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CHAIN TRANSITIVITY FOR MAPS ON G-SPACES

Ali Barzanouni and Ekta Shah

Abstract. We define and study the notion of chain transitivity for maps on G-spaces.
Through examples we justify that the notion of G-chain transitivity depends on the action
of G. Further, we obtain characterization of G-chain transitivity in terms of chain transitiv-
ity. A relation between G-chain transitivity and G-chain recurrent points of a map is also
obtained.

1. Introduction

By a discrete dynamical system we mean a pair (X, f), where X is a topological
space and f : X → X is a continuous map. The primary aim of the theory of discrete
dynamical systems is the study of behavior of the orbit, Of (x), of a point x ∈ X
given by {x, f(x), f2(x), . . . , fn(x), . . .}. In many situations, it is not always possible
to find this exact trajectory. For instance, if the initial value of x is an approximate
value, then the corresponding value of f(x) will also be rough value, which further
gives us an approximate value of f2(x) and so on. In this process we obtaine a new
sequence of nearby values, say {x0, x1, x2, . . . , xn, . . .}, known as a pseudo-orbit or
ε-chain of a map f . Applications of pseudo-orbits are much more diverse within and
outside mathematics. For instance, Botelho [5] used it to study finite discrete neural
networks, whereas recently Izhikevich used it in computational neuroscience [16].

Pseudo-orbits also play a key role in the study of different properties of a discrete
dynamical system. For instance, one can study the theory of shadowing property if
the pseudo-orbits are close to the actual orbits. Using the notion of pseudo-orbits
of a map, it is possible to study various kinds of recurrence. One of such notions
of recurrence, namely chain recurrence, was introduced by Conely [8] in 1978. Since
its inception it has been extensively studied both for discrete dynamical systems
and flows. Osipenko et al. used chain recurrence for the study of symbolic images [3].
Wiseman and Richeson [17] studied chain transitivity and chain mixing whereas Brian
et al. used it to study the equivalence of various kinds of shadowing property [7].
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Good et al. studied chain transitivity on hyperspace [14]. In this paper we study
chain transitivity for maps on G-spaces.

Let X be a metric G-space and f : X → X be a continuous map. Shah and
Das introduced in [21] the notion of G-shadowing property for map f and through
examples they observed that G-shadowing depends on the action of a group G acting
on X. In [19] G-shadowing for the shift map on the inverse limit space generated by
map f was studied. Choi and Kim [9] proved Spectral Decomposition type Theorem
for weakly G-expansive homeomorphisms having G-shadowing property. Recently,
Garg and Das [15] studied stronger forms of G-transitive maps, whereas Shah studied
Devaney’s chaos for maps on G-space [18]. The aim of current paper is to define and
study chain transitivity for maps on G-spaces.

In Section 2 we discuss preliminaries required for the content of the paper. The
notion of chain transitivity for maps on G-space is defined and studied in Section 3.
Through examples it is observed that the notion of G-chain transitive depends on
the action of G. We also obtain necessary and sufficient condition for the map to
be G-chain transitive. Further, it is shown that the map f on a metric G-space X
is G-chain transitive if and only if the corresponding induced map f̂ on the quotient
space X/G is chain transitive. The notion of chain recurrent points for map f defined
on a metric G-space X is defined in [19]. In Section 4, through examples we show
that the notion of G-chain recurrent points for map depends on the action of G. Also,
it is observed that the set of G-chain recurrent points, CRG(f) is a non-empty closed
(G, f)-invariant subset of a compact G-space X. Further, it is shown that every G-
non wandering point is a G-chain recurrent point but the converse is not true. Also, a
condition is obtained for this converse to be true. In the last section of the paper we
study relations between G-chain transitivity and G-chain recurrent points of maps.

