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ON THE VERTEX-EDGE WIENER INDICES OF THORN GRAPHS

Mahdieh Azari

Abstract. The vertex-edge Wiener index is a graph invariant defined as the sum of
distances between vertices and edges of a graph. In this paper, we study the relation between
the first and second vertex-edge Wiener indices of thorn graph and its parent graph and
examine several special cases of the results. Results are applied to compute the first and
second vertex-edge Wiener indices of thorn stars, Kragujevac trees, and dendrimers.

1. Introduction

All graphs considered in this paper are finite, simple and connected. Let G be an
n-vertex graph with vertex set V (G) = {v1, v2, . . . , vn} and let P = (p1, p2, . . . , pn)
be an n-tuple of nonnegative integers. The thorn graph GP is the graph obtained
by attaching pi pendent vertices (terminal vertices or vertices of degree one) to the
vertex vi of G, for i = 1, 2, . . . , n. The pi pendent vertices attached to the vertex vi
are called thorns of vi, i = 1, 2, . . . , n. We denote the set of pi thorns of vi by Vi
and the set of pi edges connecting the vertex vi and its thorns by Ei, i = 1, 2, . . . , n.
Clearly, V (GP) = V (G)∪V1∪V2∪. . .∪Vn and E(GP) = E(G)∪E1∪E2∪. . .∪En, and
for 1 ≤ i 6= j ≤ n, Vi∩Vj = Ei∩Ej = φ. The concept of thorn graphs was introduced
in 1998 by Gutman [9] and eventually found a variety of chemical applications; see,
e.g., [3]. The motivation for the study of thorn graphs came from a particular case,
namely GP = G(γ−γ1,γ−γ2,...,γ−γn), where γi is the degree of the i-th vertex of G and
γ is a constant (γ ≥ γi for all i = 1, 2, . . . , n). Then the vertices of GP are either of
degree γ or of degree one. If in addition γ = 4, then the thorn graph GP is just what
Cayley [6] calls a plerogram (a graph in which every atom is represented by a vertex
and adjacent atoms are connected by a chemical bond) and Polya [14] a C-H graph.
The parent graph G would then be referred to as a kenogram [6] (a graph obtained
from a plerogram by suppressing hydrogen atoms) or a C-graph [14] .
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A topological index is a numeric quantity that is mathematically derived in a
direct and unambiguous manner from the structural graph of a molecule. It is used
in theoretical chemistry for the design of chemical compounds with given physico-
chemical properties or given pharmacologic and biological activities [16]. It is well
known that the study of topological indices of kenograms is much more conventional
than plerograms, because of their simplicity and the fact that many topological indices
give highly correlated results on plerograms and kenograms [11]. The study of thorn
graphs unifies these two approaches by giving mathematical formulae that connect
the values of topological indices of kenograms and plerograms.

In this paper, we study the relation between the first and second vertex-edge
Wiener indices of a graph and its thorn graph and examine several special cases of
the results. Results are applied to compute the first and second vertex-edge Wiener
indices of thorn stars, Kragujevac trees, and a class of dendrimers.

2. Definitions and preliminaries

In this paper, we consider connected finite graphs without any loops or multiple edges.
The best known and widely used topological index is the Wiener index introduced by
Wiener [17] in 1947, who used it for modeling the shape of organic molecules and for
calculating several of their physico-chemical properties. The Wiener index of a graph
G is defined as the sum of distances between all pairs of vertices of G,

W (G) =
∑

{u,v}⊆V (G)

d(u, v|G),

where d(u, v|G) denotes the distance between the vertices u and v in G.
The degree distance was introduced in 1994 by Dobrynin and Kochetova [7] and at

the same time by Gutman [8] as a weighted version of the Wiener index. The degree
distance of a graph G is defined as

DD(G) =
∑

{u,v}⊆V (G)

[dG(u) + dG(v)]d(u, v|G),

where dG(u) denotes the degree of the vertex u in G.
The Gutman index (also known as Schultz index of the second kind) was intro-

duced in 1994 by Gutman [8] as a kind of vertex-valency-weighted sum of the distances
between all pairs of vertices in a graph. The Gutman index of a graph G is defined as

Gut(G) =
∑

{u,v}⊆V (G)

dG(u)dG(v)d(u, v|G).

