y ∈ R(x) ∩ R(x′), then (x, y), (x′, y) ∈ R. Since R(x) 6= R(x′), one of
these sets contains an element which does not lie in the other one. To be definite, let
y′ ∈ R(x′) \ R(x). Then (x′, y′) ∈ R, therefore, if we remove (x′, y) from R, then we
obtain a relation σ ⊂ R such that y ∈ σ(x) and x′ ∈ σ−1(y′), so σ is a correspondence.
The latter contradicts to irreducibility of R. The case of RX is similar.

Thus, let us re-denote the partition RX as RX = {Xi}i∈I . Notice that for any
x, x′ ∈ Xi we have R(x) = R(x′). Indeed, if Xi = R−1(y), then R(x) and R(x′)
contain y and, therefore, they intersect each other. However, RY is a partition, so we
get R(x) = R(x′).

Choose an arbitrary i ∈ I and an arbitrary x ∈ Xi, and put Yi = R(x) (this
notation is correct, because according to the above reasoning it does not depend on
the choice of x ∈ Xi). Now we show that the correspondence ϕ : Xi 7→ Yi is a bijection
between RX and RY .

If ϕ is not injective, then there exist x, x′ ∈ X belonging to different elements of
the partition RX and such that R(x) = R(x′). However, in this case for y ∈ R(x) it
holds x, x′ ∈ R−1(y) ∈ RX , a contradiction. Further, ϕ is surjective because for any
Yi, y ∈ Yi, the set R−1(y) is an element of the partition RX . Choose an arbitrary
x ∈ R−1(y). Then R(x) ∈ RY contains y, thus ϕ

(
R−1(y)

)
= Yi.

Since for any x, x′ ∈ Xi we have R(x) = R(x′) = Yi, then Xi × Yi ⊂ R. On the
other hand, since RX is a partition of X, then for any x ∈ X there exists Xi ∈ RX
such that x ∈ Xi, therefore, each (x, y) ∈ R is contained in some Xi × Yi. �

2.3 Partitions

For any non-empty subsets A and B of a metric space X we put

|AB|′ = sup
{
|ab| : a ∈ A, b ∈ B

}
.

If D = {Xi}i∈I is a partition of a metric space X, then we define the diameter of
this partition as follows: diamD = supi∈I diamXi. We also put

α(D) = inf
{
|XiXj | : i, j ∈ I, i 6= j

}
, β(D) = sup

{
|XiXj |′ : i, j ∈ I, i 6= j

}
.
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The next result can be easily obtained from the definition of distortion and from
Proposition 2.7.

Proposition 2.8. Let X and Y be arbitrary metric spaces, DX={Xi}i∈I , DY ={Yi}i∈I
be some partitions of the spaces X and Y , respectively, and R =

⋃
i∈I Xi × Yi ∈

R(X,Y ). Then

disR = sup
{
|XiXj |′ − |YiYj |, |YiYj |′ − |XiXj | : i, j ∈ I

}
= sup

{
diamDX , diamDY , |XiXj |′ − |YiYj |, |YiYj |′ − |XiXj | : i, j ∈ I, i 6= j

}
≤max

{
diamDX ,diamDY , β(DX)− α(DY ), β(DY )− α(DX)

}
.

In particular, if R ∈ R0(X,Y ), then in the previous formula one can take RX and
RY from Proposition 2.7 instead of DX and DY .

For a set X and any n ∈ N by Dn(X) we denote the family of all partitions of the
set X into n non-empty subsets. Notice that for n > #X we have Dn(X) = ∅, and for
n = #X the family Dn(X) consists of the unique partition of X into its one-element
subsets.

Let X be an arbitrary metric space. The next characteristic of X will be used
below:

dn(X) =

{
inf
{

diamD : D ∈ Dn(X)
}
, if Dn(X) 6= ∅,

∞, if Dn(X) = ∅.

Remark 2.9. If X is a finite metric space and n = #X, then dn(X) = 0.

Remark 2.10. The function g(n) = dn(X) decreases monotonically on the set of n
such that Dn(X) 6= ∅.

2.4 Optimal irreducible correspondences

It was proved in [11] that for compact metric spaces X and Y there always exists
an optimal irreducible correspondence R. By R0

opt(X,Y ) we denote the set of all
irreducible optimal correspondences between X and Y . Thus, the following result
holds.

Proposition 2.11 ( [11]). Let X and Y be arbitrary compact metric spaces, then
R0

opt(X,Y ) 6= ∅.

Corollary 2.12. Let X and Y be arbitrary compact metric spaces, R ∈ R0
opt(X,Y ),

RX = {Xi}i∈I , RY = {Yi}i∈I , R =
⋃
i∈I Xi × Yi. Then

2dGH(X,Y )= sup
{

diamRX ,diamRY , |XiXj |′−|YiYj |, |YiYj |′−|XiXj | : i, j ∈ I, i6=j
}
.

2.5 Distances to simplexes

A metric space X is called a simplex, if all its non-zero distances are equal to each
other. Notice that a simplex is compact, iff it consists of a finite number of points.
By ∆n we denote the simplex consisting of n points with non-zero distances 1. Then
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for t > 0 the metric space t∆n is a simplex, whose non-zero distances are equal to t.
Notice that ∆1 is the single-point metric space, and that t∆1 = ∆1 for all t > 0. In
what follows, we put ∆n = {1, . . . , n} for convenience.

For any metric space X, n ≤ #X, and D = {X1, . . . , Xn} ∈ Dn(X) we put
RD = t

(
{i} ×Xi

)
∈ R(t∆n, X). Let us notice that if D′ ∈ Dn(X) differs from D

by a renumbering of its elements, then disRD = disRD′ .

Proposition 2.13 ([12,13]). Let X be an arbitrary metric space and n ∈ N, n ≤ #X.
Then for any t>0 and D ∈ Dn(X) we have disRD= max{diamD, t−α(D), β(D)−t}.

Proposition 2.14 ([12,13]). Let X be a compact metric space. Then for each n ∈ N,
n ≤ #X, and t > 0 there exists some R ∈ Ropt(t∆n, X) such that the family

{
R(i)

}
is a partition of the space X. In particular, if n = #X, then this R can be chosen
among bijections.

The next result follows from Propositions 2.13 and 2.14.

Corollary 2.15. Let X be a compact metric space and n ∈ N, n ≤ #X. Then for
any t > 0 we have

2dGH(t∆n, X) = inf
{

max
(
diamD, t− α(D), β(D)− t

)
: D ∈ Dn(X)

}
.

Proposition 2.16 ([12,13]). Let X be a finite metric space, m = #X, n ∈ N, t > 0.
Denote by a ≤ b the first and the second smallest distances between different points of
the space X (if they are defined). Then

2dGH(t∆n, X) =


max{t, diamX − t} for m < n,

max{t− a, diamX − t} for m = n ≥ 2,

max{a, t− b, diamX − t} for m = n+ 1 ≥ 3,

max{dn(X), diamX − t} for m ≥ n and diamX ≥ 2t.

Moreover, for m = n + 1 there exists an optimal correspondence sending some point
of the simplex to a pair of the closest points of X, and forming a bijection between
the remaining points.

Proposition 2.16 implies an explicit formula for the Gromov–Hausdorff distance
between simplexes.

Corollary 2.17. For integer p, q ≥ 2 and real t, s > 0 we have

2dGH(t∆p, s∆q) =


|t− s| for p = q,

max{t, s− t} for p > q,

max{s, t− s} for p < q.

In particular, if p 6= q, then 2dGH(t∆p, s∆q) ≥ min{t, s}.

Proposition 2.18. Let X be a metric space containing a subspace isometric to t∆n,
n≥2, and suppose that M is a finite metric space, #M≤n−1. Then 2dGH(X,M)≥t.
If diamX=t and diamM≤t, then 2dGH(X,M)=t.
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Proof. Indeed, denote by C = {c1, . . . , cn} a subspace of X isometric to t∆n, then for
any R ∈ R(X,M) there exist p ∈M and distinct ci, cj such that (ci, p), (cj , p) ∈ R, so
disR ≥ t. Since R is an arbitrary correspondence, then 2dGH(X,M) ≥ t. If diamX=t
and diamM ≤ t, then item (iii) of Proposition 2.4 implies that 2dGH(X,M) ≤ t. �

3. Isometries of metric spaces

In this section we work out some technique for description of isometries of metric
spaces. The main attention is paid to self-isometries.

3.1 Operations with invariant subsets

Let X be a metric space and f : X → X be an isometry. By Pf (X) we denote the set
of all subsets ofX invariant with respect to f , namely, Pf (X) =

{
A ⊂ X : f(A) = A

}
.

The next statement is evident.

Proposition 3.1. The family Pf (X) contains X, ∅, and it is invariant under the
operations of union, intersection, and taking complement. Besides, if A ∈ Pf (X),
then Ur(A) ∈ Pf (X) for any r > 0, and Br(A), Sr(A) ∈ Pf (X) for any r ≥ 0.

3.2 Isometries of finite pointed spaces

A set X is called pointed, if one of its elements is marked. More formally, a pointed
set is a pair (X,x), where x ∈ X. For a pointed set (X,x) by p(X) we denote its
marked point x. Two pointed metric spaces X and Y are called p-isometric, if there
exists an isometry f : X → Y such that p(Y ) = f

(
p(X)

)
. For a pointed metric space

X by Gr(X) we denote the class of all pointed metric spaces that are p-isometric to
X. By M∗ we denote the set of the classes of p-isometric pointed compact metric
spaces. Thus, if X is a pointed compact metric space, then Gr(X) ∈M∗.