2. Preliminaries

By a metric G-space X, we mean a metric space X on which a topological group G
acts continuously by an action ϑ. For g ∈ G and x ∈ X we denote ϑ(g, x) by gx. The
G-orbit of a point x, denoted by G(x), is the set {gx : g ∈ G}. The set X/G of all
G-orbits in X with the quotient topology induced by the quotient map π : X → X/G
defined by π(x) = G(x), is called the orbit space of X and the map π is called the
orbit map. Note that the map π is an open continuous map. A metric d on a metric
G-space X is called an invariant metric if d(x, y) = d(gx, gy), for each g ∈ G. If X is
a metric G-space with G compact then there exists an invariant metric d on X which
induces a metric dG on X/G [6], given by dG(G(x), G(y)) = inf{d(gx, ky)|g, k ∈ G}.
A continuous map f : X → X is said to be a pseudoequivariant map if f(G(x)) =
G(f(x)), for all x ∈ X [10]. For details on G-space one can refer to [6, 20]. It is
known that if f is a pseudoequivariant continuous map, then it induces a continuous
map f̂ : X/G → X/G given by f̂(G(x)) = G(f(x)) [10]. A map f is said to be an
equivariant map if gf(x) = f(gx) for each x ∈ X and each g ∈ G. A subset B of X is
said to be f -invariant if f(B) = B and a subset A of X is said to be G-invariant if
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G(A) = A. Note that here G(A) = {ga : g ∈ G, a ∈ A}. Further, a subset A of X is
said to be (G, f)-invariant if it is both f -invariant and G-invariant. Observe that A
is (G, f)-invariant if and only if G(f(A)) = A. For x ∈ X, the Gf -orbit of x, denoted
by Gf (x), is given as the set {gfk(x) : g ∈ G, k ≥ 0}.

Let (X, f) be a dynamical system and let x, y ∈ X. For a δ > 0, δ-chain from x to
y is a finite sequence {x = x0, x1, . . . , xn = y} in X such that d(f(xi), xi+1) < δ for
all i = 0, 1, . . . , n− 1. If for each δ > 0, there exists a δ-chain from x to y and y to x,
then the points x and y are said to be chained. A map f is said to be chain transitive
if any two points of X are chained [8]. A point x ∈ X is said to be a chain recurrent
point if x can be chained to itself. The set of all chain recurrent points is denoted
by CR(f). It is known that for the compact metric space X, CR(f) is a non-empty
f -invariant subset of X [4]. Much literature now exists for chain transitive maps and
chain recurrent points of a map. For instance, see [1, 2, 7, 8, 11–13].

Let X be a metric G-space and f : X → X be a continuous map. The notion
(ε,G)-pseudo orbits was first introduced in [21]. We recall the definition.

Definition 2.1. Let f : X → X be a continuous map defined on a metric G-space X.
For a given δ > 0, a sequence of points {xn : n ≥ 0} in X is said to be a (δ,G)-pseudo
orbit for f if for each n there is a gn ∈ G satisfying d(gnf(xn), xn+1) < δ.

Obviously every ε-pseudo orbit is an (ε,G)-pseudo orbit. But the converse need
not be true (for example, see [21, Example 2.3(3)]). The notion of shadowing property
for maps on G-spaces was defined and studied in [21]. We recall the definition.

Definition 2.2. Let f : X → X be a continuous map defined on a metric G-space
X. Then f is said to have the G-shadowing property if for each ε > 0 there is a δ > 0
such that for every (δ,G)-chain {xn : n ≥ 0} for f , there is a point x in X satisfying
for each n ≥ 0, d(gnxn, f

n(x)) < ε, for some gn ∈ G.

Through examples it was observed in [21], that the notion G-shadowing property
depends on the action of G. For more details on G-shadowing property and other
dynamical properties of maps defined on G-space see [9, 10,15,18,20].

3. G-chain transitive maps

Definition 3.1. Let X be a metric G-space and f : X → X be a continuous map. For
x, y ∈ X and ε > 0, if there exists a finite (ε,G)-pseudo orbit, {x = x0, x1, . . . , xn =
y}, then the (ε,G)-pseudo orbit is said to be an (ε,G)-chain from x to y. Point x is
said to be G-chained to y if for every ε > 0 there is an (ε,G)-chain from x to y. If for
every x, y ∈ X, x can be G-chained to y and y can be G-chained to x, then the map
f is said to be G-chain transitive.

