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Abstract. Loday’s 1-cat group definition plays very powerful role in making some new
applications to crossed module due to Whitehead. There are many applications of cat1-
groups such as cat1-polygroups and pullback cat1-polygroups. The importance of hyper-
groups come from the properties of hypergroups such that hypergroups in the sense of Marty
do not have identity element, inverse element and they are generalization of the well known
groups. In this paper, we introduce the concept of cat1-hypergroups, their examples and some
related properties. Also, we investigate pullback cat1-hypergroups and properties such as:
every cat1-group is a cat1-hypergroup; construction of a cat1-group from a crossed module of
hypergroups and vice versa. Finally, we present the definition of pullback cat1-hypergroups
and some of their properties.

1. Introduction

Crossed modules have been used widely, and in various contexts, since their defini-
tion by Whitehead [16] in his investigation of the algebraic structure of second relative
homotopy groups. Loday in [12] showed that the category of crossed modules is equiv-
alent to that of cat1-groups. After the definition of cat1-groups many applications
were given such as pullback cat1-group [2]. The importance of hypergroups come
from the properties of hypergroups such that a hypergroup in the sense of Marty does
not have an identity element and inverse elements in general case. The notion of a
hypergroup is a generalization of the well known notion of a group.

Hypergroups have many applications, in areas such as geometry, topology, cryptog-
raphy and code theory, graphs and hypergraphs, probability theory, binary relations,
theory of fuzzy and rough sets, automata theory, economy, etc. (see [5, 6]).

In this paper, we introduce the notion of cat1-hypergroups and prove that crossed
modules of hypergroups [3] is equivalent to cat1-hypergroups by Loday’s way. The rest
of the paper is organized as follows. In the second section we review basic concepts

2010 Mathematics Subject Classification: 20N20, 18D35

Keywords and phrases: Action; crossed module; hypergroup; crossed module of hypergroups;
fundamental relation; cat1-group; cat1-hypergroup; pullback cat1-hypergroup.

316



B. Davvaz, M. Alp 317

regarding the crossed modules and cat1-groups in the known format. In Section 3,
some brief introduction about hypergroups and crossed modules of hypergroups are
given. In Section 4, the definition of cat1-hypergroups, their examples and some
properties are presented. These properties are: a cat1-group is a cat1-hypergroup,
construction of a cat1-group from a crossed module of hypergroups and vice versa.
Finally, in the last section, we present the definition of pullback cat1-hypergroups and
their properties. In order to show the second axiom of pullback cat1-hypergroups we
use that [x, y] = [x, y]r ∪ [x, y]l (see [1]).

2. Crossed modules and cat1groups

Let G be a group and Ω be a non-empty set. A (left) group action is a binary operator
τ : G× Ω→ Ω that satisfies the following two axioms:
(i) τ(gh, ω) = τ(g, τ(h, ω)), for all g, h ∈ G, ω ∈ Ω, (ii) τ(e, ω) = ω, for all ω ∈ Ω.
For ω ∈ Ω and g ∈ G, we write gω := τ(g, ω). A crossed module X = (M,N, ∂, τ)
consists of groups M and N together with a homomorphism ∂ : M → N and a (left)
action τ : N ×M →M on M , satisfying the conditions:
(i) ∂( gm) = g∂(m)g−1, for all m ∈M and g ∈ N ,

(ii) ∂(m)m′ = mm′m−1, for all m,m′ ∈M .
The crossed module X is also denoted by X = (∂ : M → N). Let M be a group and
take G = Aut(M). Then, ∂ sends x to the inner automorphism x(−)x−1. This is
obviously a crossed module with the respect to the action of Aut(M) on M .

An 1-categorical group or cat1-group is a group G together with a subgroup N and
two homomorphisms s, b : G → N satisfying s|N = b|N = idN and [ker s, ker b] = e.
This cat1-group is denoted by C = (G;N) if no confusion can arise. A morphism
of cat1-groups C → C ′ is a group homomorphism f : G → G′ such f(N) ⊆ N ′ and
s′f = f |Ns, b′f = f |Nb.

Lemma 2.1 ([12]). The following data are equivalent:
(i) a crossed module ∂ : M → N , (ii) a cat1 group C = (G;N).