Let X be an arbitrary metric space and x ∈ X. For any n ∈ N by Pn(x) we denote
the set of all pointed n-point subspaces Z ⊂ X containing x as a marked point, i.e.,
such that p(Z) = x. Also, we defineM∗(X,x, n) ⊂M∗ to be Gr

(
Pn(x)

)
=
{

Gr(Z) :

Z ∈ Pn(x)
}

. The following statement is evident.

Proposition 3.2. Let f : X → Y be an isometry of metric spaces, then for any n ∈ N
and any point x ∈ X we have M∗(X,x, n) = M∗

(
Y, f(x), n

)
. In particular, each

isometry f : X → X is invariant on the level sets of the mapping x 7→ M∗(X,x, n).

A triple {A,B,C} of different points of a metric space X is called a triangle and
is denoted by ABC. We write ABC ⊂ X. For such triangles we use school geometry
terminology.

Proposition 3.3. Let P and Q be distinct points of a metric space X. Suppose that
for each triangle PBC ⊂ X its side BC cannot be the longest one, but among the
triangles QBC ⊂ X there exists one, whose longest side is BC. Then M∗(X,P, 3) 6=
M∗(X,Q, 3).
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3.3 Equidistant points families

For any points P and Q of a metric space X by Mid(X,P,Q) we denote the set of all
points A ∈ X such that |AP | = |AQ|. The next statement is evident.

Proposition 3.4. Let f : X → Y be an arbitrary isometry of metric spaces, then for
any P,Q ∈ X it holds f

(
Mid(X,P,Q)

)
= Mid

(
Y, f(P ), f(Q)

)
. In particular, each

isometry f : X → X preserving the points P,Q ∈ X takes Mid(X,P,Q) onto itself.

4. Invariant subsets in M

Several ideas on invariance of some subsets ofM under a self-isometry ofM are taken
from [7].

4.1 Invariance of ∆1

To start with we prove that the single-point space ∆1 remains fixed under any self-
isometry of M.

Theorem 4.1. For any A ∈M, A 6= ∆1, it holds M∗(M, A, 3) 6=M∗(M, ∆1, 3).

Proof. By items (i) and (iii) of Proposition 2.4, for any B,C ∈M we have

dGH(B,C) ≤ max
{
dGH(B,∆1), dGH(∆1, C)

}
,

thus, if X = ∆1, then in each triangle XBC ⊂M the side BC cannot be the longest
one.

If A ∈ M, A 6= ∆1, then, by item (iv) of Proposition 2.4, the curve γ(t) = t A,
t ∈ [1/2, 2], is a shortest geodesic for which A is an interior point. Therefore, by
Theorem 2.1, for B = γ(1/2) and C = γ(2) we have dGH(B,C) = dGH(B,A) +
dGH(A,C), thus, in such triangle ABC the side BC is the longest one. It remains to
apply Proposition 3.3. �

Thus, it remains to apply Theorem 4.1, Proposition 3.2, and item (i) of Propo-
sition 2.4.

Corollary 4.2. Let f : M → M be an arbitrary isometry, then f(∆1) = ∆1. In
particular, for any X ∈M we have diam f(X) = diamX.

4.2 Invariance of t∆n, n ≥ 2

By Mt we denote the set of all A ∈M such that diamA ≤ t. In other words, Mt is
a ball in M of radius t/2 centered at ∆1.

Theorem 4.3. For t > 0 and any A ∈Mt, A 6= t∆n, n = 1, 2, . . ., it holds

M∗(Mt, A, 3) 6=M∗(Mt, t∆n, 3).
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Proof. Similarly with the proof of Theorem 4.1 we proceed as follows: (1) for each
triangle XBC ⊂ Mt with X = t∆n we show that the side BC cannot be longer
than its other sides; (2) we prove that for each A ∈ Mt, A 6= t∆n, there exists a
triangle ABC ⊂ Mt such that the side BC is the longest one; after that we apply
Proposition 3.3.

(1) The case X = t∆1 = ∆1 is already considered in Theorem 4.1, so we pass to the
case n > 1.

Suppose otherwise, i.e., for some n there exists a triangle XBC ⊂ Mt such that
BC is its longest side. By item (iii) of Proposition 2.4, we have 2dGH(B,C) ≤ t,
therefore, 2dGH(X,B) < t and 2dGH(X,C) < t.

Lemma 4.4. Under the above assumptions we have #B ≥ n and #C ≥ n.

Proof. Suppose the contrary, and let, say, #B < n, then, by Proposition 2.16, we have
2dGH(X,B) = max{t,diamB−t} = t, however, 2dGH(X,B) < t, a contradiction. �

Further, by Proposition 2.14, there exist R ∈ Ropt(t∆n, B) and S ∈ Ropt(t∆n, C)
such that D = {R(i)} and E = {S(i)} are partitions of the spaces B and C, respec-
tively. Put Bi = R(i), Ci = S(i), T =

⋃n
i=1Bi × Ci, then T ∈ R(B,C) and, by

Proposition 2.8, we have disT ≤ max
{

diamD,diamE, β(D)− α(E), β(E)− α(D)
}
.

By Proposition 2.13, it holds

disR = max{diamD, t−α(D), β(D)−t}, disS = max{diamE, t−α(E), β(E)−t},
therefore, max{diamD, t−α(D)} ≤ disR and max{diamE, t−α(E)} ≤ disS. Since
diamB ≤ t and diamC ≤ t, then β(D) ≤ t and β(E) ≤ t, thus

2dGH(B,C) ≤ disT ≤max
{

diamD,diamE, t− α(E), t− α(D)
}

≤max{disR, disS} = max
{

2dGH(X,B), 2dGH(X,C)
}
,

and so BC cannot be the longest side of the triangle XBC, a contradiction.

(2) If diamA < t, then, by item (iv) of Proposition 2.4, the curve γ(s) = sA,
s ∈ [1/2, t/diamA], is a shortest geodesic belonging to Mt, because diam γ(s) ≤
(t/diamA) diamA = t. Besides that, A is an interior point of the curve γ. Thus,
by Theorem 2.1, for B = γ(1/2) and C = γ(t/diamA) we have dGH(B,C) =
dGH(B,A) + dGH(A,C), therefore, in such a triangle ABC the side BC is the
longest one.

Now, let diamA = t, then |xx′| ≤ t for all x, x′ ∈ A, and for some pair of points
the equality holds, but for some other pair we have inequality, because A 6= t∆n. In
particular, #A ≥ 3.

Suppose at first that A is a finite metric space consisting of m ≥ 3 elements, and
let a ≤ b be the two smallest distances between different points of the space A. Put
B = t∆m and C = t∆m−1. Then, by Proposition 2.16, we have 2dGH(B,C) = t and
2dGH(A,C) = max{a, t− b,diamA− t}. Since a < t is the least non-zero distance in
A, b > 0, and diamA ≤ t, then 2dGH(A,C) < t.

Further, Proposition 2.16 implies that 2dGH(A,B) = max{t−a,diamA−t}. Since
a > 0 and diamA = t, then 2dGH(A,B) < t. Thus, in the case under consideration
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we have 2 max
{
dGH(A,B), dGH(A,C)

}
< t = 2dGH(B,C), so BC is the longest side

of the triangle ABC.

Now suppose that A is infinite. Fix an arbitrary ε ∈ (0, t/4), choose a finite ε-net
{b1, . . . , bm−1} in A, and take it as the space B. Then, by Proposition 2.2, we have
dGH(A,B) ≤ ε < t/4.

Let bm ∈ A be an arbitrary point distinct from the chosen bi. Put Ai = Bε(bi),
i = 1, . . . ,m. Then A =

⋃m
i=1Ai and diamAi < t/2 for all i.

To construct C we take a set {c1, . . . , c2m} and define the distances on it as follows:
|cicj | = t for all 1 ≤ i < j ≤ m, and all the remaining distances are equal to t/2.
Since the subspace {c1, . . . , cm} ⊂ C is isometric to t∆m, and the diameters of B and
C are at most t, then, by Proposition 2.18, we have 2dGH(B,C) = t.

Consider the following correspondence R ∈ R(A,C):

R = {(bi, ci)}mi=1 ∪
(
A1 × {cm+1}

)
∪ · · · ∪

(
Am × {c2m}

)
.

It is easy to see that disR < t, thus 2dGH(A,C) < t, therefore, BC is the longest
side of the triangle ABC. The theorem is proved.

Corollary 4.5. If f : M→M i an arbitrary isometry, then for any integer n ≥ 2
and real t > 0 we have f(t∆n) = t∆n.

Proof. By Theorem 4.3 and Proposition 3.2, each isometry of the space M preserves
the family {t∆n}∞n=1, i.e., for each integer n ≥ 2 there exists m ≥ 2 such that
f(t∆n) = t∆m. We have to show that m = n. To do that, we prove a number of
auxiliary statements.

Lemma 4.6. Suppose that for some p, q ≥ 2 and t > 0 we have f(t∆p) = t∆q. Then
f(s∆p) = s∆q for all s > 0.

Proof. Suppose otherwise, i.e., that for some s > 0 it holds f(s∆p) = s∆r, r 6= q.
Since f is an isometry, then by Corollary 2.17 we have

|t− s| = 2dGH(t∆p, s∆p) = 2dGH
(
f(t∆p), f(s∆p)

)
= 2dGH(t∆q, s∆r) ≥ min{t, s},

that does not hold for s ∈ (t − t/2, t + t/2). This implies that the function t 7→ q is
locally constant. Since each ray is connected, we get that this function is constant. �

Lemma 4.7. Suppose that for some p, q ≥ 2 it holds f(∆p) = ∆q. Then for each
i < p, f(∆i) = ∆j implies j < q.