The concept of terminal Wiener index was put forward by Gutman et al. [12] in
2009. Somewhat later, but independently, Székely et al. [15] arrived at the same idea.
The terminal Wiener index TW (G) of a graph G is defined as the sum of distances
between all pairs of its pendent vertices,

TW (G) =
∑

{u,v}⊆V ′(G)

d(u, v|G),
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where V ′(G) is the set of all pendent vertices of G.
For u ∈ V (G), we define the quantity TWG(u) as the sum of distances between u

and all pendent vertices of G,

TWG(u) =
∑

v∈V ′(G)

d(u, v|G).

It is easy to see that, TW (G) = 1
2

∑
u∈V ′(G) TWG(u).

In analogy with definition of the Wiener index, the vertex-edge Wiener indices
[2, 5, 13] were defined based on distances between vertices and edges of a graph. The
distances D1(u, e|G) and D2(u, e|G) between the vertex u and edge e = ab of a graph
G are defined as

D1(u, e|G) = min{d(u, a|G), d(u, b|G)}, D2(u, e|G) = max{d(u, a|G), d(u, b|G)}.
The first and second vertex-edge Wiener indices of G are denoted by Wve1(G) and
Wve2(G), respectively and defined as

Wvei(G) =
∑

u∈V (G)

∑
e∈E(G)

Di(u, e|G), i ∈ {1, 2}.

For u ∈ V (G), we define

Di(u|G) =
∑

e∈E(G)

Di(u, e|G), i ∈ {1, 2}.

Then, the first and second vertex-edge Wiener indices of G can also be expressed by

Wvei(G) =
∑

u∈V (G)

Di(u|G), i ∈ {1, 2}.

The relation between the first and second vertex-edge Wiener indices of bipartite
graphs was given in [1].

Theorem 2.1 ([1]). A simple connected graph G of order n and size m is bipartite if
and only if Wve2(G) = Wve1(G) + nm.

We refer the reader to [1, 4] for more information on vertex-edge Wiener indices.

3. Results and disscusion

In this section, we establish the relation between the first and second vertex-edge
Wiener indices of a graph G and its thorn graph GP, and examine several special
cases of the result.

Theorem 3.1. Let G be a graph of order n and size m with vertex set
V (G) = {v1, v2, . . . , vn}, and let GP be the thorn graph of G with nonnegative pa-
rameters p1, p2, . . . , pn. Then

Wver (GP ) = Wver (G) + (m+ n(r − 1)− 1)

n∑
i=1

pi + r(

n∑
i=1

pi)
2 +

n∑
i=1

piDr(vi|G)
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+
∑

1≤i<j≤n

(pi + pj)d(vi, vj |G) + 2
∑

1≤i<j≤n

pipjd(vi, vj |G), (1)

where r ∈ {1, 2}.

Proof. By definition of the vertex-edge Wiener indices, we have

Wver (GP) =
∑

u∈V (GP)

∑
e∈E(GP)

Dr(u, e|GP ), r ∈ {1, 2}.

By definition of the graph GP, the above sum can be partitioned into four sums as
follows.

The first sum S1 is taken over all vertices u ∈ V (G) and edges e ∈ E(G). In this
case, Dr(u, e|GP ) = Dr(u, e|G), r ∈ {1, 2}. So, for r ∈ {1, 2} we have

S1 =
∑

u∈V (G)

∑
e∈E(G)

Dr(u, e|GP ) =
∑

u∈V (G)

∑
e∈E(G)

Dr(u, e|G) = Wver (G).

The second sum S2 is taken over all vertices u = vi ∈ V (G), 1 ≤ i ≤ n and edges
e ∈ Ej , 1 ≤ j ≤ n. In this case, Dr(u, e|GP ) = d(vi, vj |G) + r − 1, r ∈ {1, 2}. So, for
r ∈ {1, 2} we have

S2 =

n∑
i=1

n∑
j=1

∑
e∈Ej

[d(vi, vj |G) + r − 1] =

n∑
i=1

n∑
j=1

pj [d(vi, vj |G) + r − 1]

=
∑

1≤i<j≤n

(pi + pj)d(vi, vj |G) + n(r − 1)

n∑
i=1

pi.

The third sum S3 is taken over all vertices u ∈ Vi, 1 ≤ i ≤ n and edges e ∈ E(G).
In this case, Dr(u, e|GP ) = 1 +Dr(vi, e|G), r ∈ {1, 2}. So, for r ∈ {1, 2} we have

S3 =

n∑
i=1

∑
u∈Vi

∑
e∈E(G)

[1 +Dr(vi, e|G)] = m

n∑
i=1

pi +

n∑
i=1

piDr(vi|G).

