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Abstract. In this paper, we introduce the concept of (α,ψ, ξ)−G-contractive mappings
in a metric space endowed with a directed graph G. We investigate the existence and
uniqueness of points of coincidence and common fixed points for such mappings under some
conditions. Our results extend and generalize several well-known comparable results in the
literature. Some examples are provided to justify the validity of our results.

1. Introduction

Fixed point theory plays an important role in several branches of mathematics and ap-
plied sciences. In 1969, Nadler [19] extended the famous Banach contraction theorem
to set-valued form. Afterwards, series of articles has been dedicated to the develop-
ment of fixed point theory of multi-valued mappings in metric spaces (see [1,3]). Later
on, hybrid fixed point theory for nonlinear single-valued and multi-valued mappings
takes a prominent place in many aspects (see [16,17]).

In 2012, Samet et al. [20] introduced the notion of α − ψ-contractive mappings
and obtained some fixed point theorems for such mappings in complete metric spaces.
Some results in this direction are given in [1, 3, 14, 18]. In recent investigations, the
study of fixed point theory endowed with a graph presents a new development in
the domain of contractive type multi-valued theory. Many important results from
[2–4,7–9,11,12, 15, 20] have become the source of motivation for many researchers in
fixed point theory. Motivated by the work in [1,17,21], we will introduce the notion of
(α,ψ, ξ)−G-contractive mappings of a hybrid pair of single-valued and multi-valued
mappings and prove some coincidence point and common fixed point results for such
mappings. As consequences of this study, we deduce several related results in metric
fixed point theory. Finally, some examples are provided to illustrate the results.
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2. Some basic concepts

For a metric space (X, d), we let CB(X) and CL(X) be the set of all nonempty closed
bounded subsets of X and the set of all nonempty closed subsets of X, respectively. A
point x ∈ X is called a fixed point of a multi-valued mapping T : X → 2X if x ∈ Tx.
For every A,B ∈ CL(X), let

H(A,B) =

 max{supx∈A d(x,B), supy∈B d(y,A)}, if the maximum exists

∞, otherwise

where d(x,B) = inf{d(x, y) : y ∈ B}. Such map H is called the generalized Hausdorff
metric induced by the metric d.

Let Ψ be a class of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(ψ1) ψ is a nondecreasing function;

(ψ2)
∞∑
n=1

ψn(t) <∞ for each t > 0, where ψn is the n-th iterate of ψ.

Remark 2.1. ([17]) For each ψ ∈ Ψ, we see that the following assertions hold:

(i) lim
n→∞

ψn(t) = 0, for all t > 0; (ii) ψ(t) < t, for each t > 0; (iii) ψ(0) = 0.

Definition 2.2. ([3]) Let T be a self-mapping on a nonempty set X and α : X×X →
[0,∞) be another mapping. We say that T is α-admissible if the following condition
holds: x, y ∈ X, α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

Definition 2.3. ([3]) Let (X, d) be a metric space and α : X × X → [0,∞) be a
mapping. A mapping T : X → CL(X) is called α∗-admissible if x, y ∈ X, α(x, y) ≥
1⇒ α∗(Tx, Ty) ≥ 1, where α∗(Tx, Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty}.

In 2014, Ali et al. [1] introduced a family Ξ of functions ξ : [0,∞) → [0,∞)
satisfying the following conditions:

(ξ1) ξ is continuous;

(ξ2) ξ is nondecreasing on [0,∞);

(ξ3) ξ(0) = 0 and ξ(t) > 0 for all t ∈ (0,∞);

(ξ4) ξ is subadditive.

Example 2.4. ([1]) Suppose that φ : [0,∞) → [0,∞) is a Lebesgue integrable map-
ping which is summable on each compact subset of [0,∞), for each ε > 0,

∫ ε
0
φ(t) dt > 0

and for each a, b > 0, we have∫ a+b

0

φ(t) dt ≤
∫ a

0

φ(t) dt+

∫ b

0

φ(t) dt.

Define ξ : [0,∞)→ [0,∞) by ξ(t) =
∫ t
0
φ(w) dw for each t ∈ [0,∞). Then, ξ ∈ Ξ.

Lemma 2.5. ([1]) Let (X, d) be a metric space and let ξ ∈ Ξ. Then (X, ξ ◦ d) is a
metric space.
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Lemma 2.6. ([1]) Let (X, d) be a metric space, let ξ ∈ Ξ and let B ∈ CL(X). Assume
that there exists x ∈ X such that ξ(d(x,B)) > 0. Then there exists y ∈ B such that
ξ(d(x, y)) < qξ(d(x,B)), where q > 1.

Definition 2.7. ([17]) Let (X, d) be a metric space and α : X × X → [0,∞) be
a mapping. A mapping T : X → CL(X) is called α∗-admissible with respect to f
(a self-mapping on X) if the following condition holds: x, y ∈ X, α(fx, fy) ≥ 1 ⇒
α∗(Tx, Ty) ≥ 1, where α∗(Tx, Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty}.