Proof. Indeed, suppose otherwise, i.e., that j > q (the case j = q is impossible,
because f is bijective). Then, by Corollary 2.17 and Lemma 4.6, for any t, s > 0
we have

max{t, s− t} = 2dGH(t∆p, s∆i) = 2dGH
(
f(t∆p), f(s∆i)

)
= 2dGH(t∆q, s∆j) = max{s, t− s}.

To get a contradiction, put s = t/3. �



A. O. Ivanov, A. A. Tuzhilin 135

Let us return to the proof that m = n. Suppose the contrary. Without loss of
generality, we assume that m < n (otherwise we consider f−1). However, in this case
the mapping f takes injectively the set of simplexes {∆i, 1 < i < n} to the less set of
simplexes {∆j , 1 < j < m}, a contradiction. �

In fact, we have shown that the set of “corner” points of the ball centered at the
single-point metric space ∆1 consists only of ∆1 together with the simplexes t∆k,
k ≥ 2, belonging to the boundary sphere, see Figure 2.

M
t

Δ
1

tΔ
2

tΔ
3tΔ

4

diam = const

the unique corner points
of the ball diam ≤ t

Figure 2: “Corner” points of the ball center at the single-point metric space ∆1.

4.3 Invariance of the family of finite spaces

For any integer n ≥ 2 and real t > 0 put (see Figure 3)

Bn(t) = Mid(M,∆1, t∆n) ∩ {B ∈M : diamB ≥ 2t}.

M
Δ1

tΔn

diam = 2 t

Mid(M, , )Δ Δ1 nt

Bn(t)

Figure 3: To Definition of Bn(t).

Proposition 4.8. For each integer n ≥ 2 and real t > 0 the following statements
hold :
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(i) let f : M→M be an arbitrary isometry, then f
(
Bn(t)

)
= Bn(t);

(ii) for each real s ≥ 2t and integer m > n we have s∆m ∈ Bn(t), in particular,
Bn(t) 6= ∅;

(iii) for any B ∈ Bn(t) we have #B > n;

(iv) for any B ∈ Bn(t) we have dn(B) = diamB.

Proof. (i) This immediately follows from Proposition 3.4, Corollary 4.2, and Corol-
lary 4.5.

(ii) Indeed, diam s∆m = s ≥ 2t, and by Corollary 2.17 and item (i) of Proposi-
tion 2.4, we get 2dGH(t∆n, s∆m)= max{s, t− s}=s= diam(s∆m)=2dGH(∆1, s∆m).

(iii) Suppose otherwise, i.e., that #B ≤ n. Denote by a the smallest distance
between different points of B. Then, by Proposition 2.16 and definition of Bn(t), we
have

2dGH(t∆n, B) = max{t, diamB − t} = diamB − t for #B < n,

2dGH(t∆n, B) = max
{
t− a, diamB − t

}
= diamB − t for #B = n.

However, by definition of Bn(t) we have 2dGH(t∆n, B) = 2dGH(∆1, B) = diamB, a
contradiction.

(iv) Since #B > n by item (iii), and diamB ≥ 2t by definition, then we can apply
Proposition 2.16 which implies that diamB=2dGH(t∆n, B)= max

{
dn(B),diamB−t

}
,

thus, dn(B) = diamB. �

For an integer n ≥ 2 and real t > 0 put

Fn(t) =
{
A ∈M : diamA = t, and 2dGH(A,B) = 2dGH(∆1, B)

= diamB for all B ∈ Bn(t)
}
.

M
Δ1

diam = 2 t

Mid(M, , )Δ Δ1 nt

Bn(t)

Fn(t)
( )instead of tΔn

Figure 4: Illustration for Fn(t).

Remark 4.9. The set Fn(t) contains the simplex t∆n of diameter t. It consists of
all A having the same diameter t and such that in definition of Bn(t) one can change
the simplex t∆n by any of those A, see Figure 4.
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Proposition 4.10. The set Fn(t) is invariant under each isometry f : M→M.

Proof. For any r > 0 put Bn(t, r) = Bn(t) ∩ Sr(∆1), then Bn(t, r) is f -invariant by
item (i) of Proposition 4.8, Corollary 4.2, and Proposition 3.1. By Proposition 3.1,
the equidistant Sd

(
Bn(t, r)

)
is f -invariant for each d ≥ 0 as well. It remains to notice

that Fn(t) equals the union over all r ≥ 2t of intersections of f -invariant sets St/2(∆1)

and Sr/2
(
Bn(t, r)

)
, and apply Proposition 3.1 again. �

Theorem 4.11. For any integer n ≥ 2 and real t > 0 the set Fn(t) coincides with the
set of all finite metric spaces of diameter t consisting of at most n points.

Proof. (1) Let us show that each at most n-point metric space A of diameter t belongs
to Fn(t). To do that, take an arbitrary B ∈ Bn(t) and verify that 2dGH(A,B) =
diamB.

By Proposition 2.11, there exists R ∈ R0
opt(A,B). By Proposition 2.7, the family

RB =
⋃
a∈A

{
R(a)

}
is a partition of B consisting of at most n elements, i.e., RB ∈

Dm(B) for some m ≤ n. By Remark 2.10, diamRB ≥ dm(B) ≥ dn(B). By Corol-
lary 2.12, we have 2dGH(A,B) ≥ diamRB , therefore, taking into account item (iv)
of Proposition 4.8, we get 2dGH(A,B) ≥ dn(B) = diamB. Since diamA < diamB,
then, by item (iii) of Proposition 2.4, we have diamB = max{diamA,diamB} ≥
2dGH(A,B) ≥ diamB, thus, 2dGH(A,B) = diamB.

(2) Now, let us show that if A ∈ Fn(t), then #A ≤ n. Suppose the contrary, i.e., let
#A > n. Put ε = t/3 and choose a finite ε-net S = {a1, . . . , am} in A consisting of
m ≥ n+ 1 points. Let Ai = Bε(ai), then diamAi ≤ 2ε < t and A =

⋃m
i=1Ai.

Choose an arbitrary µ ≥ 2t, put B = {b1, . . . , b2m}, and define a metric on B as
follows: |bibj | = µ for 1 ≤ i < j ≤ m, and all the remaining non-zero distances are
equal to µ/2. Clearly that dn(B) = µ = diamB ≥ 2t, therefore, by Proposition 2.16,
we have 2dGH(t∆n, B) = max

{
dn(B),diamB − t

}
= diamB, thus, B ∈ Bn(t).

Define R ∈ R(A,B) as follows:

R = {(ai, bi)}mi=1 ∪
(
A1 × {bm+1}

)
∪ · · · ∪

(
Am × {b2m}

)
,

then 2dGH(A,B) ≤ disR < µ = diamB, a contradiction. Thus, #A ≤ n. The
theorem is proved.

Corollary 4.12. Every isometry f : M→M takes each n-point metric space to an
n-point metric space of the same diameter.

Proof. By Theorem 4.11, the set Fn(t) coincides with the family of all metric spaces
of diameter t > 0, consisting of at most n points. By Proposition 4.10, the set
Fn(t) is invariant under every isometry f : M→M, thus, each n-point metric space
A ∈ Fn(t) is mapped to a metric space B = f(A) consisting of at most n point.
Suppose that #B < n. Since f−1 is an isometry of M also, then, by the same
arguments, we have #A = #f−1(B) < n, a contradiction. �
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5. Groups actions

In what follows, we need some basic facts from the theory of topological group action
on topological and metric spaces.

Recall that if a compact group G acts continuously on a topological space X, then
its orbits are compact subsets of X. By G(x) we denote the orbit of a point x under
such action, and let X/G stand for the set of orbits.

If X is a metric space, and the group G is compact, then the following non-negative
symmetric function (A,B) 7→ |AB|, A,B ∈ X/G, does not vanish for any A 6= B.

Proposition 5.1. If a compact group G acts on a metric space X by isometries, then
the function (A,B) 7→ |AB| is a metric on X/G.

Proof. It remains to verify the triangle inequality. Since the orbits are compact
subsets, then for any A,B,C ∈ X/G there exist a ∈ A, b1, b2 ∈ B, and c ∈ C such
that |ab1| = |AB| and |b2c| = |BC|. Since b1 and b2 belongs to the same orbit, there
exists g ∈ G such that g(b1) = b2. However, g : X → X is an isometry, therefore,∣∣g(a)g(b1)

∣∣ = |AB| and, thus, |AC| ≤ |g(a)c| ≤
∣∣g(a)g(b1)

∣∣+ |b2c| = |AB|+ |BC|. �

The metric on the set X/G defined in Proposition 5.1 is called a quotient-metric.
In what follows, speaking about the metric space X/G, we always mean just this
quotient-metric.

Proposition 5.2. Suppose that a finite group G acts on a metric space X by isome-
tries. Then for every point x ∈ X the following statements hold.
(i) For any ε > 0 and any g from the stabilizer Gx of the point x we have g

(
Bε(x)

)
=

Bε(x). Thus, for each ε > 0 an action of the stabilizer Gx of the point x ∈ X on the
neighbourhood Bε(x) is defined.

(ii) If G \ Gx 6= ∅, then there exists ε > 0 such that for all g ∈ G \ Gx it holds
Bε(x) ∩ g

(
Bε(x)

)
= ∅, in particular, for every point y ∈ Bε(x) its stabilizer Gy is a

subgroup of Gx, and also G(y) ∩Bε(x) = Gx(y).