Under the trivial action of G on X, the notions ‘chain transitive’ and ‘G-chain
transitive’ are the same. Since every δ-pseudo orbit is a (δ,G)-pseudo orbit it follows
that every chain transitive map is G-chain transitive. In general the converse is not
true, which is justified by the following example.
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Example 3.2. Consider the subspace X =
{
± 1
n ,±(1− 1

n ) : n ∈ N
}

of R. For x ∈ X,
let x+ denote the element of X which is immediately right to x and x− that element
of X which is immediately left to x. Let h : X → X be a homeomorphism given by

h(x) =


x, if x ∈ {−1, 0, 1}
−x+, if 0 < x < 1,

−x−, if − 1 < x < 0.

Suppose the group G1 = {hn : n ∈ Z} acts on X by the usual action. Define
f : X → X by

f(x) =


x, if x ∈ {−1, 0, 1}
x−, if x < 0

x+, if x > 0.

Then f is G1-chain transitive but not chain transitive. In fact if x ∈ X is such that
x < 0, then x can never be chained to any point y, where y > 0. Next, suppose
G2 = Z2 acts on X by the action 1x = x and −1x = −x, for each x ∈ X. Then f is
not Z2-chain transitive.

From Example 3.2 it can also be observed that f is G-chain transitive with respect
to one group but not with respect to another group. It therefore follows that the
notion of G-chain transitivity depends on the action of group G on X.

Definition 3.3. Let X and Y be two G-spaces and let f : X → X, g : Y → Y be
two continuous maps. Then f and g are said to be topologically G-conjugate if there
is a pseudoequivariant homeomorphism h : X → Y such that hf = gh. The map h is
then called a G-conjugancy between f and g.

In the following result we show that G-chain transitivity is preserved under G-
conjugancy if the space is compact.

Proposition 3.4. Let (X, d) and (Y, ρ) be two compact metric G-spaces and let f1 :
X → X, f2 : Y → Y be two continuous maps. Suppose f1 and f2 are topologically
G-conjugate by G-conjugancy h. If f is G-chain transitive then so is g.

Proof. Sincef1 and f2 are topologically G-conjugate by G-conjugancy h, therefore
h : X → Y is homeomorphism satisfying hf1 = f2h. Let ε > 0 be given. Since h is
uniformly continuous, it follows that for this ε > 0, there is a δ > 0 such that

d(x, y) < δ =⇒ ρ(h(x), h(y)) < ε.

Using the above inequality it is easy to observe that if {t0, t1, . . . , tn} is a (δ,G)-chain
for f1 in X then {h(t0), h(t1), . . . , h(tn)} is an (ε,G)-chain for f2 in Y .

Let y1, y2 ∈ Y . Then we show that there are (ε,G)-chains for f2 in Y from y1 to
y2 and y2 to y1. For this y1, y2 ∈ Y , there are x1, x2 ∈ X such that x1 = h−1(y1)
and x2 = h−1(y2). But f1 is G-chain transitive. Therefore there are (δ,G)-chains
for f in X from x1 to x2 and x2 to x1. Suppose these (δ,G)-chains are given by
{x1 = s0, s1, . . . , sn = x2} and {x2 = w0, w1, . . . , wm = x1}. Then {h(x1) = y1 =
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h(s0), h(s1), . . . , h(sn) = h(x2) = y2} and {h(x2) = y2 = h(w0), h(w1), . . . , h(wm) =
h(x1) = y1} are (ε,G)-chains for f2 in Y . �

In the following proposition we obtain a necessary and sufficient condition for a
pseudoequivariant map f to be G-chain transitive. We first recall the following result
proved in [20].

Lemma 3.5. Let (X, d) be a compact metric G-space, where G is compact, then for
ε > 0 there are η > 0 and δ > 0 such that for all g in G and x in X, Uη(gx) ⊂ gUε(x)
and gUδ(x) ⊂ Uε(gx).

Proposition 3.6. Let X be a compact metric G-space with G compact and let Y be
a (G, f)-invariant dense subset of X. Suppose f : X → X is a pseudoequivariant
continuous map. Then f : X → X is G-chain transitive if and only if f|Y : Y → Y
is G-chain transitive.