Definition 2.8. ([17]) Let (X, d) be a metric space. The mappings T : X → CL(X)
and f : X → X are called (α,ψ, ξ)-contractive if there exist three functions ψ ∈ Ψ,
ξ ∈ Ξ and α : X ×X → [0,∞) such that x, y ∈ X, α(fx, fy) ≥ 1⇒ ξ(H(Tx, Ty)) ≤
ψ(ξ(M(x, y))), whereM(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx,Ty)+d(fy,Tx)2 }.

If ψ ∈ Ψ is strictly increasing, then T and f are called strictly (α,ψ, ξ)-contractive
mappings.

Definition 2.9. Let (X, d) be a metric space and T : X → CL(X) and f : X → X
be two mappings. If y = fx ∈ Tx for some x in X, then x is called a coincidence
point of T and f and y is called a point of coincidence of T and f .

Definition 2.10. Let (X, d) be a metric space. The mappings T : X → CL(X) and
f : X → X are called compatible if and only if fTx ∈ CL(X) for all x ∈ X and
H(Tfxn, fTxn)→ 0 whenever (xn) is a sequence in X such that Txn →M ∈ CL(X)
and fxn → t ∈M .

Definition 2.11. Let (X, d) be a metric space. The mappings T : X → CL(X) and
f : X → X are called weakly compatible if they commute at their coincidence points,
i.e., if Tfx = fTx whenever fx ∈ Tx.

Proposition 2.12. Let (X, d) be a metric space and T : X → CL(X) and f : X → X
be weakly compatible. If T and f have a unique point of coincidence y = fx ∈ Tx,
then y is the unique common fixed point of T and f in X.

Proof. Let y = fx ∈ Tx for some x in X. Since f and T are weakly compatible,
Tfx = fTx. This implies that fy ∈ Ty and hence fy is a point of coincidence of f
and T . As y is the unique point of coincidence of f and T , it follows that y = fy ∈ Ty.
This shows that y is a common fixed point of f and T .

Let z be another common fixed point of f and T in X i.e., z = fz ∈ Tz. Since
f and T have a unique point of coincidence in X, it follows that fy = fz and hence
y = z. This proves that y is the unique common fixed point of f and T in X. �

We next review some basic notions in graph theory.
Let (X, d) be a metric space. We assume that G is a digraph with the set of vertices

V (G) = X and the set E(G) of its edges contains all the loops, i.e., ∆ ⊆ E(G) where
∆ = {(x, x) : x ∈ X}. We also assume that G has no parallel edges. So we can
identify G with the pair (V (G), E(G)). G may be considered as a weighted graph
by assigning to each edge the distance between its vertices. By G−1 we denote the
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graph obtained from G by reversing the direction of edges i.e., E(G−1) = {(x, y) ∈
X × X : (y, x) ∈ E(G)}. Let G̃ denote the undirected graph obtained from G by
ignoring the direction of edges. Actually, it will be more convenient for us to treat
G̃ as a digraph for which the set of its edges is symmetric. Under this convention,
E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found in all
graph theory books (for example [6,10,13]). If x, y are vertices of the digraph G, then
a path in G from x to y of length n (n ∈ N) is a sequence (xi)

n
i=0 of n + 1 vertices

such that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, 2, . . . , n. A graph G is
connected if there is a path between any two vertices of G. G is weakly connected if
G̃ is connected.

Definition 2.13. Let (X, d) be a metric space endowed with a graph G. The map-
pings T : X → CL(X) and f : X → X are called (α,ψ, ξ) − G-contractive if there
exist three functions ψ ∈ Ψ, ξ ∈ Ξ and α : X × X → [0,∞) such that x, y ∈ X
with (fx, fy) ∈ E(G̃), α(fx, fy) ≥ 1 ⇒ ξ(H(Tx, Ty)) ≤ ψ(ξ(M(fx, fy))), where

M(fx, fy) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx,Ty)+d(fy,Tx)2 }.
If ψ ∈ Ψ is strictly increasing, then T and f are called strictly (α,ψ, ξ) − G-

contractive mappings.

It is valuable to note that strictly (α,ψ, ξ)-contractive mappings are strictly (α,ψ, ξ)−
G0-contractive. But strictly (α,ψ, ξ) − G-contractive mappings need not be strictly
(α,ψ, ξ)-contractive mappings (see Remark 3.18).

3. Main results

Assume that (X, d) is a metric space endowed with a reflexive digraph G such that
V (G) = X and G has no parallel edges. Let f : X → X and T : X → CL(X) be
such that T (X) ⊆ f(X). Let x0 ∈ X be arbitrary. Since T (X) ⊆ f(X), there exists
an element x1 ∈ X such that fx1 ∈ Tx0. Continuing in this way, we can construct a
sequence (fxn) such that fxn ∈ Txn−1, n = 1, 2, 3, . . . .

Definition 3.1. Let (X, d) be a metric space endowed with a graph G and f :
X → X and T : X → CL(X) be such that T (X) ⊆ f(X). Denote by CαfT the

set of all elements x0 of X such that (fxn, fxm) ∈ E(G̃) for m,n = 0, 1, 2, . . .
and α(fxn, fxn+1) ≥ 1 for all n ∈ N ∪ {0}, for every sequence (fxn) such that
fxn ∈ Txn−1.