(iii) There exists ε > 0 such that for any y1, y2 ∈ Bε(x) the distance between the
orbits G(y1) and G(y2) is equal to the distance between the orbits Gx(y1) and Gx(y2).

Proof. (i) Since for each g ∈ Gx we have g(x) = x, and g is an isometry, then
g
(
Bε(x)

)
= Bε(x) for any ε.

(ii) Put Z =
{
g(x) : g ∈ G \ Gx

}
, then x 6∈ Z, and Z is a non-empty finite set

(because we assume that G \ Gx 6= ∅), thus r := |xZ| > 0. Choose an arbitrary
ε < r/2, then for all g ∈ G \ Gx we have Bε(x) ∩ g

(
Bε(x)

)
= ∅. In particular, this

implies that the stabilizer of each point y ∈ Bε(x) does not intersect G \Gx. Besides,
for any point y ∈ Bε(x) and each g ∈ Gx we have

∣∣x g(y)
∣∣ =

∣∣g(x)g(y)
∣∣ = |xy| ≤ ε,

therefore, Bε(x) contains exactly that part of the orbit G(y), which is generated by
the elements of the stabilizer Gx.

(iii) If Gx = G, then we can take an arbitrary ε.
Now, let G \ Gx 6= ∅. Take r from item (ii) and choose an arbitrary ε < r/4,

then the distance between any points from Bε(x) is less than r/2, and the distance
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between any point from Bε(x) and any point from Bε
(
g(x)

)
for g ∈ G \Gx is greater

than r/2. Thus, the distance between the orbits G(y1) and G(y2), y1, y2 ∈ Bε(x), is
attained at those points of these orbits that belong to a neighbourhood Bε

(
g(x)

)
, and

this distance is the same in each such neighbourhood (because G acts by isometries).
By item (ii), all points of the orbits under consideration that belong to the ball Bε(x)
form the sets Gx(y1) and Gx(y2), respectively. �

Definition 5.3. Under the assumptions and notations of Proposition 5.2, we call the
closed ball Bε(x) by a canonical neighbourhood of the point x ∈ X. Here ε > 0 is
arbitrary for Gx = G, and ε < r/4 for Gx 6= G.

Corollary 5.4. Let G be a finite group acting by isometries on a metric space
X. Choose an arbitrary point x ∈ X. Then the stabilizer Gx acts on each canonical
neighbourhood Bε(x), and πε,x : Bε(x)/Gx → Bε

(
G(x)

)
⊂ X/G, where πε,x : Gx(y) 7→

G(y), is an isometry. Further, for each g ∈ G the neighbourhood Bε
(
g(x)

)
= g
(
Bε(x)

)
is also a canonical one, and the mapping g generates an isometry gε,x : Bε(x)/Gx →
Bε
(
g(x)

)
/Gg(x), where gε,x : Gx(y) 7→ Gg(x)

(
g(y)

)
. Besides, the mappings gε,x, πε,x,

and πε,g(x) are agreed with each other in the following sense: πε,x = πε,g(x) ◦ gε,x.

Thus, each mapping π−1
ε,g(x) ◦ πε,x is generated by the mapping g.

In what follows we especially need a version of Corollary 5.4 in the situation, when
the stabilizer Gx is trivial (i.e., it consists of the unit element only). Since in this case
Gx(y) = {y} for any x, y ∈ X, then the mapping πε,x : Gx(y) 7→ G(y) coincides with
the restriction of the canonical projection π : y 7→ G(y) onto the canonical neighbour-
hood Bε(x). Similarly, in this case, gε,x : Bε(x)/Gx → Bε

(
g(x)

)
/Gg(x) is a mapping

between the canonical neighbourhoods Bε(x) and Bε
(
g(x)

)
, and it coincides with the

restriction of the mapping g onto the canonical neighbourhood Bε(x), thus, in this
case Corollary 5.4 can be reformulated as follows.

Corollary 5.5. Let G be an arbitrary finite group acting on a metric space X by
isometries, and let π : X → X/G be the canonical projection onto the orbit space,
π : x 7→ G(x). Suppose that the stabilizers of all points from X are trivial. Then the
restriction πε,x of the projection π onto each canonical neighbourhood Bε(x) ⊂ X of
the point x maps isometrically the Bε(x) onto Bε

(
G(x)

)
⊂ X/G. Further, for each

g ∈ G the neighbourhood Bε
(
g(x)

)
= g

(
Bε(x)

)
is also a canonical one. Besides, the

restriction gε,x : Bε(x) → Bε
(
g(x)

)
of the mapping g, being isometry, is agreed with

the mappings πε,x and πε,g(x) in the following sense: πε,x = πε,g(x) ◦ gε,x. Thus,

each mapping π−1
ε,g(x) ◦ πε,x coincides with the restriction of the mapping g onto the

canonical neighbourhood Bε(x).

6. The canonical local isometry

For n ∈ N put ◦Mn = {X ∈ M : #X ≤ n} and M[n] = {X ∈ M : #X = n}, then
M[1] = {∆1}, M[2] is isometric to the non-negative ray on the real line, and M[3]
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is isometric to the set
{

(a, b, c) : 0 < a ≤ b ≤ c ≤ a + b
}

endowed with the metric

generated by the norm
∥∥(x, y, z)

∥∥
∞ = 1

2 max
{
|x|, |y|, |z|

}
(the latter fact can be found

in [11]). In this Section we describe the local geometry of the space M[n].

6.1 General construction

For N = n(n− 1)/2 by RN∞ we denote the arithmetic vector space RN endowed with
the norm

∥∥(x1, . . . , xN )
∥∥
∞ = 1

2 maxNi=1

{
|xi|
}

. The corresponding distance between

points x, y ∈ RN∞ is denoted by |xy|∞.
Let X ∈M[n]. Enumerate the points of X in an arbitrary way, then X = {xi}ni=1,

and let ρij = ρji = |xixj | be the components of the corresponding distance matrix
MX of the space X. The matrix MX is uniquely determined by the vector

ρX = (ρ12, . . . , ρ1n, ρ23, . . . , ρ2n, . . . , ρ(n−1)n) ∈ RN .
Notice that the set of all possible ρX ∈ RN , X ∈ M[n], consists of all vectors with
positive coordinates, which satisfy the following “triangle inequalities”: ρik ≤ ρij+ρjk
for any pairwise distinct 1 ≤ i, j, k ≤ n (for convenience we put ρij = ρji for all i and
j). The set of all such vectors is denoted by Cn.

If one changes the numeration of points of the space X, i.e., if one acts by a
permutation σ ∈ Sn on X by the rule σ(xi) = xσ(i), then the components of the
matrix MX are permuted as follows: ρij 7→ σ(ρij) := ρσ(i)σ(j). By Mσ(X) and ρσ(X)

we denote the resulting matrix and the corresponding vector, respectively.
Notice that this action of the group Sn, in fact, permutes the basis vectors of RN

in a special way, i.e., σ ∈ Sn sends the basis vector corresponding to the component
ρij to the basis vector corresponding to the component ρσ(i)σ(j) of the vector ρ ∈ RN .
The group SN also acts on RN by (arbitrary) permutations of the basis vectors, so Sn
generates a subgroup G of SN , which is isomorphic to Sn as n ≥ 3. Below by G we
always denote this subgroup of SN . Its elements are considered either as permutations,
or as the corresponding linear transformations of the space RN .

Since the unit ball in RN∞ is a Euclidean cube centered at the origin, and since each
permutation of the basis vectors takes this cube into itself, then the group SN , together
with its subgroup G, acts on RN∞ by isometries. Notice also that, generally speaking,
the group SN does not preserve the cone Cn, because permutations of general type
acting on the set of distances of a metric space X can violate a triangle inequality,
but G does preserve Cn. In particular, an action of the group G on Cn is defined.

Further, each orbit of the action of the group G on RN contains at most n! points,
and each regular orbit, i.e., the orbit of an element having trivial stabilizer, consists of
n! points exactly. A space X such that the orbit of the corresponding ρX is regular,
together with all the vectors g(ρX), g ∈ G, is called regular.

Notice that the cone Cn is not open in RN : it contains boundary points, namely,
those ρX which some triangle inequalities hold as equalities at. Such X and the
corresponding ρX are referred as degenerate, and all the remaining X and ρX are
called non-degenerate.

We say that a space X ∈M[n] and each corresponding ρX ∈ RN are generic or are
in general position, if X is regular and non-degenerate. Thus, X ∈M[n] is generic, iff
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its isometry group is trivial and all triangle inequalities hold strictly. Notice that in [8]
we meant by generic spaces a narrow class, demanding in addition that all non-zero
distances are pairwise different.

By Cgn we denote the subset of Cn consisting of all vectors in general position,
and by Mg

[n] we denote the corresponding subset of M[n] consisting of all spaces in

general position. It is easy to see that both Cgn andMg
[n] are open in RN and inM[n],

respectively; besides, these subsets are everywhere dense in Cn andM[n], respectively.

Define a mapping Π: Cn →M[n] ⊂ M as Π
(
ρX
)

= X. As it is shown in [8], for
any X ∈M[n] there exists a sufficiently small ε > 0, such that for any Y, Z ∈ Bε(X) ⊂
M[n] each optimal correspondence R ∈ R(Y, Z) is a bijection. Therefore for such Y

and Z it holds dGH(Y, Z) = minρY , ρZ
{
|ρY ρZ |∞

}
=
∣∣G(ρY )G(ρZ)

∣∣
∞, where in the

right hand side of the equality the standard distance between subsets of RN∞ stands,
i.e., the infimum (here it is the minimum) of RN∞-distances between their elements.