Proof. Since Y is (G, f)-invariant subset of X, therefore G(Y ) = Y and f(Y ) = Y .
Also Y is dense in X implies that every point of x is either in Y or a limit point of Y .

Suppose f : X → X is G-chain transitive. Let y1, y2 ∈ Y and let ε > 0 be given.
Then we show that there is an (ε,G)-chain from y1 to y2 in Y . By uniform continuity
of f , for ε > 0 there is δ, 0 < δ < ε

2 , such that d(a, b) < δ =⇒ d(f(a), f(b)) < ε
2 . For

δ > 0, by Lemma 3.5, there is η, 0 < η < δ
2 , such that

gUη(x) ⊂ U δ
2
(gx) (1)

for all g ∈ G. Since f : X → X is G-chain transitive, there is an
(
η
2 , G

)
-chain

{y1 = z0, z1, . . . zk = y2} for f in X. Therefore, for each 0 ≤ n ≤ k − 1, there exist
gn ∈ G satisfying d(f(gnzn), zn+1) < η

2 . Further, Y is dense in X. Therefore for
zn ∈ X, there exists tn ∈ Y such that tn ∈ Uη(zn). By using the equation (1), it
follows that for each 0 ≤ n ≤ k − 1, gntn ∈ U δ

2
(gnzn). Note that G-invariancy of Y

implies that gntn is also in Y . Now for n, 0 ≤ n ≤ k − 1, consider

d(f(gntn), tn+1) ≤ d(f(gntn), f(gnzn)) + d(f(gnzn), zn+1) + d(zn+1, tn+1) < ε

Thus, {y1 = t0, t1, . . . , tk = y2} is an (ε,G)-chain for f in Y . Similarly we can obtain
an (ε,G)-chain from y2 to y1.

Conversely, suppose that f : Y → Y is G-chain transitive. Let x1, x2 ∈ X
and let ε > 0 be given. We show that there is an (ε,G)-chain from x1 to x2 for
f in X. By uniform continuity of f , there is δ > 0 such that d(a, b) < δ =⇒
d(f(a), f(b)) < ε. Now, let w ∈ f−1(x2). Then there are z0, z1 ∈ Y such that
d(z0, f(x1)) < ε and d(z1, w) < δ. This further implies that d(f(z1), x2) < ε. Using
G-chain transitivity of f : Y → Y there is an (ε,G)-chain {z0 = a0, a1, . . . , ak = z1}
from z0 to z1. Since d(f(x1), z0) < ε and d(f(z1), x2) = d(f(z1), f(w)) < ε, it follows
that {x1, a0, a1, . . . , ak = z1, x2} is an (ε,G)-chain for f from x1 to x2 in X. �

Recall that a continuous group action θ : G × X → X acts equicontinuously on
X, if for every ε > 0 there is δ > 0 such that for any x, y ∈ X with d(x, y) < δ
implies d(θ(g, x), θ(g, y)) = d(gx, gy) < ε, for all g ∈ G. Equivalently, an action is
equicontinuous, if the family of homeomorphisms given by {θg : X → X : g ∈ G} is
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equicontinuous. It is known that every compact topological group acts equicontinu-
ously on compact metric space X (for example, see [9, Lemma 2.3]).

If X contains a proper, clopen, nonempty, (G, f)-invariant set A, then f is not
G-chain transitive on X. For, if ε > 0 is smaller than the distance from A to its
complement, then there is no (ε,G)-pseudo orbit between points of A and points of
A complement. The following proposition shows that the conditions of clopen and
(G, f)-invariancy for A is essential.

Proposition 3.7. Suppose the action of G on a compact metric space X is equicon-
tinuous and suppose f : X → X is a continuous map. Let A,B be two non-empty
(G, f)-subsets of X such that d(A,B) = 0. If f|A and f|B are G-chain transitive then
f|(A∪B) is G-chain transitive.