Taking f = I, the identity map onX, CαfT becomes CαT which is the collection of all

elements x0 of X such that (xn, xm) ∈ E(G̃) for m, n = 0, 1, . . . and α(xn, xn+1) ≥ 1
for all n ∈ N ∪ {0}, for every sequence (xn) such that xn ∈ Txn−1.

Theorem 3.2. Let (X, d) be a metric space endowed with a graph G. Let T : X →
CL(X) and f : X → X be strictly (α,ψ, ξ) − G-contractive mappings. Suppose that
T (X) ⊆ f(X) and f(X) is a complete subspace of X with the following property:
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(*) If (fxn) is a sequence in X such that fxn → x and (fxn, fxn+1) ∈ E(G̃) for all
n ≥ 1 and α(fxn, fxn+1) ≥ 1 for all n ∈ N, then there exists a subsequence (fxni) of
(fxn) such that (fxni

, x) ∈ E(G̃) and α(fxni
, x) ≥ 1 for all i ≥ 1.

Then f and T have a point of coincidence in X if CαfT 6= ∅. Moreover, f and T have
a unique point of coincidence in X if the graph G has the following property:

(**) If x, y are points of coincidence of f and T in X, then (x, y) ∈ E(G̃) and
α(x, y) ≥ 1.

Furthermore, if f and T are weakly compatible, then f and T have a unique common
fixed point in X.

Proof. Suppose that CαfT 6= ∅. We choose an x0 ∈ CαfT and keep it fixed. Since

Tx0 ⊆ f(X), there exists x1 ∈ X such that fx1 ∈ Tx0 and (fx0, fx1) ∈ E(G̃) with
α(fx0, fx1) ≥ 1. If x1 = x0, then f and T have a point of coincidence in X. So, we
assume that x1 6= x0. If fx1 ∈ Tx1, then we have nothing to prove. Therefore, let
fx1 6∈ Tx1.

Since T and f are strictly (α,ψ, ξ)−G-contractive, we have

ξ(H(Tx0, Tx1)) ≤ ψ

ξ
max

 d(fx0, fx1), d(fx0, Tx0), d(fx1, Tx1),

d(fx0,Tx1)+d(fx1,Tx0)
2




≤ ψ(ξ(max{d(fx0, fx1), d(fx1, Tx1),
d(fx0, Tx1)

2
}))

≤ ψ

ξ
max

 d(fx0, fx1), d(fx1, Tx1),

d(fx0,fx1)+d(fx1,Tx1)
2




= ψ(ξ(max{d(fx0, fx1), d(fx1, Tx1)})). (1)

If max{d(fx0, fx1), d(fx1, Tx1)} = d(fx1, Tx1), then condition (1) implies

0 < ξ(d(fx1, Tx1)) ≤ ξ(H(Tx0, Tx1)) ≤ ψ(ξ(d(fx1, Tx1))), (2)

which is a contradiction, since ψ(r) < r for each r > 0.
Therefore, max{d(fx0, fx1), d(fx1, Tx1)} = d(fx0, fx1).
From condition (1), we obtain

0 < ξ(d(fx1, Tx1)) ≤ ξ(H(Tx0, Tx1)) ≤ ψ(ξ(d(fx0, fx1))). (3)

By Lemma 2.6, for q > 1, there exists fx2 ∈ Tx1 such that

0 < ξ(d(fx1, fx2)) < qξ(d(fx1, Tx1)). (4)

From conditions (3) and (4), we get 0 < ξ(d(fx1, fx2)) < qψ(ξ(d(fx0, fx1))). Since
ψ is strictly increasing, we have 0 < ψ(ξ(d(fx1, fx2))) < ψ(qψ(ξ(d(fx0, fx1)))). Put

q1 = ψ(qψ(ξ(d(fx0,fx1))))
ψ(ξ(d(fx1,fx2)))

. Then, q1 > 1.

If x1 = x2 or fx2 ∈ Tx2, then we have nothing to prove. Therefore, we assume
that x1 6= x2 and fx2 6∈ Tx2. Since x0 ∈ CαfT , fx1 ∈ Tx0, fx2 ∈ Tx1, it follows that

(fx1, fx2) ∈ E(G̃) and α(fx1, fx2) ≥ 1.
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Applying strictly (α,ψ, ξ)−G-contractive condition, we get

ξ(H(Tx1, Tx2)) ≤ ψ(ξ(max{d(fx1, fx2), d(fx2, Tx2)})). (5)

If max{d(fx1, fx2), d(fx2, Tx2)} = d(fx2, Tx2), then it follows from condition (5)
that 0 < ξ(d(fx2, Tx2)) ≤ ξ(H(Tx1, Tx2)) ≤ ψ(ξ(d(fx2, Tx2))), which is a contra-
diction. Therefore, max{d(fx1, fx2), d(fx2, Tx2)} = d(fx1, fx2).