Thus, we get the following result.

Proposition 6.1. For any X ∈M[n] there exists ε > 0 such that

dGH(Y,Z) =
∣∣Π−1(Y )Π−1(Z)

∣∣
∞

for every Y, Z ∈ Bε(X) ⊂M[n].

By Proposition 5.1, the action of the group G on Cn generates a metric space
Cn/G. item (iii) of Proposition 5.2 implies the following statement.

Corollary 6.2. For sufficiently small ε > 0 the ball Bε
(
G(ρ)

)
in the space Cn/G is

isometric to the quotient space
(
Bε(ρ) ∩ Cn

)
/Gρ, where Bε(ρ) is a ball in RN∞, and

Gρ is the stabilizer of the point ρ ∈ Cn under the action of the group G.

Combining Proposition 6.1 and Corollary 6.2, we get the following result.

Corollary 6.3. The mapping G(ρX) 7→ X is a locally isometric homeomorphism
between Cn/G and M[n], therefore, for any X ∈ M[n] and any ρ ∈ Π−1(X) there

exists ε > 0 such that the closed ball Bε(X) ⊂M[n] is isometric to
(
Bε(ρ)∩ Cn

)
/Gρ,

where Bε(ρ) is a ball in RN∞, and Gρ is the stabilizer of the point ρ ∈ Cn under the
action of the group G.

Now we consider all possible types of the spaces X ∈M[n]: a generic space, a reg-
ular degenerate space, a non-regular non-degenerate space, and, at last, a non-regular
degenerate space. All the corresponding results listed below follow from Corollary 6.3.

Generic spaces. Recall that by generic spaces we mean regular non-degenerate
spaces X ∈M[n] and the corresponding elements from Cn.

Corollary 6.4. For each generic space X ∈ Mg
[n], for all sufficiently small ε > 0

the closed ball Bε(X) ⊂M[n] lies in Mg
[n] and is isometric to the ball Bε(ρX) in RN∞.
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Regular degenerate spaces. For any n ≥ 3 and ρ ∈ Cn by D(ρ) we denote
the set of all ordered triples of different indices (i, j, k), 1 ≤ i, j, k ≤ n, such that
ρij+ρjk = ρik. Notice that ρ is degenerate, iff D(ρ) 6= ∅. Further, for non-empty D(ρ)
by T (ρ) we denote the polyhedral cone with the vertex at the origin, which is obtained
as the intersection of all half-spaces in RN defined by the inequalities ρij+ρjk−ρik ≥ 0
over all (i, j, k) ∈ D(ρ). If D(ρ) = ∅, then put T (ρ) = RN . Notice that for a
degenerate ρ ∈ RN∞ and any sufficiently small ε > 0 we have Bε(ρ)∩Cn = Bε(ρ)∩T (ρ).

Corollary 6.5. For each regular degenerate space X ∈M[n] and for all sufficiently
small ε > 0 the closed ball Bε(X) ⊂ M[n] is isometric to the intersection Bε(ρX) ∩
T (ρX) of the ball Bε(ρX) in RN∞ and the cone T (ρX) defined above.

We also need the following property of the cone T (ρ).

Proposition 6.6. If ρX ∈ Cn is a vector corresponding to a degenerate space X ∈
M[n], then for any ε > 0 the set Bε(ρX)\

(
Bε(ρX)∩T (ρX)

)
has a non-empty interior.

Proof. Indeed, since X is a degenerate space, then T (ρX) is contained in a half-space
Θ bounded by a hyperplane θ of the form ρij+ρjk−ρik = 0 passing through X. Since
both the cube Bε(ρX) and the hyperplane θ are centrally symmetric with respect to
ρX , then Bε(ρX) \ (Bε(ρX) ∩ Θ) contains interior points. It remains to notice that
T (ρX) ⊂ Θ. �

Non-regular non-degenerate spaces.

Corollary 6.7. For each non-regular non-degenerate space X ∈ M[n], for a suffi-
ciently small ε > 0 the closed ball Bε(X) ⊂M[n] is isometric to the space Bε(ρX)/GρX
obtained from the ball Bε(ρX) in RN∞ by factorisation over the action of the stabilizer
GρX of the point ρX .

Non-regular degenerate spaces. Now, let X ∈M[n] be a non-regular degenerate
space, then the stabilizer GρX is non-trivial, and the cone T (ρX) differs from the
entire space. Notice that each motion g ∈ GρX takes T (ρX) into itself. Indeed, since
g(ρX) = ρX , then the set of degenerate triangles in X is mapped into itself by any
such permutation g of points of the space X. Further, as above Bε(ρX) ∩ T (ρX) =
Bε(ρX)∩Cn for small ε > 0. Thus, for sufficiently small ε > 0 the stabilizer GρX acts
on the set Bε(ρX) ∩ T (ρX) = Bε(ρX) ∩ Cn.

Corollary 6.8. For each non-regular degenerate space X ∈ M[n], for all suffi-

ciently small ε > 0 the closed ball Bε(X) ⊂M[n] is isometric to the space
[
Bε(ρX)∩

T (ρX)
]
/GρX obtained from the intersection of the ball Bε(ρX) in RN∞ with the cone

T (ρX) by factorisation over action of the stabilizer GρX of the point ρX .

6.2 More on generic spaces

Now, let us apply Corollary 5.5.

Corollary 6.9. For any X ∈Mg
[n] there exists ε > 0 such that
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(i) For any ρ ∈ Π−1(X) the ball Bε(ρ) in RN∞ lies entirely in Cgn, and the set
Π−1

(
Bε(X)

)
equals the disjoint union of the balls

{
Bε(ρ)

}
ρ∈Π−1(X)

.

(ii) The restriction πε,ρ : Bε(ρ)→ Bε(X) of the projection Π is an isometry.

(iii) The restriction gε,ρ : Bε(ρ)→ Bε
(
g(ρ)

)
of the mapping g ∈ G is also an isometry.

(iv) The mappings πε,ρ and πε,g(ρ) are agreed with each other in the following sense:

πε,ρ = πε,g(ρ) ◦ gε,ρ, thus each mapping π−1
ε,g(ρ) ◦ πε,ρ coincides with the restriction of

the mapping g ∈ G onto the ball Bε(ρ).

Definition 6.10. Each neighbourhood Bε(X) from Corollary 6.9, together with all
neighbourhoods Bε(ρ), is called canonical.

Proposition 6.11. The subsets Cgn ⊂ RN are path-connected for all n 6= 3; moreover,
each pair of points in Cgn can be connected by a polygonal line lying in Cgn. For n = 3 the
subset Cgn ⊂ R3 is not path-connected. The subsets Mg

[n] ⊂ M[n] are path-connected

for all n.

Proof. If n = 1 or n = 2, then Cgn = Cn and Mg
[n] = M[n], thus the path-connectivity

follows from the above remarks.
Let n = 3. Show that Cgn is not path-connected. Take, for instance, two points

ρ0 = (3, 4, 5) and ρ1 = (4, 3, 5) ∈ Cg3 , and suppose that there exists a continuous
curve ρt =

(
ρ12(t), ρ13(t), ρ23(t)

)
, t ∈ [0, 1], that lies in Cg3 and connects these points.

Then the continuous function f(t) = ρ12(t) − ρ13(t) satisfies f(0) < 0 and f(1) > 0,
therefore there exists s ∈ (0, 1) such that ρ12(s) = ρ13(s). But then the stabilizer of
the point ρs is nontrivial, thus ρs 6∈ Cg3 .

Now, show that Mg
[3] is path-connected. To start with, notice that a triple of real

numbers a ≤ b ≤ c are the lengths of a triangle X ∈ Mg
[3], iff 0 < a < b < c < a+ b.

Choose X0, X1 ∈ Mg
[3], and let 0 < ai < bi < ci < ai + bi be non-zero distances in

Xi. Then for each t ∈ [0, 1] the triple {at = (1− t)a0 + t a1, bt = (1− t)b0 + t b1, ct =
(1− t)c0 + t c1} also satisfies 0 < at < bt < ct < at+bt and, thus, it generates a metric
space Xt belonging to Mg

[3]. It is easy to see that t 7→ Xt is a continuous curve in

Mg
[3], therefore, Mg

[3] is path-connected.

Consider the case n ≥ 4. Notice that the cone Cn is convex, because it is the
intersection of half-spaces corresponding to the positivity conditions of metric com-
ponents, and to triangle inequalities. This implies that for any ρ0, ρ1 ∈ Cn the segment
ρt = (1−t)ρ0+t ρ1, t ∈ [0, 1], belongs to Cn. Further, if ρ0, ρ1 ∈ Cn are non-degenerate,
then all ρt are non-degenerate as well. Thus, the set of all non-degenerate vectors
ρ ∈ Cn is convex. Moreover, the set of all non-degenerate vectors ρ ∈ Cn is open and
everywhere dense in Cn.

Now, let us investigate the structure of the set of all non-regular ρ ∈ Cn. The
condition of non-regularity of ρ ∈ Cn means that there exists a non-identical trans-
formation σ ∈ G, such that σ(ρ) = ρ. Put X = Π(ρ) and let ρ = ρX for some
numeration X = {x1, . . . , xn} of points of X, i.e., ρij = |xixj |. Since the permutation
σ is not identical, then there exists i ∈ {1, . . . , n} such that j = σ(i) 6= i. Since
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n ≥ 4, then there exist at least two distinct p, q ∈ {1, . . . , n} different from i such that
r = σ(p) 6= i, s = σ(q) 6= i. This implies that {i, p} 6= {j, r} and {i, q} 6= {j, s}, there-
fore, since σ

(
ρip
)

= ρjr and σ
(
ρiq
)

= ρjs, the condition σ(ρ) = ρ implies at least two
non-identical conditions, namely, ρip = ρjr and ρiq = ρjs. Moreover, by assumption
i differs from j, r, and s, therefore all the four pairs {i, p}, {i, q}, {j, r}, and {j, s}
are pairwise distinct, and hence these two conditions are independent. Therefore, the
set of the vectors ρ ∈ Cn such that σ(ρ) = ρ is contained in a finite number of linear
subspaces of RN , whose codimension is at least 2. Those linear subspaces are referred
as irregularity subspaces.