Proof. Let p, q ∈ A ∪ B and ε > 0 be given. Then without loss of generality, we can
assume that p ∈ A and q ∈ B. Since d(A,B) = 0 and G acts equicontinuously on X, it
follows that there exist x ∈ A and y ∈ B such that for all g ∈ G, d(gf(x), gf(y)) < ε

2 .
It is now easy to verify that if {x0 = p, x1, . . . , xn = x} is an ( ε2 , G)-chain from p to x,
and {y0 = y, y1, . . . , ym = q} is an ( ε2 , G)-chain from y to q, then {x0 = p, x1, . . . , xn =
x, y1, . . . , ym = q} is an (ε,G)-chain from p to q. �

Let (X, d) be a compact metric G-space with G compact and let the corresponding
orbit space be given by X/G with the induced metric dG. Let f : X → X be a contin-

uous pseudoequivariant map with the corresponding induced map f̂ : X/G → X/G

given by f̂(G(x) = G(f(x)). We now study the relation between G-chain transitivity

of the map f and chain transitivity of the map f̂ .

Theorem 3.8. Let X be a compact metric G-space with G compact. Suppose that
f : X → X is a pseudoequivariant continuous map. Then f is G-chain transitive if
and only if the corresponding induced map f̂ : X/G→ X/G is chain transitive.

Proof. Suppose f̂ : X/G → X/G is chain transitive. Let x, y ∈ X and let ε > 0 be
given. Then we show that there is an (ε,G)-chain from x to y. Since G is compact
it follows that the action of G on X is an equicontinuous action. Therefore there is
δ > 0 such that for all g ∈ G

d(t, w) < δ =⇒ d(gt, gw) < ε. (2)

For x, y ∈ X consider the corresponding points G(x), G(y) in X/G. Since f̂ is chain

transitive, it follows that there is a δ-chain for f̂ inX/G, say {G(x) = G(x0), G(x1), . . . ,

G(xk) = G(y)}, fromG(x) toG(y). Therefore for 0 ≤ n ≤ k−1, dG(f̂(G(xn)), G(xn+1))
= inf {d(gf(xn), hxn+1) | g, h ∈ G} < δ. But G is compact, therefore for each n, there
are gn, hn ∈ G such that d(gnf(xn), hnxn+1) < δ. Thus the equation (2) implies
that for each n, there is tn = h−1

n gn ∈ G satisfying d(tnf(xn), xn+1) < ε. Hence
{x = x0, x1, . . . , xn = y} is an (ε,G)-chain for f . Thus x is G-chained to y. But
x, y ∈ X are arbitrary and therefore f is G-chain transitive.

Conversely, suppose f : X → X is G-chain transitive. Let G(x), G(y) ∈ X/G and

let ε > 0 be given. We show that there is an ε-chain for f̂ from G(x) to G(y) in X/G.
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Now, X is compact and the orbit map π : X → X/G is continuous. Therefore there
is δ > 0 such that

d(t, w) < δ =⇒ dG(G(t), G(w)) < ε. (3)

ForG(x), G(y) ∈ X/G, consider corresponding x, y ∈ X. Then, f isG-chain transitive
implies that there is a (δ,G)-chain for f in X, say {x = x0, x1, . . . , xk = y} from x to y.
This implies that for each 0 ≤ n ≤ k−1, there is gn ∈ G satisfying d(gnf(xn), xn+1) <

δ. Therefore, using the equation (3), we obtain dG(f̂(G(xn)), G(xn+1)) < ε. Hence

{G(x) = G(x0), G(x1), . . . , G(xk) = G(y)} is an ε-chain for f̂ from G(x) to G(y).

Therefore f̂ is chain transitive. �

4. G-chain recurrent points

We recall the definition of G-chain recurrent points for a map defined in [19].

Definition 4.1. Let X be a metric G-space and let f : X → X be a continuous map.
A point x ∈ X is called a G-chain recurrent point if x can be G-chained to itself. The
set of G-chain recurrent points is called the G-chain recurrent set of f and denoted
by CRG(f).