3. Hypergroups and crossed modules of hypergroups

Let H be a non-empty set and ? : H ×H → P∗(H) be a hyperoperation. The couple
(H, ?) is called a hypergroupoid. For any two non-empty subsets A and B of H and
x ∈ H, we define

A ? B =
⋃
a∈A
b∈B

a ? b,

and {x} is shown by x. A hypergroupoid (H, ?) is called a semihypergroup if for all
a, b, c of H we have (a ? b) ? c = a ? (b ? c), which means that

⋃
u∈a?b

u ? c =
⋃

v∈b?c
a ? v.
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A hypergroupoid (H, ?) is called a quasihypergroup if for all a of H we have a ? H =
H ? a = H. This condition is also called the reproduction axiom.

Definition 3.1. A hypergroupoid (H, ?) which is both a semihypergroup and a quasi-
hypergroup is called a hypergroup.

Remark 3.2. Every group is a hypergroup.

In a hypergroup (H, ?), an element e ∈ H is called a scalar identity element if
e ? x = x ? e = {x} := x, for all x ∈ H.

We refer the readers to [4,5,9,14,15] for more details about hypergroups. In [4,6]
many examples of hypergroups are given. Here, we present one.

Example 3.3. Let S3 be the symmetric group of order 6 and let H = 〈(1 2)〉. We
consider the following hyperoperation on H: x ? y = xHy = {xy, x(1 2)y} for all
x, y ∈ S3. This hyperoperation is a P -hyperoperation.

? i (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
i i (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

(1 2) i (1 2 3) (1 3 2) (1 3) (2 3)
(1 2) (1 2) i (1 2 3) (1 2 3) (1 3) (2 3)

i (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1 3) (1 3) (1 3 2) i (1 2 3) (2 3) (1 2)

(1 3 2) (1 3) (2 3) (1 2) i (1 2 3)
(2 3) (2 3) (1 2 3) (1 3 2) i (1 2) (1 3)

(1 2 3) (2 3) (1 2) (1 3) (1 3 2) i
(1 2 3) (1 2 3) (2 3) (1 2) (1 3) (1 3 2) i

(2 3) (1 2 3) (1 3 2) i (1 2) (1 3)
(1 3 2) (1 3 2) (1 3) (2 3) (1 2) i (1 3 2)

(1 3) (1 3 2) i (1 2 3) (2 3) (1 2)

Table 1: Hyperoperation on H

It is easy to see that (S3, ?) is a non-commutative hypergroup. Indeed, for all
x, y, z ∈ S3 we have

(x ? y) ? z ={xy, x(1 2)y} ? z = xy ? z ∪ x(1 2)y ? z

={xyz, xy(1 2)z} ∪ {x(1 2)yz, x(1 2)y(1 2)z}
={xyz, xy(1 2)z, x(1 2)yz, x(1 2)yz, x(1 2)y(1 2)z},

x ? (y ? z) =x ? {yz, y(1 2)z} = x ? yz ∪ x ? y(1 2)z

={xyz, x(1 2)yz} ∪ {xy(1 2)z, x(1 2)y(1 2)z}
={xyz, x(1 2)yz, xy(1 2)z, x(1 2)yz, x(1 2)y(1 2)z}.

Thus, (x ? y) ? z = x ? (y ? z). Moreover, we have

x ? S3 = x ?
⋃
g∈S3

x ? g =
⋃
g∈S3

{xg, x(1 2)g} = S3 =
⋃
g∈S3

{gx, g(1 2)x} = S3 ? x.
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Definition 3.4. Let (C, ?) and (H, ◦) be two hypergroups. Let ∂ be a map from C
into H. Then, ∂ is called a strong homomorphism if ∂(x ? y) = ∂(x) ◦ ∂(y), for all
x, y ∈ C, where ∂(x ? y) =

⋃
z∈x?y

∂(z).

Several mathematicians considered actions of algebraic hyperstructures (see for
example [13,17]). In [13], Madanshekaf and Ashrafi considered a generalized action of
a hypergroup H on a non-empty set X and obtained some results in this respect. For
the definition of crossed modules of hypergroups, we need the notion of hypergroup
action.

Definition 3.5 ([13]). Let (H, ◦) be a hypergroup and X be a non-empty set. A
map α : H × X → P∗(X) is called a generalized action of H on X, if the following
axioms hold:

(i) α(g ? h, x) ⊆ α(g, α(h, x)), for all g, h ∈ H and x ∈ X, where α(g ? h, x) =⋃
k∈g?h

α(k, x).