Take two arbitrary ρ1, ρ2 ∈ Cgn, and for ρ1 and each irregularity subspace consider
their linear hull. We get a collection of subspaces of non-zero codimensions. This
implies that the union W of those subspaces does not cover any open set in RN .
Thus, since Cgn is open, there exists ρ′2 ∈ Uε(ρ2) ⊂ Cgn, which does not belong to
W . Therefore, the segment [ρ1, ρ

′
2] does not intersect W , and hence, the polygonal

line ρ1ρ
′
2ρ2 does not intersect W as well. So, Cgn is path-connected and each two its

points can be connected by a polygonal line lying in Cgn. Since the path-connectivity
is preserved under continuous mappings, the set Mg

[n] is path-connected also. �

6.3 Coverings and generic spaces

By Πg : Cgn →M
g
[n] we denote the restriction of the mapping Π: Cn →M[n] onto Cgn.

Recall a definition of a covering, see [4] for details.

Let T and B be path-connected topological spaces, F be a discrete topological
space, n = #F . Then each continuous surjective mapping π : T → B is called an
n-sheeted covering with the total space T , the base B, and the fiber F , if each point
b ∈ B has a neighbourhood U such that π−1(U) is homeomorphic to U × F , and,
if ϕ : π−1(U) → U × F is the corresponding homeomorphism and π1 : U × F → U
is the projection, π1 : (u, f) 7→ u, then π = π1 ◦ ϕ (i.e., the corresponding diagram
is commutative). If we omit the path-connectivity condition, then the mapping π is
called a covering in the wide sense.

Corollary 6.12. The mapping Πg : Cgn → M
g
[n] is an n!-sheeted locally isometric

covering (in a wide sense for n = 3, because C3 is not path-connected).

We use Corollary 6.12 for constructing the lift of paths.

Proposition 6.13 (Lifting of paths [4]). Let π : T → B be an arbitrary covering
in a wide sense, γ : [a, b] → B be a continuous mapping (a path in B), and t ∈ T
be an arbitrary point in π−1

(
γ(a)

)
. Then there exists unique continuous mapping

Γ: [a, b]→ T , such that Γ(a) = t and γ = π ◦ Γ.

Definition 6.14. The mapping Γ from Proposition 6.13 is called the lift of γ.
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7. Invariancy of Mg
[n]

In this Section we prove that the sets Mg
[n] are invariant under any isometry of the

space M. To do that, we use the technique elaborated above together with the
invariance of the Hausdorff measure on a metric space under its isometries. Recall
the corresponding concepts and facts.

Let X be an arbitrary set, and 2X be the set of all subsets of X.

Definition 7.1. An outer measure on a set X is a mapping µ : 2X → [0,+∞] such
that
(i) µ(∅) = 0;

(ii) for any at most countable family C of subsets of X and any A ⊂ X such that
A ⊂

⋃
B∈C B, it holds µ(A) ≤

∑
B∈C µ(B) (subadditivity).

Definition 7.2. A subset A ⊂ X is called measurable with respect to µ, or simply
µ-measurable (in the sense of Carathéodory), if for any Y ⊂ X it holds µ(Y ) =
µ(Y ∩A) + µ(Y \A).

Definition 7.3. A family S of subsets of X is called a σ-algebra on X, if it contains
∅, X, and it is closed under taking the complement and countable union operations.

It is well-known that for any outer measure µ on a set X the set of all µ-measurable
subsets of X is a σ-algebra. Also it is well-known that the intersection of any σ-
algebras is a σ-algebra. The latter allows one to define the smallest σ-algebra con-
taining a given family of subsets of X.

If X is a topological space, then the smallest σ-algebra containing the topology
is called a Borel σ-algebra, and its elements are called Borel sets. An outer measure
µ on a topological space is said to be Borel, if all Borel sets are µ-measurable. An
outer measure µ on a topological space X is said to be Borel regular, if it is Borel and
for any set A ⊂ X the value µ(A) is equal to the infimum of the values µ(B) over all
Borel sets BA.

Let X be an arbitrary metric space. For our purposes it suffices to define the
Hausdorff measure up to a multiplicative constant. For the standard definition of this
measure see, for instance [1].

Definition 7.4. For δ > 0 and A ⊂ X, a family {Ai}i∈I of subsets of X is called a
δ-covering of the set A, if A ⊂

⋃
i∈I Ai and diamAi < δ for all i ∈ I (if Ai = ∅, then

put diamAi = 0).

Definition 7.5. For any δ > 0, k > 0, and A ⊂ X put

Hk
δ (A) = inf

{ ∞∑
i=1

(diamAi)
k : {Ai}∞i=1 is a δ-covering of A

}
,

Hk(A) = sup
δ>0

Hk
δ (A).
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The next results are well-known, see, for example [1].

Proposition 7.6. For any k > 0 and any positive integer N the following statements
hold.
(i) For any metric space X the functions Hk are Borel regular outer measures on X.

(ii) If f : X → Y is an isometry of arbitrary metric spaces, then Hk
(
f(A)

)
= Hk(A)

for any subset A ⊂ X.

(iii) In any N -dimensional normed space, the HN -measure of a unit ball is non-zero
and finite, thus, the HN -measure of any bounded subset with non-empty interior is
non-zero and finite.

Proposition 7.7. Suppose that a compact group F acts continuously by isometries
on a metric space X, and let Y be a subset of X that is invariant with respect to the
action of the group G. Suppose also that
(i) For some k > 0 we have Hk(Y ) ∈ (0,∞);

(ii) There exist f ∈ F and A ⊂ Y such that Hk(A) > 0 and A ∩ f(A) = ∅.
Then Hk(Y/F ) < Hk(Y ).

Proposition 7.8. Let f : M→M be an arbitrary isometry, then Mg
[n] = f(Mg

[n]).

Proof. Choose an arbitrary X ∈ Mg
[n] and let Y = f(X). At first suppose that Y is

a regular degenerate space, then, by Corollaries 6.4 and 6.5, there exists ε > 0 such
that the ball Bε(X) ⊂ M[n] is isometric to Bε(ρX) ⊂ RN∞, and the ball Bε(Y ) is
isometric to the intersection Bε(ρY ) ∩ T (ρY ) of the ball Bε(ρY ) ⊂ RN∞ and the cone
T (ρY ). Since the translations in RN∞ are isometries, then, by items (ii) and (iii) of
Proposition 7.6, we have

HN
(
Bε(ρY )

)
=HN

(
Bε(ρX)

)
=HN

(
Bε(X)

)
=HN

(
Bε(Y )

)
=HN

(
Bε(ρY ) ∩ TρY

)
> 0.

By Proposition 6.6 and item (iii) of Proposition 7.6, is holds HN
(
Bε(ρY )\

(
Bε(ρY )∩

T (ρY )
))
>0, therefore, since the outer measureHN is a Borel one, we getHN

(
Bε(ρY )∩

T (ρY )
)
<HN

(
Bε(ρY )

)
, a contradiction. Thus, the balls Bε(X) and Bε(Y ) are not iso-

metric, so Y cannot be a regular degenerate space.
Next, let Y be a non-regular non-degenerate space. Then, by Corollary 6.7, the ball

Bε(Y ) is isometric to Bε(ρY )/GρY , where GρY is the stabilizer of the point ρY , which
is a non-trivial group, because the space Y is non-regular. Let g ∈ GρY be an element
different from the unity. Since the generic spaces are everywhere dense inM[n], there
exists ρZ ∈ Uε(ρY ) corresponding to a generic space Z ∈M[n]. Since the stabilizer of
the point ρZ is trivial, item (ii) of Proposition 5.2 implies that there exists δ > 0 such
that Uδ(ρZ) ⊂ Uε(ρY ) and g

(
Uδ(ρZ)

)
∩Uδ(ρZ) = ∅. However, Uδ(ρZ) is an open ball

in RN∞, therefore, by item (iii) of Proposition 7.6, we have 0 < HN
(
Uδ(ρZ)

)
< ∞.

Further, by item (i) of Proposition 5.2, it holds g
(
Uδ(ρZ)

)
⊂ Uε(ρY ), thus, by item (ii)

of Proposition 7.7 we conclude that HN
(
Bε(ρY )/GρY

)
< HN

(
Bε(ρY )

)
and, so,

HN
(
Bε(Y )

)
= HN

(
Bε(ρY )/GρY

)
< HN

(
Bε(ρY )

)
= HN

(
Bε(ρX)

)
= HN

(
Bε(X)

)
.
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Thus, Y cannot be a non-regular non-degenerate space.
The case of a non-regular degenerate space Y can be proceeded by a combination

of the above arguments. �

8. Local affinity property

In 1968 F. John [14] obtained a generalisation of the Mazur–Ulam Theorem [15] on
affinity property of isometries of normed vector spaces.

Proposition 8.1 ([14, Theorem IV, p. 94]). Let U ⊂ X be a connected open subset
of a real complete normed space X, and h : U →W be an isometry that maps U onto
an open subset W of a real complete normed space Y . Then h is the restriction of an
affine isometry H : X → Y .