Under the trivial action of G on X, the notions of chain recurrent points and
G-chain recurrent points are the same. Further, under non-trivial action of G it fol-
lows that CR(f) ⊂ CRG(f) and therefore CRG(f) is always non-empty for compact
spaces. A G-chain recurrent point need not be chain recurrent point, as can be seen
from Example 4.2.

Example 4.2. Consider the subspace X =
{
± 1
n ,±

(
1− 1

n

)
: n ∈ N

}
of R with the

usual metric of R. Suppose groups G1 and G2 act on X as in Example 3.2. If f is
the left shift fixing −1, 0, 1 then CRG1(f) = X but CR(f) = {−1, 0, 1} = CRG2(f).

From Example 4.2, it can also be observed that a point can be G-chain recurrent
with respect to one group, but need not be with respect to another group. Hence the
notion depends on the action of G. It is known that CR(f) is a closed f -invariant
set [4]. In the following proposition we show that CRG(f) is a closed (G, f)-invariant
set.

Proposition 4.3. Let X be a compact metric G-space with G compact and let f :
X → X be a continuous pseudoequivariant map. Then CRG(f) is a closed (G, f)-
invariant subset of X.

Proof. Let ε > 0 be given. Then by uniform continuity of f there is a positive real
number δ such that d(a, b) < δ =⇒ d(f(x), f(y)) < ε.

We first show that CRG(f) is a closed subset of X. Let x be a limit point of
CRG(f). Then there is a sequence {xn} in CRG(f) such that {xn} converges to x.
Since xn is a G-chain recurrent point of f , it follows that there is a (δ,G)-chain, {xn =
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y0, y1, . . . , yk = xn}, for f in X. It is now easy to verify that {x = y0, y1, . . . , yk = x}
is an (ε,G)-chain for f from x to itself. Hence x ∈ CRG(f).

For x ∈ CRG(f) and g ∈ G we show that gx ∈ CRG(f). Since G is compact,
it follows that the action G on X is equicontinuous. Therefore, for ε > 0 there
is 0 < η < ε, such that d(a, b) < η =⇒ d(ta, tb) < ε, for all t ∈ G. Let {x =
x0, x1, . . . . . . , xk = x} be an (η,G)-chain for f from x to itself. Then, there is g0 ∈ G
such that d(g0f(x0), x1) = d(k0f(gx0), x1) < η < ε, where k0 = g0l ∈ G. Here l is
obtained by using pseudoequivariancy of f . Next, there is gn−1 ∈ G such that

d(gn−1f(xn−1), xn) < η =⇒ d(ggn−1f(xn−1), gxn) = d(kn−1f(xn−1), gx) < ε,

for kn−1 = ggn−1 ∈ G. Hence {gx = gx0, x1, . . . . . . , gxk = gx} is an (ε,G)-chain
for f from gx to itself. Therefore gx ∈ CRG(f). But g ∈ G is arbitrary. Therefore
CRG(f) is a G-invariant set.

Next, we show that f(CRG(f)) ⊂ CRG(f). For y ∈ f(CRG(f)) then there is
x ∈ CRG(f) such that f(x) = y. If {x = x0, x1, . . . , xk = x} is a finite (δ,G)-chain
from x to itself then {y = f(x0), f(x1), . . . , f(xk) = y} is a finite (ε,G)-chain from y
to itself and hence y ∈ CRG(f).

Conversely, we show that CRG(f) ⊆ f(CRG(f)). Let x ∈ CRG(f). Then for every
m ∈ N, there is a ( 1

m , G)-chain, {xmi : 0 ≤ i ≤ nm + 1}, from x to itself. Therefore for
each 0 ≤ i ≤ nm + 1, there is gi ∈ G such that d

(
f(gix

m
i ), xmi+1

)
< 1

m . In particular,
for each m ∈ N, there is gnm ∈ G such that

d(gnmf(xnm), x) <
1

m
. (4)

Let y be the limit point of convergent sequence {gnmxnm} in the compact metric space
X. Note that we are denoting the convergent subsequence as the same sequence.
Also, the inequality (4) implies that f(y) = x. We complete the proof by showing
that y ∈ CRG(f).