(ii) For all h ∈ H, α(h,X) = X, where α(h,X) =
⋃
x∈X

α(h, x).

If the equality in Definition 3.5 (i) holds, the action is called strong generalized
action. Moreover, if H has the scaler identity element e, then the following condition
must hold too:

(iii) α(e, x) = {x} := x, for all x ∈ X.

Example 3.6 ([13]). (i) For any hypergroup (H, ?) and any non-empty set X, the
map α : H ×X → P∗(X), given by α(h, x) = X is a strong generalized action of H
on X. If we define α(h, x) = {x}, then this map is also a strong generalized action of
H on X.

(ii) Let (H, ?) be a hypergroup. Then, the map α : H × H → P∗(H), given by
α(h, x) = h ? x is a strong generalized action of H on H.

Example 3.7 ([13]). Let X be a non-empty set, f ∈ Mθ and H = Mf . Then, the
map α : H ×X → P∗(X), defined by α(h, x) = h(x) is a strong generalized action of
H on X.

For x ∈ X, we put hx := α(h, x). Then, for a strong generalized action, we have

(i) g( hx) =g?h x, for all g, h ∈ H and x ∈ X, (ii)
⋃
x∈X

hx = X, for all h ∈ H.

Definition 3.8. A crossed module of hypergroups X = (C,H, ∂, α) consists of hy-
pergroups (C, ?) and (H, ◦) together with a strong homomorphism ∂ : C → H and a
strong generalized action α : H × C → P∗(C) on C, satisfying the conditions:

(i) h ◦ ∂(c) ⊆ ∂( hc) ◦ h, for all c ∈ C and h ∈ H,

(ii) c ? c′ ⊆ ∂(c)c′ ? c, for all c, c′ ∈ C.



320 Cat1-hypergroups and pullback cat1-hypergroups

We say the action of H on C is productive, if for all c ∈ C and h ∈ H there exist
c1, . . . , cn in C such that hc = c1 ? . . . ? cn.

Let (H, ◦) be a hypergroup. We define the relation β∗H as the smallest equivalence
relation on H such that the quotient H/β∗H , the set of all equivalence classes, is
a group. In this case β∗H is called the fundamental equivalence relation on H and
H/β∗H is called the fundamental group. The product � in H/β∗H is defined as follows:
β∗H(x) � β∗H(y) = β∗H(z), for all z ∈ β∗H(x) ◦ β∗H(y). This relation was introduced
by Koskas [10] and studied mainly by Corsini [4], Leoreanu-Fotea [11] and Freni [8]
concerning hypergroups, Vougiouklis [15] concerning Hv-groups, Davvaz concerning
polygroups [6], and many others. We consider the relation βH as follows:

x βH y ⇔ there exist z1, . . . zn such that {x, y} ⊆ ◦
n∏
i=1

zi.

Freni proved that for hypergroups βH = β∗H in [8]. The kernel of the canonical map
ϕH : H −→ H/β∗H is called the core of H and is denoted by ωH . Here we also denote
by ωH the unit of H/β∗H .

Throughout the paper, we denote the binary operations of the fundamental groups
H/β∗H and C/β∗C by � and ⊗, respectively.

Let (C, ?) and (H, ◦) be two hypergroups and let α : H × C → P∗(C) be a
productive action on C. We define the map ψ : H/β∗H ×H/β∗C → P∗(H/β∗C) in usual
manner:

ψ(β∗H(h), β∗C(c)) = {β∗C(x) | x ∈
⋃

y∈β∗
C

(c)

z∈β∗
H

(h)

zy}.

By the definition of β∗C , since the action of H on C is productive, we conclude that
ψ(β∗H(h), β∗C(c)) is singleton, i.e., we have

ψ : H/β∗H ×H/β∗C → H/β∗C , ψ(β∗H(h), β∗C(c)) = β∗C(x), for all x ∈
⋃

y∈β∗
C

(c)

z∈β∗
H

(h)

zy.

We denote ψ(β∗H(h), β∗C(c)) = [β∗H(h)] [β∗C(c)].

Proposition 3.9 ([3]). Let (C, ?) and (H, ◦) be two hypergroups and let ∂ : C → H be
a strong homomorphism. Then, ∂ induces a group homomorphism D : C/β∗C → H/β∗H
by setting D(β∗C(c)) = β∗H(∂(c)), for all c ∈ C.