The fourth sum S4 is taken over all vertices u ∈ Vi, 1 ≤ i ≤ n and edges e ∈ Ej , 1 ≤
j ≤ n. If e = uvi, then Dr(u, e|GP ) = r−1; otherwise, Dr(u, e|GP ) = r+d(vi, vj |G),
r ∈ {1, 2}. So, for r ∈ {1, 2} we have

S4 =

n∑
i=1

∑
u∈Vi

[
(r − 1) +

∑
e∈Ei,e6=uvi

r +

n∑
i6=j=1

∑
e∈Ej

[r + d(vi, vj |G)]
]

= (r − 1)

n∑
i=1

pi + r

n∑
i=1

pi(pi − 1) +

n∑
i=1

n∑
i 6=j=1

∑
u∈Vi

∑
e∈Ej

[r + d(vi, vj |G)]

= (r − 1)

n∑
i=1

pi + r

n∑
i=1

pi(pi − 1) + r

n∑
i=1

n∑
i 6=j=1

pipj +

n∑
i=1

n∑
i 6=j=1

pipjd(vi, vj |G)

= r

n∑
i=1

p2i −
n∑
i=1

pi + r(

n∑
i=1

pi)
2 − r

n∑
i=1

p2i +
n∑
i=1

n∑
i 6=j=1

pipjd(vi, vj |G)
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= r(

n∑
i=1

pi)
2 −

n∑
i=1

pi + 2

n∑
1≤i<j≤n

pipjd(vi, vj |G).

(1) is obtained by adding S1, S2, S3, S4, and simplifying the resulting expression. �

For any connected graph G, we define the quantity α(G) as the sum of distances
between all non pendent vertices of G and its pendent vertices,

α(G) =
∑

u∈V (G)−V ′(G)

TWG(u).

In the following theorem, we find a formula for α(GP ).

Theorem 3.2. Let G be an n-vertex graph with vertex set V (G) = {v1, v2, . . . , vn},
and let GP be the thorn graph of G with parameters p1, p2, . . . , pn such that for every
pendent vertex vi of G, pi > 0. Then

α(GP ) =
∑

1≤i<j≤n

(pi + pj)d(vi, vj |G) + n

n∑
i=1

pi. (2)

Proof. Since for every pendent vertex vi of G, pi > 0, so V ′(GP ) = V1 ∪ V2 ∪ . . .∪ Vn
and V (GP )− V ′(GP ) = V (G). Then

α(GP ) =
∑

u∈V (G)

TWGP
(u) =

∑
u∈V (G)

∑
v∈V1∪...∪Vn

d(u, v|GP )

=

n∑
i=1

n∑
j=1

∑
v∈Vj

(d(vi, vj |G) + 1) =

n∑
i=1

n∑
j=1

pj(d(vi, vj |G) + 1)

=
∑

1≤i<j≤n

(pi + pj)d(vi, vj |G) + n

n∑
i=1

pi,

which completes the proof. �

As a direct consequence of Theorem 3.2, we get the following corollary which will
be used in the next section.

Corollary 3.3. Let G be an n-vertex graph with k pendent vertices, and let GP be
the thorn graph of G obtained by attaching p > 0 pendent vertices to each pendent
vertex of G. Then

α(GP ) = 2pTW (G) + pα(G) + knp. (3)

Proof. Let V (G) = {v1, v2, . . . , vn}, and without loss of generality let V ′(G) =
{v1, v2, . . . , vk}. By setting p1 = p2 = . . . = pk = p and pk+1 = pk+2 = . . . = pn = 0
in (2), we obtain

α(GP ) =
∑

1≤i<j≤k

(p+ p)d(vi, vj |G) +
∑

k+1≤i<j≤n

(0 + 0)d(vi, vj |G)

+

k∑
i=1

n∑
j=k+1

(p+ 0)d(vi, vj |G) + n
( k∑
i=1

p+

n∑
i=k+1

0
)
.
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We get (3) using the facts that∑
1≤i<j≤k

d(vi, vj |G) = TW (G) and

k∑
i=1

n∑
j=k+1

d(vi, vj |G) = α(G).

�

Now, we express some special cases of Theorem 3.1.