Let ε1 > 0 be given. Since G is a compact space it follows that the action G on
X is equicontinuous. Therefore there is δ1, 0 < δ1 < ε1

6 such that for all g ∈ G,
d(a, b) < δ1 =⇒ d(gf(a), gf(b)) < ε1

6 . Choose m ∈ N such that 0 < 1
m < δ1. Let

the corresponding ( 1
m , G)-chain from x to itself be given by {xmi : 0 ≤ i ≤ nm + 1}.

Consider the sequence
{
y, x = xm0 , x

m
1 , . . . , x

m
nm−1, y

}
. Then this is an (ε,G)-chain

from y to itself as there is e ∈ G such that d(ef(y), xm0 ) = d(ex, x) = 0 < ε1 and there
is h = gnmgnm−1 ∈ G satisfying

d(hf(xmnm−1), y) = d(gnmgnm−1f(xmnm−1), y)

≤ d(gnmgnm−1f(xmnm−1), gnmx
m
nm) + d(gnmx

m
nm , y) <

ε1
3
.

Therefore y ∈ CRG(f). Hence we obtain f(CRG(f)) = CRG(f). �

Recall from [20], that a point x in X is said to be a G-non wandering point of
f if for every neighbourhood U of x there is an integer n > 0 and a g ∈ G such
that gfn(U) ∩ U 6= ∅. If ΩG(f) denotes the set of all G-nonwandering points then
it is observed in [20] that ΩG(f) is a closed (G, f)-invariant subset of X which is
non-empty if X is compact. Further, it is easy to observe that every G-nonwandering
point is a G-chain recurrent point. However, the converse need not be true, that can
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be observed from the following example.

Example 4.4. Consider I = [0, 1] as a subspace of R and let G = Z2 act on I by the
usual action. Define a map

f(x) =


√

x
3 , if 0 ≤ x ≤ 1

3

2x− 1
3 , if 1

3 ≤ x ≤
2
3

3− 3x, if 2
3 ≤ x ≤ 1

Then each point of (0, 1
3 ) is a Z2-chain recurrent point but not a Z2-non wandering

point. Here ΩG(f) =
{

0, 1
3 ,

3
4

}
.

It is known that a chain recurrent point of a map f is a non-wandering point of f if
the map has shadowing property [4]. In the following theorem, using the G-shadowing
property, we show that every G-chain recurrent point is a G-nonwandering point.

Theorem 4.5. Let X be a compact metric G-space with G compact and let f : X →
X be a continuous pseudoequivariant map. If f has the G-shadowing property then
CRG(f) = ΩG(f).

Proof. It is sufficient to show that CRG(f) ⊂ ΩG(f). For a given ε > 0 by Lemma 3.5
there is an η > 0 such that for all y ∈ X and g ∈ G, Uη(gy) ⊂ gUε(y). The G-
shadowing property of f implies that there is a δ > 0 such that every (δ,G)-pseudo
orbit for f is η-shadowed by a point of X. Let x ∈ CRG(f) and let U be an open set
containing x. Then there is a finite (δ,G)-pseudo orbit {x = x0, x1, . . . , xk = x} for
f . Therefore there is a point y in X η-tracing {x=x0, x1,. . . . . . ,xk=x}. This implies
that there exists g0, gk in G satisfying d(y, gnx) < η and d(fk(y), gkx) < η, which
further implies that there is an l ∈ G such that lfk(U) ∩ U 6= ∅. �

It is known that if a continuous map f : X → X has the G-shadowing property
then so does f| ΩG(f), [20, Theorem 3.8]. Therefore, in view of the above theorem, it
follows that if f has G-shadowing property then so does f|CRG(f). Note that this is
one of the key observation used in the proof of Decomposition Theorem proved in [9].
In the following results we relate G-chain recurrent points of f and fn, n ≥ 1.