Theorem 3.10. Let X = (C,H, ∂, α) be a crosed module of hypergroups such that
the action of H on C is productive. Then, Xβ∗ = (C/β∗C , H/β

∗
H ,D, ψ) is a crossed

module.

Definition 3.11 ([3]). Let X = (C,H, ∂, α) be a crossed module of hypergroups and
ι : Q→ H be a strong homomorphism of hypergroups. Then, ι•X = (ι•C,Q, ∂•, α•)
is the pullback of X by ι, where ι•C = {(q, c) ∈ Q×C | ι(q) = ∂(c)} and ∂•(q, c) = q.
The hypergroup action of Q on ι•C is given by

q(q1, c) = {(x, y) | β∗H(x) = β∗H(q)� β∗H(q1)� β∗H(q)−1, y ∈ ι(q)c}.

Theorem 3.12 ([3]). ι•X = (ι•C,Q, ∂•, α•) is a crossed module of hypergroups.
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4. Cat1-hypergroups

In this section, we introduce the concept of cat1-hypergroups. In order to do so, we
need the definition of commutator of elements in hypergroups. Fortunately, Aghabo-
zorgi, Davvaz and Jafarpour [1] have recently introduced the notion of commutator
of elements in hypergroups. Since in hypergroups, the inverse element does not exist
in general, their definition is so important. We recall the following definition from [1].

Definition 4.1. Let (H, ◦) be a hypergroup. We define the following
(i) [x, y]r = {h ∈ H | x ◦ y ∩ y ◦ x ◦ h 6= ∅};

(ii) [x, y]l = {h ∈ H | x ◦ y ∩ h ◦ y ◦ x 6= ∅};

(iii) [x, y] = [x, y]r ∪ [x, y]l.
From now on we call [x, y]r, [x, y]l and [x, y] right commutator of x and y, left com-
mutator of x and y, and commutator of x and y, respectively. Also, we will denote by
[H,H]r, [H,H]l and [H,H] the set of all right commutators, left commutators and
commutators, respectively.

Proposition 4.2 ( [1]). If H is a group then [y, x]−1r = [x, y]r = [x−1, y−1]l =
[y−1, x−1]−1l , for every x, y in H.

Example 4.3 ([1]). Suppose that H = {e, a, b}. Consider the hypergroup (H, ◦) where
◦ is defined on H as follows:

◦ e a b
e a, b e e
a e a b
b e a, b a, b

It is easy to see that {a} = [a, a]r 6= [a, a]l = {a, b} = [a−1, b−1]l, where a−1 is the
inverse of a in H.

Proposition 4.4 ([1]). If H is a commutative hypergroup, then [x, y]r = [x, y]l =
[x, y], for all (x, y) ∈ H2.

Lemma 4.5. Let (C, ?) and (H, ◦) be two hypergroups and let ∂ : C → H be a strong
homomorphism. Then, ∂(ωC) ⊆ ωH .

Proof. Suppose that y ∈ ∂(ωC) is an arbitrary element. Then, we have

β∗H(y) = β∗H(∂(ωC)) = D(β∗C(ωC)) = D(ωC) = ωH ,

(since D is a strong homomorphism). Thus, y ∈ ωH . 2

Now, we consider the notion of kernel of a strong homomorphism of hypergroups.

Definition 4.6. Let (H, ◦) and (C, ?) be two hypergroups and ∂ : C → H be a strong
homomorphism. The core-kernel of ∂ is defined by ker∗ ∂ = {x ∈ C | ∂(x) ∈ ωH}.
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Theorem 4.7 ([3]). ker∗ ∂ is a subhypergroup of C.

Now, by applying the above definitions, we are in a situation to define the concept
of cat1-hypergroup.

Definition 4.8. A cat1-hypergroup C = (k; t, h : H → C) consists of hypergroups
H and C, two strong epimorphisms t, h : H → C and an embedding k : C → H
satisfying:

(CAT-H-1) k = hk = IdC , (CAT-H-2) [x, y] ⊆ ωH ,∀x ∈ ker∗ t, ∀y ∈ ker∗ h.

The maps t, h are called the source and the target.

Proposition 4.9. Condition (CAT-H-2) is equivalent to [β∗H(x), β∗H(y)]=ωH=1P/β∗H .