Corollary 3.4. Let G be a graph of order n and size m, and let GP be the thorn
graph of G with parameters p1 = p2 = . . . = pn = p, where p is a nonnegative integer.
Then

Wver (GP) = (p+ 1)Wver (G) + 2p(p+ 1)W (G) + np
(
n(rp+ r − 1) +m− 1

)
,

where r ∈ {1, 2}.

Corollary 3.5. Let G be a graph of order n and size m with vertex set V (G) =
{v1, v2, . . . , vn}, and let v1, v2, . . . , vk be its pendent vertices. Suppose GP is the thorn

graph of G with parameters p1, p2, . . . , pn, such that pi =

{
p if 1 ≤ i ≤ k,
0 if k + 1 ≤ i ≤ n,

where p is a nonnegative integer. Then

Wver (GP) = Wver (G) + 2p(p+ 1)TW (G) + kp
(
n(r − 1) +m− 1 + rkp

)
+ pα(G) + p

k∑
i=1

Dr(vi|G), (4)

where r ∈ {1, 2}.

Corollary 3.6. Let G be a graph of order n and size m with vertex set V (G) =
{v1, v2, . . . , vn}, and let GP be the thorn graph of G with parameters p1, p2, . . . , pn,
where pi = dG(vi), i = 1, 2, . . . , n. Then

Wver (GP) = Wver (G) +DD(G) + 2Gut(G) + 2m
(
n(r − 1) +m(2r + 1)− 1

)
+

n∑
i=1

dG(vi)Dr(vi |G ), r ∈ {1, 2}.

Proof. It is easy to see that,
∑n
i=1 pi = 2m,

∑
1≤i<j≤n(pj + pi)d(vi, vj |G) = DD(G),

and
∑

1≤i<j≤n pipjd(vi, vj |G ) = Gut(G). Now using (1), we can get the desired

result. �

Corollary 3.7. Let G be a graph of order n and size m with vertex set V (G) =
{v1, v2, . . . , vn}, and let γ be an integer with the property γ ≥ dG(vi), for
i = 1, 2, . . . , n. Let GP be the thorn graph of G with parameters p1, p2, . . . , pn, where
pi = γ − dG(vi), i = 1, 2, . . . , n. Then

Wver (GP) = (γ + 1)Wver (G) + 2γ(γ + 1)W (G)− (2γ + 1)DD(G) + 2Gut(G)

+ (nγ − 2m)
(
r(nγ − 2m) +m+ n(r − 1)− 1

)
−

n∑
i=1

dG(vi)Dr(vi|G),

where r ∈ {1, 2}.



M. Azari 269

Proof. It is easy to see that,
n∑
i=1

pi = nγ − 2m,

n∑
i=1

piDr(vi|G) = γWver (G)−
n∑
i=1

dG(vi)Dr(vi|G),∑
1≤i<j≤n

(pj + pi)d(vi, vj |G) = 2γW (G)−DD(G),

∑
1≤i<j≤n

pipjd(vi, vj |G) = γ2W (G)− γDD(G) +Gut(G).

Now using (1), we can get the desired result. �

4. Applications

In this section, we apply the results of the previous section, to compute the vertex-edge
Wiener indices of thorn stars, Kragujevac trees, and a class of dendrimers.

4.1 Thorn stars

Consider the star graph Sd+1 and choose a labelling for its vertices such that its
terminal vertices have numbers 1, 2, . . . , d and its central vertex has number d+1. Let
Sd+1(p1, p2, . . . , pd) denote the thorn star obtained by attaching pi terminal vertices
to vertex i of Sd+1 for 1, 2, . . . , d (see Figure 1).

Figure 1: The thorn star Sd+1(p1, p2, . . . , pd).
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Theorem 4.1. Let d ≥ 2 and let p1, p2 . . . ., pd be nonnegative integers. Then

Wve1

(
Sd+1(p1, p2, . . . , pd)

)
= d(d− 1) + 3(

d∑
i=1

pi)
2 − 2

d∑
i=1

p2i + (4d− 3)

d∑
i=1

pi, (5)

Wve2

(
Sd+1(p1, p2, . . . , pd)

)
= 2d2 + 4(

d∑
i=1

pi)
2 − 2

d∑
i=1

p2i + (6d− 2)

d∑
i=1

pi. (6)

Proof. By setting G = Sd+1, GP = Sd+1(p1, p2, . . . , pd), pd+1 = 0, n = d + 1, and
m = d in (1), we obtain