Now, by using condition (5), we obtain

0 < ξ(d(fx2, Tx2)) ≤ ξ(H(Tx1, Tx2)) ≤ ψ(ξ(d(fx1, fx2))). (6)

By Lemma 2.6, for q1 > 1, there exists fx3 ∈ Tx2 such that

0 < ξ(d(fx2, fx3)) < q1ξ(d(fx2, Tx2)). (7)

From conditions (6) and (7), we get

0 < ξ(d(fx2, fx3)) < q1ψ(ξ(d(fx1, fx2))) = ψ(qψ(ξ(d(fx0, fx1)))).

ψ being strictly increasing implies that 0 < ψ(ξ(d(fx2, fx3))) < ψ2(qψ(ξ(d(fx0, fx1)))).
Since x0 ∈ CαfT , fx1 ∈ Tx0, fx2 ∈ Tx1, fx3 ∈ Tx2, it follows that (fxn, fxm) ∈ E(G̃)
for m,n = 0, 1, 2, 3 and α(fxn, fxn+1) ≥ 1 for n = 0, 1, 2.

Continuing this process, we can construct a sequence (fxn) in X such that fxn ∈
Txn−1, (fxn, fxm) ∈ E(G̃) for m,n = 0, 1, 2, . . . and α(fxn, fxn+1) ≥ 1 for all
n ∈ N ∪ {0} and 0 < ξ(d(fxn+1, fxn+2)) < ψn(qψ(ξ(d(fx0, fx1)))), ∀n ∈ N ∪ {0}.

We now show that (fxn) is a Cauchy sequence in f(X).

For m,n ∈ N with m > n, we have

ξ(d(fxm, fxn)) ≤
m−1∑
i=n

ξ(d(fxi, fxi+1)) ≤
m−1∑
i=n

ψi−1(qψ(ξ(d(fx0, fx1)))).

By using (ψ2), it follows that lim
n,m→∞

ξ(d(fxm, fxn)) = 0. By using (ξ1) and (ξ3), we

get lim
n,m→∞

d(fxm, fxn) = 0. This gives that (fxn) is a Cauchy sequence in f(X). As

f(X) is complete, there exists a t ∈ f(X) such that fxn → t = fu for some u ∈ X.

As (fxn, fxn+1) ∈ E(G̃) and α(fxn, fxn+1) ≥ 1 for all n ≥ 1, by property
(*), there exists a subsequence (fxni) of (fxn) such that (fxni , fu) ∈ E(G̃) and
α(fxni , fu) ≥ 1 for all i ≥ 1.

Then by applying strictly (α,ψ, ξ)−G-contractivity, we have

ξ(H(Txni
, Tu)) ≤ ψ

ξ
max

 d(fxni
, fu), d(fxni

, Txni
), d(fu, Tu),

d(fxni
,Tu)+d(fu,Txni

)

2


 . (8)

Suppose that d(fu, Tu) 6= 0. Let ε = d(fu,Tu)
2 > 0. Since fxni

→ fu, there exists
k1 ∈ N such that

d(fxni , fu) <
d(fu, Tu)

2
, for each i ≥ k1. (9)

As fxn → fu, there exists k2 ∈ N such that

d(fxni
, Txni

) ≤ d(fxni
, fxni+1) <

d(fu, Tu)

2
, for each i ≥ k2. (10)
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Moreover, there exists k3 ∈ N such that

d(fu, Txni) ≤ d(fu, fxni+1) <
d(fu, Tu)

2
, for each i ≥ k3. (11)

As d(fxni , Tu) ≤ d(fxni , fu) + d(fu, Tu), it follows that

d(fxni
, Tu) <

d(fu, Tu)

2
+ d(fu, Tu) =

3

2
d(fu, Tu), for each i ≥ k1. (12)

Put k = max{k1, k2, k3}. Then, for i ≥ k, it follows from conditions (9), (10), (11)
and (12) that

max

 d(fxni , fu), d(fxni , Txni), d(fu, Tu),
d(fxni

,Tu)+d(fu,Txni
)

2

 = d(fu, Tu).

Therefore, for i ≥ k, we obtain from (8) that

ξ(H(Txni , Tu)) ≤ ψ(ξ(d(fu, Tu))). (13)

By triangle inequality and condition (13), for i ≥ k, we have

ξ(d(fu, Tu)) ≤ ξ(d(fu, fxni+1)) + ξ(d(fxni+1, Tu))

≤ξ(d(fu, fxni+1)) + ξ(H(Txni , Tu)) ≤ ξ(d(fu, fxni+1)) + ψ(ξ(d(fu, Tu))).

Taking limit as i→∞, we get ξ(d(fu, Tu)) ≤ ψ(ξ(d(fu, Tu))), which is a contradic-
tion, since ξ(d(fu, Tu)) > 0. Therefore, d(fu, Tu) = 0 and so, t = fu ∈ Tu, i.e., t is
a point of coincidence of f and T .