Proof. Suppose that [x, y] ⊆ ωH . Then, by Definition 4.1, we have [x, y]r∪[x, y]l ⊆ ωH .
This implies that {h ∈ H | x ◦ y ∩ y ◦ x ◦ h 6= ∅} ⊆ ωH . Thus, we obtain β∗H(h) = ωH ,
for all h ∈ H such that x◦y∩y◦x◦h 6= ∅. Consider h ∈ H such that x◦y∩y◦x◦h 6= ∅.
Then, there exists z ∈ x ◦ y and z ∈ y ◦ x ◦ h. By applying the fundamental relation
β∗H , we obtain

β∗H(z) = β∗H(x)� β∗H(y) (1)

and β∗H(z) = β∗H(y)� β∗H(x)� β∗H(h) = β∗H(y)� β∗H(x)� ωH
= β∗H(y)� β∗H(x) (since ωH = 1H/β∗H) (2)

Thus, by the equations (1) and (2) we conclude that β∗H(x)�β∗H(y) = β∗H(y)�β∗H(x).
Therefore, [β∗H(x), β∗H(y)] = β∗H(x) � β∗H(y) � β∗H(x)−1 � β∗H(y)−1 = ωH = 1H/β∗H .
The proof of the the converse is similar. 2

Theorem 4.10. A cat1-group is a cat1-hypergroup.

Proof. If H and C are groups, then ωH = {e}, ker∗ t = ker t and ker∗ h = kerh. 2

The following theorem and lemma are noted in [7] regarding crossed polymodules.
The proof for crossed module of hypergroups is similar. A proof is included for
completeness. In the proof we use the notion of semi-direct product of fundamental
groups.

Theorem 4.11. From a crossed module of hypergroups X = (C,H, ∂, α) we can con-
struct a cat1-group.

Proof. According to Theorem 3.10, we know (C/β∗C , H/β∗H ,D, ψ) is a crossed module.
Now, we can consider

H/β∗H n C/β∗C
//h

t
// H/β∗H

k

OO

where h(β∗H(a), β∗C(c)) = D(β∗C(c))� β∗H(a), t(β∗H(a), β∗C(c)) = β∗H(a)

and k(β∗H(a)) = (β∗H(a), wC).

Then h|H/β∗
H

= t|H/β∗
H

= IdH and [kerh, ker t] = 1H/β∗
H
nC/β∗

C
.

Therefore, we obtain a cat1-group. 2
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Lemma 4.12. For a cat1-hypergroup C = (k; t, h : H → C), H/β∗H
∼= ker t∗ n C/β∗C ,

where t∗ : H/β∗H → C/β∗C , t
∗(β∗H(a)) = β∗C(t(a)) and k∗ : C/β∗C → H/β∗H , k

∗(β∗C(c)) =
β∗H(k(c)).

Proof. We define f : H/β∗H → ker t∗ n C/β∗C by f(β∗H(a)) = (k∗t∗(β∗H(a)) ⊗ β∗H(a),
t∗(β∗H(a))) and g : ker t∗ n C/β∗C → H/β∗H by g(β∗H(a), β∗C(c)) = k∗(β∗H(a))⊗ β∗C(c)).
It is not difficult to see that f, g are homomorphisms and f is the inverse of g. 2

Note that in the previous lemma, since ker t∗�H/β∗H and k∗(C/β∗C ) ≤ H/β∗H there
is an action of k∗(C/β∗C ) on ker t∗ by conjugation. Hence, the semi-direct product
ker t∗ nC/β∗C is defined. Similarly to the proof of [7, Theorem 3.6], we can prove the
following theorem.

Theorem 4.13. From a cat1-hypergroup C = (k; t, h : H → C) we can construct a
crossed module.

5. Pullback cat1-hypergroups

In this section, we define the notion of pullback cat1-hypergroups and we obtain some
results in this respect. In particular, we present the universal property of induced
cat1-hypergroups.

Definition 5.1. A pullback cat1-hypergroup is defined as follows:

ι••H

t••

��

π

  

h•• // Q

k••

��

ι

��
Q

ι

!!

k••

//

H
h //

t

��

C

k

��

C

k

//

Let C = (k; t, h : H → C) be a cat1-hypergroup and let ι : Q → C be a strong
homomorphism. Define ι••C = (k••; t••, h•• : ι••H → Q) to be the pullback of
H, where ι••H = {(q1, a, q2) ∈ Q × H × Q | ι(q1) = t(a), ι(q2) = h(a)},
t••(q1, p, q2) = q1, h

••(q1, p, q2) = q2 and k••(q) = (q, kι(q), q). Multiplication in
ι••P is componentwise. The pair (π, ι) is a morphism of cat1-hypergroups, where
π : ι••H → H, (q1, a, q2) 7→ a.