Wve1

(
Sd+1(p1, p2, . . . , pd)

)
= Wve1(Sd+1) + (d− 1)

d∑
i=1

pi + (

d∑
i=1

pi)
2 +

d∑
i=1

piD1(vi|Sd+1)

+ 2
∑

1≤i<j≤d

(pi + pj) +
∑

1≤i≤d,j=d+1

(pi + 0) + 4
∑

1≤i<j≤d

pipj + 2
∑

1≤i≤d,j=d+1

(pi × 0), (7)

where vi, 1 ≤ i ≤ d, is the vertex of Sd+1 whose number is i. It is easy to see that,
Wve1(Sd+1) = d(d − 1), D1(vi|Sd+1) = d − 1, 1 ≤ i ≤ d, 2

∑
1≤i<j≤d(pi + pj) =

(2d−2)
∑d
i=1 pi, and 2

∑
1≤i<j≤d pipj = (

∑d
i=1 pi)

2−
∑d
i=1 p

2
i . By substituting these

relations in (7) and simplifying the resulting expression, we can get (5). To prove (6),

note that the thorn star Sd+1(p1, p2, . . . , pd) is a bipartite graph with
∑d
i=1 pi + d+ 1

vertices and
∑d
i=1 pi + d edges. So, by Theorem 2.1,

Wve2

(
Sd+1(p1, p2, . . . , pd)

)
= Wve1

(
Sd+1(p1, p2, . . . , pd)

)
+ (

d∑
i=1

pi + d+ 1)(

d∑
i=1

pi + d).

Now using (5) and simplifying the resulting expression, we can get (6). �

4.2 Kragujevac trees

Let P3 be the 3-vertex path rooted at one of its terminal vertices. For k ≥ 2, construct
the rooted tree Bk by identifying the roots of k copies of P3. The vertex obtained by
identifying the roots of P3-trees is the root of Bk. Examples illustrating the structure
of the rooted tree Bk are depicted in Figure 2.

Figure 2: The rooted trees B2, B3, and Bk. Their roots are indicated by large dots.

According to [10], a Kragujevac tree T is a tree possessing a vertex of degree d ≥ 2,
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adjacent to the roots of Bp1 , Bp2 , . . . , Bpd , where p1, p2, . . . , pd ≥ 2. This vertex is
said to be the central vertex of T , whereas d is the degree of T . The subgraphs
Bp1 , Bp2 , . . . , Bpd are the branches of T . Note that some (or all) branches of T may
be mutually isomorphic. We denote the Kragujevac tree of degree d with branches
Bp1 , Bp2 , . . . , Bpd by Kg(p1, p2, . . . , pd). A typical Kragujevac tree is depicted in
Figure 3.

Figure 3: The Kragujevac tree Kg(7, 3, 2, 2, 2).

Theorem 4.2. The first and second vertex-edge Wiener indices of the Kragujevac
tree Kg(p1, p2, . . . , pd) are given by

Wve1

(
Kg(p1, p2, . . . , pd)

)
= d(d− 1) + 16(

d∑
i=1

pi)
2 − 8

d∑
i=1

p2i + 10(d− 1)

d∑
i=1

pi, (8)

Wve2

(
Kg(p1, p2, . . . , pd)

)
= 2d2 + 20(

d∑
i=1

pi)
2 − 8

d∑
i=1

p2i + (14d− 8)

d∑
i=1

pi. (9)

Proof. The Kragujevac tree Kg(p1, p2, . . . , pd) can be considered as the thorn graph
obtained from the thorn star Sd+1(p1, p2, . . . , pd) by attaching a pendent vertex to each
of its pendent vertices. Now, by settingG = Sd+1(p1, p2, . . . , pd), GP = Kg(p1, . . . , pd),

p = 1, k =
∑d
i=1 pi, and m =

∑d
i=1 pi + d in (4), we obtain

Wve1

(
Kg(p1, . . . , pd)

)
= Wve1

(
Sd+1(p1, . . . , pd)

)
+ 4TW

(
Sd+1(p1, . . . , pd)

)
(10)

+

d∑
i=1

pi
(
2

d∑
i=1

pi + d− 1
)

+ α
(
Sd+1(p1, . . . , pd)

)
+

p1+...+pd∑
i=1

D1

(
vi|Sd+1(p1, . . . , pd)