Proposition 8.1 implies that all the isometries of the space Rd∞ are affine. Describe
these isometries in more details.

Proposition 8.2. Let h : Rd∞ → Rd∞ be an isometry. Then h(x) = (S · P )x + b,
where b ∈ Rd is a translation vector, P is a permutation matrix of the vectors from
the standard basis, and S is a diagonal matrix with ±1 on its diagonal.

Proof. Due to Proposition 8.1, h is affine. Any affine mapping is a composition of a
linear mapping x 7→ Ax with a translation. Since the distance in a normed space is
invariant under any translation, it suffices to describe all linear isometries h(x) = Ax.
Every such mapping takes the unit ball centered at the origin onto itself. Notice that
the unit ball in Rd∞ is the cube, whose 2d vertices are the points with coordinates ±1.
The hyper-faces (i.e., the facets) of this cube are given by the equations xi = ±1,
and h maps them into each other. This implies that the faces of the cube (of any
dimension) are transferred by h into the faces of the same dimension.

The radius-vector of the center of a hyper-face xi = ±1 is the vector ±ei, where
ei is a vector from the standard basis of the arithmetic space Rd. Notice that this
center is equal to the sum of the radius-vectors of the vertices of the corresponding
hyper-face, up to the factor 2d−1. Thus the mapping h takes each vector ei into a
vector ±ej , i.e., h is the composition of a basic vectors permutation with their signs
changes. �

Let f : M→M be an arbitrary isometry, X ∈ Mg
[n] and Y = f(X). By Propo-

sition 7.8, we have Y ∈ Mg
[n]. Choose ε > 0 in such a way that the balls Bε(X)

and Bε(Y ) in M[n] are canonical neighbourhoods. Then for any ρX ∈ Π−1(X) and
ρY ∈ Π−1(Y ) we have Bε(ρX) ⊂ Cgn, Bε(ρY ) ⊂ Cgn, and the restrictions πε,ρX and
πε,ρY of the mapping Πg onto these neighbourhoods are isometries Bε(ρX)→ Bε(X)
and Bε(ρY )→ Bε(Y ), respectively. Further, the mapping

hε,ρX ,ρY = π−1
ε,ρY ◦ f ◦ πε,ρX : Uε(ρX)→ Uε(ρY )

is also an isometry. By Proposition 8.1, the mapping h is affine. So, we get the
following result.
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Corollary 8.3. Under the above notations, if ε > 0 is such that Bε(X) and Bε(Y )
are canonical neighbourhoods, then the mapping

hε,ρX ,ρY = π−1
ε,ρY ◦ f ◦ πε,ρX : Uε(ρX)→ Uε(ρY )

has the form hε,ρX ,ρY (ρ) = (S · P ) ρ + b, where b ∈ RN is a translation vector, P is
a permutation matrix of the standard basic vectors, and S is a diagonal matrix with
±1 on its diagonal.

The next lemma will be used in what follows.

Lemma 8.4. If two affine mappings x 7→ Ai x + bi, i = 1, 2, defined on intersecting
open subsets of the space Rd coincide with each other in their intersection, then A1 =
A2 and b1 = b2.

Construction 8.5. Let X,X ′ ∈ Mg
[n] and the corresponding ρX , ρX′ ∈ Cgn be such

that the straight segment L = [ρX , ρX′ ] belongs to Cgn. Let us consider the straight
segment L as a continuous curve, and denote by γ the image of the curve L under the
mapping Πg. Then γ is a curve in Mg

[n] connecting X and X ′. Let γ′ be the image

of the curve γ under the isometry f , then γ′ connects Y := f(X) and Y ′ := f(X ′).
Choose an arbitrary ρY ∈ Cgn. By Corollary 6.12, the mapping Πg : Cgn → Mg

[n]

is a covering in a wide sense, therefore, by Proposition 6.13, there exists a unique
continuous curve L′ in Cgn starting at ρY and such that its Πg-image is the curve γ′.
Since the second endpoint of the curve L′ is projected to Y ′, this endpoint coincides
with ρY ′ for some numeration of points of the space Y ′.

Now, choose ε > 0 such that all the balls Uε(X), Uε(X
′), Uε(Y ), and Uε(Y

′) are
canonical neighbourhoods simultaneously. Then, under the notations of Corollary 6.9,
the isometries πε,ρX , πε,ρX′ , πε,ρY , πε,ρY ′ generate two other isometries hε,ρX ,ρY =
π−1
ε,ρY ◦ f ◦πε,ρX and hε,ρX′ ,ρY ′ = π−1

ε,ρY ′
◦ f ◦πε,ρX′ . By Proposition 8.1, the mappings

hε,ρX ,ρY and hε,ρX′ ,ρY ′ are the restrictions of some affine isometries H : RN∞ → RN∞
and H ′ : RN∞ → RN∞, respectively.

Lemma 8.6. Under the above notations, the affine isometries H and H ′ coincide.

Proof. Let the segment L together with the curves γ, γ′, and L′ be parameterised by
a parameter t ∈ [a, b], L(a) = ρX and L(b) = ρX′ .

For each t ∈ [a, b] choose εt > 0 such that Bεt
(
L(t)

)
and Bεt

(
L′(t)

)
are canonical

neighbourhoods. The family of balls
{
Uεt
(
L(t)

)}
is an open covering of the segment

[ρX , ρX′ ]. Let {Ui}mi=1 be a finite subcovering that exists because the segment is
compact. Without loss of generality, suppose that the family {Ui}mi=1 is minimal in
the sense that no one Ui is contained in another Uj ; besides, assume that the centres
ρi of the balls Ui are ordered along the segment [ρX , ρX′ ]. These two assumptions
imply that the consecutive Ui intersect each other, in particular, the distance between
each ρi and ρi+1 is less than the sum of radii εi and εi+1 of the balls Ui and Ui+1,
respectively. Since the balls Ui are open, then each intersection Ui ∩ Ui+1 is open as
well. Further, since |ρiρi+1|∞ < εi + εi+1, then there exists ρ′i ∈ (ρi, ρi+1) such that
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ρ′i ∈ Ui ∩ Ui+1; besides, since the set Ui ∩ Ui+1 is open, one can choose an open ball
U ′i with center ρ′i and radius ε′i in such a way that U ′i ⊂ Ui ∩ Ui+1. As a result, we
have constructed a new covering {U1, U

′
1, U2, U

′
2, . . .} of the segment [ρX , ρX′ ]. By

{Vi}2m−1
i=1 we denote the consecutive elements of this new covering. Introduce new

notations: let ρi = L(ti) be the center of the ball Vi, and εi be the radius of this ball.
Thus, Vi = Uεi(ρi).

Further, put νi = L′(ti) and consider the family of open balls
{
Wi := Uεi(νi)

}2m−1

i=1
,

then, by definition, each of these balls lies in Cgn, and the restrictions πεi,νi of the map-
ping Πg onto these balls are isometries. Besides, the restriction πεi,ρi of the mapping
Πg onto each Vi is an isometry as well. Put hi = hεi,ρi,νi = π−1

εi,νi ◦ f ◦ πεi,ρi , then
hi : Vi →Wi is an isometry for each i.

Since, by the construction V2k ⊂ V2k−1, the fact that h2k−1 is an isometry
implies that |ρ2kρ2k−1|∞ = |ν2kν2k−1|∞, therefore, W2k ⊂ W2k−1 and πε2k,ν2k =
πε2k−1,ν2k−1

|W2k
, because the both mappings are the restrictions of Πg. Thus, h2k =

h2k−1|V2k
. Similarly, one can show that h2k = h2k+1|V2k

.

By Proposition 8.1, for every i there exists an affine mappings Hi : RN∞ → RN∞ such
that hi = Hi|Vi

. As we have shown above, the consecutive mappings hi’s coincide on
open sets that are the intersections of the domains of the corresponding mappings,
thus, by Lemma 8.4, all these Hi coincide, in particular, H1 = H2m−1. By the same
Lemma, H = H1 and H ′ = H2m−1. �

Corollary 8.7. If in Construction 8.5 one changes the straight segment L by a finite
polygonal line, then Lemma 8.6 remains true.

Proposition 8.8. Under the notations of Corollary 8.3, the matrix S is unit, and
b = 0.

Proof. Under the notations of Construction 8.5, let us choose an arbitrary 0 < δ < 1
and take X ′ = δ X. By Corollary 8.7, the mappings

hε,ρX ,ρY : Uε(ρX)→ Uε(ρY ) and hε,ρX′ ,ρY ′ : Uε(ρX′)→ Uε(ρY ′)

are the restrictions of the same affine isometry H which does not depend on the choice
of δ. By Proposition 8.2, we have H(ρ) = (S ·P ) ρ+ b, where b ∈ RN∞ is a translation
vector, P is a permutation matrix, and S is a diagonal matrix with ±1 on its diagonal.

Notice that ‖δ ρX‖∞→0 as δ→ 0, hence, by Corollary 4.2, we have
∥∥H(δ ρX)

∥∥
∞→0

as δ → 0. However, if b 6= 0, then for δ such that ‖δ ρX‖∞< 1
2‖b‖∞ and

∥∥(S ·
P )(δ ρX)

∥∥
∞<

1
2‖b‖∞, we get∥∥H(δ ρX)
∥∥
∞=

∥∥(S · P )(δ ρX) + b
∥∥
∞≥ −

∥∥(S · P )(δ ρX)
∥∥
∞+‖b‖∞ >

1

2
‖b‖∞,

a contradiction.