Theorem 5.2. By a pullback cat1-hypergroup, we have a cat1-hypergroup.
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Proof. We verify the cat1-hypergroup axioms. For the first axiom, we have

t••k••(q) = t••(q, kι(q), q) = q, h••k••(q) = h••(q, kι(q), q) = q.

Thus, t••k•• = h••k•• = IdQ and (CAT-H-1) is satisfied.
In order to prove the second condition, suppose that x = (q′1, a1, q1) ∈ ker∗ t••,

y = (q2, a2, q
′
2) ∈ ker∗ h••. We have [x, y] = [x, y]r ∪ [x, y]l, where

[x, y]r = {(q, a, q′)|(q′1, a1, q1)× (q2, a2, q
′
2) ∩ (q2, a2, q

′
2)× (q′1, a1, q1)× (q, a, q′) 6= ∅}

={(q, a, q′)|q′1 · q2 ∩ q2 · q′1 · q 6= ∅, a1 ◦ a2 ∩ a2 ◦ a1 ◦ a 6= ∅, q1 · q′2 ∩ q′2 · q1 · q′ 6= ∅},
[x, y]l = {(q, a, q′) | (q′1, a1, q1)× (q2, a2, q

′
2) ∩ (q, a, q′)× (q2, a2, q

′
2)× (q′1, a1, q1) 6= ∅}

={(q, a, q′)|q′1 · q2 ∩ q · q2 · q′1 6= ∅, a1 ◦ a2 ∩ a ◦ a2 ◦ a1 6= ∅, q1 · q′2 ∩ q′ · q′2 · q1 6= ∅}
Suppose that (q, a, q′) is an arbitrary element of [x, y]r. Then, by the above equations
we obtain

q′1 · q2 ∩ q · q2 · q′1 6= ∅, (3)

a1 ◦ a2 ∩ a ◦ a2 ◦ a1 6= ∅,
q1 · q′2 ∩ q′ · q′2 · q1 6= ∅. (4)

Similarly as in the proof of Proposition 4.9, from the equations (3) and (4) we conclude
that [β∗Q(q′1), β∗Q(q2)] = 1Q/β∗Q and [β∗Q(q1), β∗Q(q′2)] = 1Q/β∗Q . This implies that

[q′1, q2] ⊆ ωQ and [q1, q
′
2] ⊆ ωQ. On the other hand, by the definition of ι••, we obtain

ι(q′1) = t(a1) ∈ ι(ωQ) and ι(q′2) = h(a2) ∈ ι(ωQ). Now, according to Lemma 4.5,
we have ι(ωQ) ⊆ ωC . Hence, t(a1) ∈ ωC and h(a2) ∈ ωC . Thus, a1 ∈ ker∗ t and
a2 ∈ ker∗ h. Now, we obtain [x, y]r ⊆ ωQ × ωQ × ωQ. In a similar way, we obtain
[x, y]l ⊆ ωQ × ωQ × ωQ. Therefore, (CAT-H-2) is satisfied, too. 2

The universal property of induced cat1-hypergroup is the following.

Corollary 5.3. Let C = (k; t, h : H → C) be a cat1-hypergroup and let ι••C =
(k••; t••, h•• : ι••H → Q) be induced by the strong homomorphism ι : Q → C. The
corresponding diagram is given as follows:

G

��

t′

h′

��

ψ

$$
ψ′

""
ι••H

��
t••h••

��

π // H

��
th

��
Q

ι
// C

The pair (π, ι) is a morphism of cat1-hypergroups such that for any cat1-hypergroups
H = (k′; t′, h′ : G → Q) and any morphism of cat1-hypergroups (ψ, ι) : C → H there
is a unique morphism ((ψ′, 1) : ι••C → H)) of cat1-hypergroups such that πψ′ = ψ.

The proof of the following theorem is similar to the proof of [7, Theorem 4.3].

Theorem 5.4. If ι•X is the pullback of the crossed module of hypergroups X over
ι : Q → H and if A,B are the cat1-groups obtained from X , ι•X respectively, then
B ∼= ι∗∗A.
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