For uniqueness, assume that there is another point of coincidence s(6= t) in X such
that s = fv ∈ Tv for some v ∈ X. By property (∗∗), we have (fu, fv) ∈ E(G̃) and
α(fu, fv) ≥ 1. Then, ξ(H(Tu, Tv)) ≤ ψ(ξ(M(fu, fv))), where

M(fu, fv) = max{d(fu, fv), d(fu, Tu), d(fv, Tv),
d(fu, Tv) + d(fv, Tu)

2
}

= max{d(fu, fv),
d(fu, Tv) + d(fv, Tu)

2
}

≤ max{d(fu, fv),
d(fu, fv) + d(fv, fu)

2
} = d(fu, fv).

Thus, 0 < ξ(d(fu, fv)) ≤ ξ(H(Tu, Tv)) ≤ ψ(ξ(d(fu, fv))), which is a contradiction,
since ψ(r) < r for each r > 0.

So, it must be the case that d(fu, fv) = 0 and hence, fu = fv. Therefore, f and
T have a unique point of coincidence in X.

If f and T are weakly compatible, then by Proposition 2.12, f and T have a unique
common fixed point in X. �

Corollary 3.3. Let (X, d) be a complete metric space endowed with a graph G and
let T : X → CL(X) be a strictly (α,ψ, ξ)−G-contractive mapping. Suppose the triple
(X, d,G) has the following property:

(*’) If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈ E(G̃), α(xn, xn+1) ≥
1 for all n ≥ 1, then there exists a subsequence (xni) of (xn) such that (xni , x) ∈ E(G̃)
and α(xni

, x) ≥ 1 for all i ≥ 1.
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Then T has a fixed point in X if CαT 6= ∅. Moreover, T has a unique fixed point in X
if the graph G has the following property:

(**’) If x, y are fixed points of T in X, then (x, y) ∈ E(G̃) and α(x, y) ≥ 1.

Proof. The proof follows from Theorem 3.2 by taking the identity map on X for f . �

Corollary 3.4. Let (X, d) be a metric space and let f : X → X and T : X → CL(X)
be strictly (α,ψ, ξ)-contractive mappings. Suppose that T (X) ⊆ f(X) and f(X) is a
complete subspace of X with the following property:

(†) If (fxn) is a sequence in X such that fxn → x and α(fxn, fxn+1) ≥ 1 for all
n ≥ 1, then there exists a subsequence (fxni) of (fxn) such that α(fxni , x) ≥ 1 for
all i ≥ 1.

If there exists x0 ∈ X such that α(fxn, fxn+1) ≥ 1 for all n ∈ N ∪ {0} and for every
sequence (fxn) such that fxn ∈ Txn−1, then f and T have a point of coincidence
in X. Moreover, f and T have a unique point of coincidence in X if the following
property holds:

(‡) If x, y are points of coincidence of f and T in X, then α(x, y) ≥ 1.

Furthermore, if f and T are weakly compatible, then f and T have a unique common
fixed point in X.

Proof. The proof follows from Theorem 3.2 by taking G = G0, where G0 is the
complete graph (X,X ×X). �

Corollary 3.5. Let (X, d) be a metric space endowed with a partial ordering �. Let
f : X → X and T : X → CL(X) be such that T (X) ⊆ f(X) and f(X) is a complete
subspace of X. Suppose that there exist ψ ∈ Ψ, ξ ∈ Ξ and α : X × X → [0,∞)
such that α(fx, fy) ≥ 1 ⇒ ξ(H(Tx, Ty)) ≤ ψ(ξ(M(fx, fy))) for all x, y ∈ X with
fx � fy or, fy � fx. Suppose the triple (X, d,�) has the following property:

(†′) If (fxn) is a sequence in X such that fxn → x and fxn, fxn+1 are comparable
with α(fxn, fxn+1) ≥ 1 for all n ≥ 1, then there exists a subsequence (fxni

) of (fxn)
such that fxni , x are comparable with α(fxni , x) ≥ 1 for all i ≥ 1.

If there exists x0 ∈ X such that fxn, fxm are comparable for m,n = 0, 1, 2, . . .
and α(fxn, fxn+1) ≥ 1 for all n ∈ N ∪ {0}, for every sequence (fxn) such that
fxn ∈ Txn−1, then f and T have a point of coincidence in X. Moreover, f and T
have a unique point of coincidence in X if the following property holds:

(‡′) If x, y are points of coincidence of f and T in X, then x, y are comparable and
α(x, y) ≥ 1.

Furthermore, if f and T are weakly compatible, then f and T have a unique common
fixed point in X.
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Proof. The proof can be obtained from Theorem 3.2 by taking G = G2, where the
graph G2 is defined by E(G2) = {(x, y) ∈ X ×X : x � y or y � x}. �

As an application of Theorem 3.2, we obtain the following theorem.

Theorem 3.6. Let (X, d) be a metric space and let T : X → CL(X) and f : X → X
be a hybrid pair such that T (X) ⊆ f(X) and f(X) is a complete subspace of X. Sup-
pose that T and f are strictly (α,ψ, ξ)-contractive mappings satisfying the following
conditions:

(i) T is an α∗-admissible multi-valued mapping w.r.t. f ;

(ii) there exists x0 ∈ X such that α(fx0, fx1) ≥ 1, ∀fx1 ∈ Tx0;

(iii) if (fxn) is a sequence in X with fxn → x and α(fxn, fxn+1) ≥ 1 for each
n ≥ 1, then there exists a subsequence (fxni

) of (fxn) such that α(fxni
, x) ≥ 1 for

all i ≥ 1.