Thus, we have shown that b = 0. It remains to notice that all the components of
the vectors ρX andH(ρX) are positive, hence, S cannot contain negative elements. �
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9. Some necessary facts on permutation groups

We have shown above that each mapping hε,ρX ,ρY is the restriction of an affine map-
ping x 7→ Px of the space RN onto itself, where P is a permutation matrix of the
basis vectors, i.e., in fact, an element from the permutation group SN . To complete
the proof, we show that P ∈ G, where G, as above, is the subgroup of SN , that is
isomorphic to Sn and generated by permutation (i.e., renumeration) of points of met-
ric spaces. The latter implies that Π(x) = Π(Px) and, thus, locally f is an identical
mapping, see details in Section 10. To do that, we need some facts on permutation
groups.

Put V = {1, . . . , n}, n ≥ 3. Let E be the set of the basis vectors eij = eji of the
space RN , i 6= j. Identify eij with the corresponding two-element subset {i, j} ⊂ V .
Then Kn = (V,E) is a complete graph with n vertices and N edges, and hence, the
actions of G and SN can be considered as actions on the set of edges E of the graph
Kn; note that the action of the group G is generated by permutations on the vertices
set V . Notice that for n = 3 we also have N = 3, and hence G = SN in this case, i.e.,
all six permutations of the edges are generated by the permutations of vertices.

Lemma 9.1. Let n ≥ 5. A permutation α ∈ SN belongs to the subgroup G, iff α takes
adjacent edges of Kn to adjacent ones.

Proof. It is easy to see that each permutation α ∈ G takes adjacent edges to adjacent
ones. Now, let us prove the converse statement.

Suppose that α takes all pairs of adjacent edges of the graph Kn to adjacent ones.
Consider all the edges incident to some fixed vertex v ∈ V (the number of such edges
is n − 1, in particular, it is not less than 4). Then, by assumption, their images are
pairwise adjacent. Let us show that the edges–images also have a common vertex.

Consider images of any three different edges from the chosen ones. Their images
form a connected three-edge subgraph H of Kn. Each such subgraph is either a cycle,
or a star, or a simple path. The latter case is impossible, because the first and the
last edges of the path are not adjacent.

Consider now the image of a fourth edge. It has to be adjacent with all three
edges of the subgraph H. Therefore, H cannot be a three-edge cycle and, thus, H is
a star, and the image of the fourth edge has to be incident to the common vertex of
the star.

Arguing in a similar way, we come to conclusion that the images of all the edges
incident with the vertex v are incident to some common vertex. Thus, it is defined a
mapping σ from the set V onto itself taking each vertex v ∈ V to the unique common
vertex of the α-images of all the edges incident to v. This mapping is injective: indeed,
if v and w are mapped to the same vertex, then their image is common for 2n − 2
edges that is impossible. Besides, σ induces a mapping on the edges of the graph Kn

which coincides with α, therefore, α ∈ G. �

Remark 9.2. For n = 4 the condition of Lemma 9.1 is not sufficient. For instance,
the next permutation α takes triples of edges having common vertex to triples of
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edges, which form cycles:

α =
( {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
{2, 3} {3, 4} {2, 4} {1, 3} {1, 2} {1, 4}

)
.

Evidently, α takes adjacent edges to adjacent ones, but it is not generated by a
permutation of vertices.

Assertion 9.3. For n ≥ 8 the normalizer of the subgroup G in SN coincides with
the group G.

Proof. By F we denote the set of all pairs of different edges of the graph Kn. Then
F = F0 t F1, where F0 consists of the pairs of non-adjacent edges, and F1 consists of
the pairs of adjacent edges (i.e., of edges having a common vertex).

Lemma 9.4. Under the above notations,

#F0 =
n(n− 1)(n− 2)(n− 3)

8
, #F1 =

n(n− 1)(n− 2)

2
.

In particular, for n ≥ 8 the number of pairs of non-adjacent edges is greater than the
number of pairs of adjacent ones, i.e., #F0 > #F1.

Proof. Indeed, consider the graph E(Kn), whose vertices are the edges of the graph
Kn, and two its vertices are adjacent, iff the corresponding edges of Kn are adjacent.
Then E(Kn) = (E,F1). Each edge {i, j} of Kn is adjacent in E(Kn) with n−2 edges
by the vertex i, and with n− 2 edges by the vertex j, thus the degree of each vertex
of the graph E(Kn) equals 2n− 4. Since the number of vertices of the graph E(Kn)
equals N = n(n− 1)/2, then by Handshaking Lemma we get:

#F1 =
1

2
· n(n− 1)

2
· (2n− 4) =

n(n− 1)(n− 2)

2
.

To calculate the number of the pairs of non-adjacent edges, we have to subtract #F1

from the number of all pairs:

#F0 =#F −#F1 =

n(n−1)
2

(
n(n−1)

2 − 1
)

2
− n(n− 1)(n− 2)

2

=
n(n− 1)

2

(n(n− 1)

4
− 1

2
− (n− 2)

)
=
n(n− 1)

2
· n

2 − 5n+ 6

4

=
n(n− 1)(n− 2)(n− 3)

8
.

In particular,

#F0 =
(n− 3)

4
·#F1,

therefore, since (n− 3)/4 > 1 for n > 7, we have #F0 > #F1 for n ≥ 8. �

Each permutation P ∈ SN acts not only on the edges of the graph Kn, but also
on the set F of pairs of edges. Lemma 9.4 implies the following result.

Lemma 9.5. For n ≥ 8 each permutation P ∈ SN takes some pair of non-adjacent
edges of the graph Kn to a pair of its non-adjacent edges.



152 Isometry group of Gromov–Hausdorff space

Proof. Indeed, one does not have enough elements in F1 to map all elements of F0

onto them. �

Return to the proof of Assertion 9.3. Consider a permutation P ∈ SN and assume
that P 6∈ G. Then, by Lemma 9.1, the permutation P takes some two adjacent edges
{i, j} and {i, k} of the graph Kn to a pair of non-adjacent edges {a, b} and {c, d}.
Besides, by Lemma 9.5, there exist two non-adjacent edges {i1, j1} and {i2, j2} which
are mapped by P to non-adjacent edges {a′, b′} and {c′, d′}. Since a, b, c, and d, as well
as a′, b′, c′, and d′ are pairwise distinct, then there exists a permutation g ∈ Sn such

that g(a) = a′, g(b) = b′, g(c) = c′, g(d) = d′. Then {i, j} P7−→ {a, b} g7−→ {a′, b′} P
−1

7−→
{i1, j1} and {i, k} P7−→ {c, d} g7−→ {c′, d′} P−1

7−→ {i2, j2}, i.e., the composition P−1g P
takes some adjacent edges to non-adjacent ones, and, thus, is does not belong to G
by Lemma 9.1. Therefore, P does not belong to the normalizer of G, that completes
the proof of the assertion. �

10. Completion of the Main Theorem proof

Let f : M → M be an isometry, X ∈ Mg
[n], and f(X) = Y . Choose ε > 0 such

that Bε(X) and Bε(Y ) are canonical neighbourhoods. Fix some ρX ∈ Π−1(X) and
ρY ∈ Π−1(Y ), then the mapping hε,ρX ,ρY : Uε(ρX) → Uε(ρY ) from Corollary 8.3 is
the restriction of a linear mapping RN → RN with permutation matrix P ∈ SN (this
linear mapping we denote by the same letter P ).

Lemma 10.1. For n ≥ 4 the permutation P ∈ SN belongs to the normalizer of the
subgroup G, i.e., P−1gP ∈ G for every g ∈ G.

Proof. It is easy to see that the subset of Mg
[n] consisting of all spaces such that all

their non-zero distances are pairwise distinct, is everywhere dense in Mg
[n]. Besides,

if Z is such a space, then for any numeration of the points from Z, all the components
of the vector ρZ are pairwise distinct, therefore, each Q ∈ SN is uniquely defined by
the Q-image of such point ρZ .

Chose X ∈ Mg
[n] in such a way that all non-zero distances in X are pairwise

distinct. By Proposition 6.11 and Corollary 8.7, for any ρ ∈ Π−1(X) there exists
ρ′ ∈ Π−1(Y ) such that the mapping hε,ρ,ρ′ : Uε(ρ) → Uε(ρ

′) is the restriction of a
linear mapping with the same matrix P . Therefore, P

(
Π−1(X)

)
⊂ Π−1(Y ). Since the

matrix P is non-degenerate, then for any distinct ρ1, ρ2 ∈ Π−1(X) we have P (ρ1) 6=
P (ρ2). At last, since #Π−1(X) = #Π−1(Y ), then P maps Π−1(X) bijectively onto
Π−1(Y ).

Take any ρX ∈ Π−1(X), any g ∈ G, and put ρ′X := P−1gP (ρX). Then ρ′X ∈
Π−1(X), and hence there exists g′ ∈ G such that ρ′X = g′(ρX). However, as we
mentioned above, the mapping P−1gP ∈ SN is uniquely defined by the image of ρX .
Thus, P−1gP = g′ ∈ G. �
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Now, Lemma 10.1 and Assertion 9.3 imply that for n ≥ 8 the permutation P
is contained in G, therefore the vectors ρX and ρf(X) differ by a renumeration of
vertices, i.e., X = f(X). Thus, we have shown that the isometry f is trivial on an
everywhere dense subset of the space Mg

[n] and, thus, on the entire Mg
[n]. It remains

to notice that the union
⋃
n≥8M

g
[n] is everywhere dense in M, and hence f is trivial

on the whole M. The Main Theorem is proved.
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