)
,

where vi, 1 ≤ i ≤
∑d
i=1 pi, is a terminal vertex of Sd+1(p1, p2, . . . , pd). By a simple

calculation we obtain

TW
(
Sd+1(p1, . . . , pd)

)
= 2(

d∑
i=1

pi)
2 −

d∑
i=1

p2i −
d∑
i=1

pi,
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α
(
Sd+1(p1, . . . , pd)

)
=

d∑
i=1

[
pi × 1 + 3(

d∑
j=1

pj − pi)
]

+ 2

d∑
i=1

pi = 3d

d∑
i=1

pi,

p1+...+pd∑
i=1

D1

(
vi|Sd+1(p1, . . . , pd)

)
=

d∑
i=1

pi
[
0 + pi × 1 + 2(d− 1) + 3(

d∑
j=1

pj − pi)
]

= 3(

d∑
i=1

pi)
2 − 2

d∑
i=1

p2i + 2(d− 1)

d∑
i=1

pi.

Substituting the above relations and the formula for Wve1

(
Sd+1(p1, p2, . . . , pd)

)
given

in Theorem 4.1 in (10) and simplifying the resulting expression, we can get (8). To
prove (9), note that the Kragujevac tree Kg(p1, p2, . . . , pd) is a bipartite graph with

2
∑d
i=1 pi + d+ 1 vertices and 2

∑d
i=1 pi + d edges. So, by Theorem 2.1,

Wve2

(
Kg(p1, p2, . . . , pd)

)
= Wve1

(
Kg(p1, p2, . . . , pd)

)
+ (2

d∑
i=1

pi + d+ 1)(2

d∑
i=1

pi + d).

Now using (8) and simplifying the resulting expression, we can get (9). �

4.3 Dendrimers

Let D0 be the graph depicted in Figure 4.

Figure 4: The graph D0.

For positive integers p and h, let Dp,h be a series of dendrimers obtained by
attaching p pendent vertices to each pendent vertex of Dp,h−1 and let Dp,0 = D0. The
dendrimer graph Dp,h can also be introduced as the thorn graph obtained by attaching
p pendent vertices to each pendent vertex of Dp,h−1. This molecular structure can
be encountered in real chemistry, e.g. in some tertiary phosphine dendrimers. Some
examples of this kind of dendrimers are shown in Figure 5. For a fixed positive integer
p, let kh denote the number of pendent vertices of Dp,h, h ≥ 0. Obviously, kh = pkh−1
and |V (Dp,h)| = |V (Dp,h−1)|+ 3ph. So for every h ≥ 0, we have

kh = 3ph, |V (Dp,h)| = 6 + 3

h∑
i=0

pi.

Note that, since Dp,h is a unicyclic graph, |E(Dp,h)| = |V (Dp,h)| = 6 + 3
∑h
i=0 p

i.
In [3], an exact formula for computing the terminal Wiener index of the dendrimer
graph Dp,h was computed.
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Figure 5: The dendrimer graphs Dp,h, for p = 2 and h = 1, 2.

Theorem 4.3 ([3]). Let p be a positive and h be a nonnegative integer. The terminal
Wiener index of the dendrimer graph Dp,h is given by

TW (Dp,h) = (9h+ 12)p2h − 3ph
h−1∑
i=0

pi. (11)

In [3], the authors also obtained an exact formula for D1(vh|Dp,h), where vh is an
arbitrary pendent vertex of Dp,h.

Lemma 4.4 ([3]). Let p be a positive integer. For every nonnegative integer h, let vh
be an arbitrary pendent vertex of Dp,h. Then

D1(vh|Dp,h) = 5

h∑
k=1

kpk + (h+ 5)

h∑
k=1

pk + 8h+ 18. (12)

It is easy to check that α(D0) = 45. As a direct consequence of Corollary 3.3, we
can obtain a recurrence relation for computing α(Dp,h).