Then f and T have a point of coincidence in X. Moreover, f and T have a unique
point of coincidence in X if the property (‡) holds. Furthermore, if f and T are
weakly compatible, then f and T have a unique common fixed point in X.

Proof. We take G = G0 = (X,X × X). Then, the mappings T and f are strictly
(α,ψ, ξ)−G0-contractive mappings. By hypothesis (ii), there exists x0 ∈ X such that
α(fx0, fx1) ≥ 1, ∀fx1 ∈ Tx0. By hypothesis (i), it follows that α∗(Tx0, Tx1) ≥ 1 and
hence α(fx1, fx2) ≥ 1, ∀fx1 ∈ Tx0, fx2 ∈ Tx1. By repeated use of hypothesis (i),
we get that α(fxn, fxn+1) ≥ 1, ∀n ∈ N∪ {0} and for every sequence (fxn) such that
fxn ∈ Txn−1. Moreover, (fxn, fxm) ∈ E(G̃0) for m, n = 0, 1, 2, . . . . This ensures
that x0 ∈ CαfT and hence CαfT 6= ∅. Furthermore, hypothesis (iii) shows that property
(*) holds. Thus, all the conditions of Theorem 3.2 are satisfied and the conclusion of
Theorem 3.6 can be obtained from Theorem 3.2. �

Theorem 3.7. Let (X, d) be a complete metric space endowed with a graph G and
let f : X → X and T : X → CL(X) be the continuous and compatible hybrid pair
such that T (X) ⊆ f(X). Suppose that T and f are strictly (α,ψ, ξ) − G-contractive
mappings. Then f and T have a point of coincidence in X if CαfT 6= ∅. Moreover, f
and T have a unique common fixed point in X if the graph G has the property (**).

Proof. As in the proof of Theorem 3.2, we can construct a Cauchy sequence (fxn) in X
such that fxn ∈ Txn−1, (fxn, fxm) ∈ E(G̃) for m,n = 0, 1, . . . and α(fxn, fxn+1) ≥
1 for all n ∈ N ∪ {0} and

ξ(H(Txn, Txn+1)) ≤ ψ(ξ(d(fxn, fxn+1))). (14)

(X, d) being complete, there exists t ∈ X such that fxn → t as n→∞.
Since (fxn) is a Cauchy sequence in (X, d), it follows from the condition (14) that

(Txn) is a Cauchy sequence in the complete metric space (CL(X), H). So, there
exists M ∈ CL(X) such that Txn →M . Now,

d(t,M) ≤ d(t, fxn) + d(fxn,M) ≤ d(t, fxn) +H(Txn−1,M) → 0 as n→∞.
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SinceM is closed, t ∈M . The compatibility of f and T gives thatH(Tfxn, fTxn)→ 0
as n→∞. By continuity of f and T , we have

d(ft, T t) ≤ d(ft, ffxn+1) + d(ffxn+1, T t) ≤ d(ft, ffxn+1) +H(fTxn, T t)

≤ d(ft, ffxn+1) +H(fTxn, Tfxn) +H(Tfxn, T t)→ 0 as n→∞,
which implies that ft ∈ Tt, since Tt is closed. Taking u = ft, it follows that u is a
point of coincidence of f and T in X.

By the argument similar to that used in Theorem 3.2, it follows that u is the
unique point of coincidence of f and T in X.

Since compatibility implies weak compatibility, by Proposition 2.12, it follows that
f and T have a unique common fixed point in X. �

Corollary 3.8. Let (X, d) be a complete metric space endowed with a graph G and
let T : X → CL(X) be a continuous strictly (α,ψ, ξ)−G-contractive mapping. Then
T has a fixed point in X if CαT 6= ∅. Moreover, T has a unique fixed point in X if the
graph G has the property (**’).

Proof. The proof follows from Theorem 3.7 by taking f = I. �

Corollary 3.9. Let (X, d) be a complete metric space and let f : X → X and T :
X → CL(X) be the continuous and compatible hybrid pair such that T (X) ⊆ f(X).
Suppose that T and f are strictly (α,ψ, ξ)-contractive mappings. If there exists x0 ∈ X
such that α(fxn, fxn+1) ≥ 1 for all n ∈ N ∪ {0} and for every sequence (fxn) such
that fxn ∈ Txn−1, then f and T have a point of coincidence in X. Moreover, f and
T have a unique common fixed point in X if the property (‡) holds.

Proof. The proof follows from Theorem 3.7 by taking G = G0. �

Corollary 3.10. Let (X, d) be a complete metric space endowed with a partial or-
dering �. Let f : X → X and T : X → CL(X) be the continuous and compatible
hybrid pair such that T (X) ⊆ f(X). Suppose that there exist ψ ∈ Ψ, ξ ∈ Ξ and
α : X ×X → [0,∞) such that α(fx, fy) ≥ 1⇒ ξ(H(Tx, Ty)) ≤ ψ(ξ(M(fx, fy))) for
all x, y ∈ X with fx � fy or, fy � fx. If there exists x0 ∈ X such that fxn, fxm are
comparable for m,n = 0, 1, 2, . . . and α(fxn, fxn+1) ≥ 1 for all n ∈ N∪{0}, for every
sequence (fxn) such that fxn ∈ Txn−1, then f and T have a point of coincidence in
X. Also, f and T have a unique common fixed point in X if the property (‡′) holds.

Proof. The proof can be obtained from Theorem 3.7 by taking G = G2. �

Corollary 3.11. ( [16]) Let (X, d) be a complete metric space, f : X → X and
T : X → CB(X) be compatible continuous mappings such that T (X) ⊆ f(X) and

H(Tx, Ty) ≤ h max

{
d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx, Ty) + d(fy, Tx)

2

}
for all x, y ∈ X, where 0 < h < 1. Then there exists a point t ∈ X such that ft ∈ Tt.

Proof. Since CB(X) ⊆ CL(X), the proof can be obtained from Theorem 3.7 by
taking G = G0, α(x, y) = 1 for all x, y ∈ X, ξ(t) = t for each t ≥ 0 and ψ(t) = ht for
each t ≥ 0, where h ∈ (0, 1) is a fixed number. �
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Remark 3.12. It is worth mentioning that in Corollary 3.11, f and T have a unique
common fixed point in X.

Remark 3.13. Several special cases of our results can be obtained by restricting
T : X → X and taking ξ(t) = t for each t ≥ 0, α(x, y) = 1, G = G0. Further special
cases of our results can be obtained by considering T : X → CB(X) and f = I,
ξ(t) = t for each t ≥ 0, ψ(t) = ht for each t ≥ 0, where h ∈ (0, 1) is a fixed number,
α(x, y) = 1, G = G0.

As an application of Theorem 3.7, we obtain the following theorem.

Theorem 3.14. Let (X, d) be a complete metric space and let T : X → CL(X)
and f : X → X be the continuous and compatible hybrid pair such that T (X) ⊆
f(X). Suppose that T and f are strictly (α,ψ, ξ)-contractive mappings satisfying the
following conditions:

(i) T is an α∗-admissible multi-valued mapping w.r.t. f ;

(ii) there exists x0 ∈ X such that α(fx0, fx1) ≥ 1, ∀fx1 ∈ Tx0.

Then f and T have a point of coincidence in X. Moreover, f and T have a unique
common fixed point in X if the property (‡) holds.

Proof. The proof is similar to that of Theorem 3.6. �

We provide some examples in favour of our results.

Example 3.15. Let X = [0,∞) with the usual metric d. Then (X, d) is a complete
metric space. Let G be a digraph such that V (G) = X and E(G) = ∆ ∪ {(0, 1

n ) :
n = 1, 2, 3, . . . }. Let T : X → CL(X) be defined by Tx = {0, x2}, for all x ∈ X and
fx = 4x for all x ∈ X. Obviously, T (X) ⊆ f(X) = X.

Let α : X ×X → [0,∞) be defined by

α(x, y) =

 1, if x, y ∈ [0, 1]

1
2 , otherwise.

Take ψ(t) = t
2 and ξ(t) =

√
t for each t ≥ 0.

If x = 0, y = 1
4n , then fx = 0, fy = 1

n and so (fx, fy) ∈ E(G̃) and α(fx, fy) = 1.

For x = 0, y = 1
4n , we have Tx = {0}, Ty = {0, 1

8n} and ξ(H(Tx, Ty)) = ξ( 1
8n ) =

1
2
√
2n

. Moreover,

M(fx, fy) = max
{
d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx,Ty)+d(fy,Tx)2

}
= max

{
d(0, 1

n ), d(0, {0}), d( 1
n , {0,

1
8n}),

d(0,{0, 1
8n})+d(

1
n ,{0})

2

}
= max

{
1

n
, 0,

7

8n
,

7
8n + 1

n

2

}
=

1

n
.
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So, ψ(ξ(M(fx, fy))) = ψ(ξ( 1
n )) = ψ(

√
1
n ) = 1

2
√
n

. Thus, for all x, y ∈ X with

(fx, fy) ∈ E(G̃) and α(fx, fy) = 1, ξ(H(Tx, Ty)) ≤ ψ(ξ(M(fx, fy))). Therefore, T
and f are strictly (α,ψ, ξ)−G-contractive mappings.