Corollary 4.5. Let p and h be nonnegative integers. Then

α(Dp,h) = 2pTW (Dp,h−1) + pα(Dp,h−1) + 3ph(6 + 3

h−1∑
i=0

pi). (13)

Proof. By setting G = Dp,h−1, GP = Dp,h, k = kh−1 = 3ph−1, and n = 6+3
∑h−1
i=0 p

i

in (3), we can get (13). �

It is easy to check that, Wve1(D0) = 117. In the following theorem, we present a
recurrence relation for computing Wve1(Dp,h). Result is easily deduced from (4), and
the proof of the theorem is therefore omitted.
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Theorem 4.6. Let p and h be positive integers. The first vertex-edge Wiener index
of the dendrimer graph Dp,h is given by

Wve1(Dp,h) = Wve1(Dp,h−1) + 2p(p+ 1)TW (Dp,h−1) + pα(Dp,h−1)

+ 3phD1(vh−1|Dp,h−1) + 3ph(5 + 3

h∑
i=0

pi). (14)

Since the dendrimer graph Dp,h is a bipartite unicyclic graph, by Theorem 2.1 we
easily arrive at:

Theorem 4.7. Let p be a positive and h be a nonnegative integer. The second vertex-
edge Wiener index of the dendrimer graph Dp,h is given by

Wve2(Dp,h) = Wve1(Dp,h) + (6 + 3

h∑
i=0

pi)2. (15)

Using (11)–(15), we can compute the first and second vertex-edge Wiener indices
of the dendrimer graph Dp,h for every positive integers p and h.

For example, by (11)–(13), TW (D0) = 12, D1(v0|D0) = 18, and α(D0) = 45.
Now, by setting h = 1 in (14), (15), we get

Wve1(Dp,1) = Wve1(D0) + 2p(p+ 1)TW (D0) + pα(D0) + 3pD1(v0 |D0 )

+ 3p(5 + 3

1∑
i=0

pi) = 33p2 + 147p+ 117,

Wve2(Dp,1) = 42p2 + 201p+ 198.

By (11)-(13), TW (Dp,1) = 21p2−3p, D1(v1|Dp,1) = 11p+ 26, and α(Dp,1) = 96p.
Now, by setting h = 2 in (14), (15), we get

Wve1(Dp,2) = Wve1(Dp,1) + 2p(p+ 1)TW (Dp,1) + pα(Dp,1) + 3p2D1(v1|Dp,1)

+ 3p2(5 + 3

2∑
i=0

pi) = 51p4 + 78p3 + 215p2 + 147p+ 117,

Wve2(Dp,2) = 60p4 + 96p3 + 278p2 + 201p+ 198.

By (11)-(13), TW (Dp,2) = 30p4 − 3p3 − 3p2, D1(v2|Dp,2) = 17p2 + 12p+ 34, and
α(Dp,2) = 51p3 + 117p2. Now, by setting h = 3 in (14), (15), we get

Wve1(Dp,3) = Wve1(Dp,2) + 2p(p+ 1)TW (Dp,2) + pα(Dp,2) + 3p3D1(v2|Dp,2)

+ 3p3(5 + 3

3∑
i=0

pi) = 69p6 + 114p5 + 135p4 + 315p3 + 215p2 + 147p+ 117,

Wve2(Dp,3) = 78p6 + 132p5 + 162p4 + 387p3 + 278p2 + 201p+ 198.

By (11)–(13), TW (Dp,3) = 39p6 − 3p5 − 3p4 − 3p3, D1(v3|Dp,3) = 23p3 + 18p2 +
13p+ 42, and α(Dp,3) = 69p5 + 54p4 + 138p3. Now, by setting h = 4 in (14), (15), we
get

Wve1(Dp,4) = Wve1(Dp,3) + 2p(p+ 1)TW (Dp,3)
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+ pα(Dp,3) + 3p4D1(v3|Dp,3) + 3p4(5 + 3

4∑
i=0

pi)

= 108p8 + 165p7 + 204p6 + 219p5 + 417p4 + 315p3 + 215p2 + 147p+ 117,

Wve2(Dp,4) = 117p8 + 183p7 + 231p6 + 255p5 + 498p4 + 387p3 + 278p2 + 201p+ 198.

The first and second vertex-edge Wiener indices of Dp,h for p = 2, 3 and h ≤ 4 are
collected in Tables 1 and 2.

Table 1: The first and second vertex-edge Wiener indices of D2,h for h ≤ 4.

h Wve1(D2,h) Wve2(D2,h)

0 117 198
1 543 768
2 2711 3440
3 14015 16616
4 79295 89096

Table 2: The first and second vertex-edge Wiener indices of D3,h for h ≤ 4.

h Wve1(D3,h) Wve2(D3,h)

0 117 198
1 855 1179
2 8730 10755
3 99936 115812
4 1316151 1452312
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