We can verify that x0 = 0 ∈ CαfT . In fact, fxn ∈ Txn−1, n = 1, 2, . . . gives that
fx1 ∈ T0 = {0} ⇒ x1 = 0 and so fx2 ∈ Tx1 = {0} ⇒ x2 = 0. Proceeding in
this way, we get fxn = 0 for n = 0, 1, . . . and hence (fxn, fxm) = (0, 0) ∈ E(G̃) for
m,n = 0, 1, 2 . . . and α(fxn, fxn+1) = 1 for all n ∈ N ∪ {0}.
Also, any sequence (fxn) with the property α(fxn, fxn+1) = 1 must be a sequence
in [0, 1]. Moreover, (fxn, fxn+1) ∈ E(G̃) must be either a constant sequence or a
sequence of the following form

fxn =

 0, if n is odd

1
n , if n is even

where the words odd and even are interchangeable. Consequently it follows that
property (*) holds. Furthermore, the graph G has the property (**) and f and T
are weakly compatible. Thus, we have all the conditions of Theorem 3.2 and 0 is the
unique common fixed point of f and T in X.

We now show that property (**) in Theorem 3.2 is necessary for the unique point
of coincidence.

Remark 3.16. In Example 3.15, if we take

Tx =


{0, x2}, if 0 ≤ x < 1

{0}, if x = 1[
x2,∞

)
, if x > 1

instead of Tx =
{

0,
x

2

}
, for all x ∈ X,

then all the conditions of Theorem 3.2 except property (**) are satisfied. We observe
that f and T have infinitely many points of coincidence in X.

Example 3.17. Let X = {1, 2, 3} ∪ [4,∞) with the usual metric d. Then (X, d) is
a complete metric space. Let G be a digraph such that V (G) = X and E(G) =
∆ ∪ {(1, 3)}. Let T : X → CL(X) be defined by

Tx =


{2, 3}, if x = 1, 3

{2}, if x = 2[
x2,∞

)
, if x ≥ 4

and fx =

 x, if x = 1, 2, 3

x+ 1, if x ≥ 4.

Obviously, T (X) ⊆ f(X) and f(X) is a complete subspace of (X, d).
Let α : X × X → [0,∞) be defined by α(x, y) = 1 for all x, y ∈ X. Take

ψ(t) = t
2 and ξ(t) =

√
t for each t ≥ 0. Then it is easy to verify that ξ(H(Tx, Ty)) ≤

ψ(ξ(M(fx, fy))), for all x, y ∈ X with (fx, fy) ∈ E(G̃) and α(fx, fy) = 1.
Therefore, T and f are strictly (α,ψ, ξ) − G-contractive mappings. Moreover,

2 ∈ CαfT and property (*) holds. We find that 2 and 3 are points of coincidence of f
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and T in X. In fact, 2 and 3 are common fixed points of f and T in X. However, f
and T are weakly compatible, the uniqueness part of Theorem 3.2 does not hold due
to lack of property (**) of the graph G.

Remark 3.18. In Example 3.17, T and f are strictly (α,ψ, ξ) − G-contractive but
not strictly (α,ψ, ξ)-contractive. In fact, for x = 1, y = 2, we have fx = 1, fy = 2,
Tx = {2, 3}, Ty = {2} and so (fx, fy) 6∈ E(G̃).

Then, ξ(H(Tx, Ty)) = ξ(1) = 1 and

M(fx, fy) = max

 d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx,Ty)+d(fy,Tx)
2

 = max

{
1, 1, 0,

1 + 0

2

}
= 1,

which implies that, ξ(H(Tx, Ty)) > ψ(ξ(M(fx, fy))). Consequently, T and f are not
strictly (α,ψ, ξ)-contractive.

The following example supports our Theorem 3.7.

Example 3.19. Let X = [1,∞) be endowed with the Euclidean metric d. Then
(X, d) is a complete metric space. Let G be a digraph such that V (G) = X and
E(G) = ∆ ∪ {(n, n+ 1) : n ∈ N}.

Let fx = 6x2 − 5 and Tx = [1, x2] for each x ≥ 1. Then, T and f are continuous
and T (X) = f(X) = X. It is to be noted that fTx = [1, 6x4−5] ∈ CL(X) for all x ∈
X. Since fxn → 1 and Txn → {1} iff xn → 1, H(fTxn, T fxn) = 30|x4n−2x2n+1| → 0
iff xn → 1, implying that f and T are compatible.

Let α : X × X → [0,∞) be defined by α(x, y) = 1 for all x, y ∈ X. Take

ψ(t) = t
3 and ξ(t) = t

2 for each t ≥ 0. If x =
√

n+5
6 , y =

√
n+6
6 , n ∈ N,

then fx = n, fy = n + 1 and so (fx, fy) ∈ E(G̃) and α(fx, fy) = 1. Then,
H(Tx, Ty) = |x2 − y2| = |n+5

6 − n+6
6 | = 1

6 and d(fx, fy) = 1 ≤ M(fx, fy) which
implies that, ψ(ξ(d(fx, fy))) ≤ ψ(ξ(M(fx, fy))). Now, ξ(H(Tx, Ty)) = ξ( 1

6 ) = 1
12 <

1
6 = ψ(ξ(d(fx, fy))) ≤ ψ(ξ(M(fx, fy))).

Thus, T and f are strictly (α,ψ, ξ)−G-contractive.
It is easy to verify that property (**) holds and 1 ∈ CαfT i.e., CαfT 6= ∅. Thus, we

have all the conditions of Theorem 3.7 and 1 is the unique common fixed point of f
and T in X.
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