Lemma 4.6. Let X be a compact metric G-space and suppose the action of G on
X is equicontinuous. For ε > 0 and M ∈ N, there is δ > 0, such that for ev-
ery infinite (δ,G)-pseudo orbit {xn : n ≥ 0} there is gn ∈ G, n ∈ N, satisfying
d(gnf

M (xn), xn+M ) < ε

Proof. Let ε > 0 and M ∈ N be given. Since the action of G on X is an equicontinuous
action, it follows that there exists η > 0 such that for each g ∈ G: d(a, b) < η =⇒
d(ga, gb) < ε

M . Also, for each 0 ≤ i ≤M − 1, f i is uniform continuous. Therefore for
η > 0, there is δ > 0 such that for each 0 ≤ i ≤M−1, d(a, b) < δ =⇒ d(f i(a), f i(b)) <
η. Consider a (δ,G)-psuedo orbit {xn : n ≥ 0}. Then for each n ≥ 0, there is hn ∈ G
satisfying d(gnf(xn), xn+1) < δ. It is now easy to verify that for each n ∈ N and
gn = hn+Mhn+M−1 . . . hn+1hn in G d(gnf

M (xn), xn+M ) < ε. �
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Let k ∈ N. Then it is obvious that every (ε,G)-chain for fk is also an (ε,G)-chain
for f . By using Lemma 4.6, it follows that if there is an (δ,G)-chain from x to y from
length multiple of k for f , then there is an (ε,G)-chain from x to y for fk. Hence we
have the following result.

Proposition 4.7. Let X be a compact metric space and suppose the action of G on
X is an equicontinuous action. If f : X → X is a pseudoequivariant map, then for
every n ∈ N, CRG(fn) = CRG(f).

5. G-chain transitive maps and G-chain recurrent points

Let X be a metric G-space and f : X → X be a G-chain transitive map. Then for
every x, y ∈ X and every ε > 0, there is an (ε,G)-chain, say {x = x0, x1, . . . , xn = y},
from x to y and an (ε,G)-chain, say {y = y0, y1, . . . , ym = x}, from y to x. It now
follows that {x = x0, x1, . . . , xn = y = y0, y1, . . . , ym = x} is an (ε,G)-chain from x
to itself. Hence in this case CRG(f) = X. In the following proposition we show that
the converse is true if the space is connected.

Proposition 5.1. Let X be a compact metric G-space and f : X → X be a contin-
uous pseudoequivariant surjective map. Suppose CRG(f) is a connected subset of X.
Then f is G-chain transitive.

Proof. Let x, y ∈ X and ε > 0 be given. Then we show that there is an (ε,G)-chain
from x to y. By the compactness of space X it follows that the sequence {fn(x)}∞n=0

has a convergent subsequence, say {fnk(x)}, with the limit point p. Therefore p ∈
ΩG(f) and hence p ∈ CRG(f). Now, we show that there is an

(
ε
3 , G

)
-chain from x

to p. Further, for ε
3 , there is mk > 0 such that d(fmk(x), p) < ε

3 . It is now easy to
verify that {x, f(x), f2(x), . . . , fmk−1(x), p} is an

(
ε
3 , G

)
-chain from x to p.

Next, using surjectivity of f , there is a sequence {yn}∞n=0 such that f(yn+1) = yn
and y0 = y. Let q be the limit point of a subsequence, say {yrk}, of {yn}. Then q ∈
CRG(f). For ε

3 , there is δ > 0 such that d(t, w) < δ =⇒ d(f(t), f(w)) < ε
3 . Further,

there is jk > 0 such that d(yjk , q) < δ. It now follows that {q, yjk , yjk−1, . . . , y1, y0 = y}
is an

(
ε
3 , G

)
-chain from q to y. Since CRG(f) is connected, there are finitely many

points {zi : 0 ≤ i ≤ m} in CRG(f) such that z0 = p, zm = q and for all i, 0 ≤ i < m,

d(zi, zi+1) <
ε

6
. (5)

Now, z0, z1 ∈ CRG(f). Therefore there are
(
ε
6 , G

)
-chains {z0 = z0

0 , z
1
0 , . . . , z

k0−1
0 , zk00 =

z0} and {z1 = z0
1 , z

1
1 , . . . , z

k1
1 = z1}. Using the equation (5), this now implies that

{z0 = z0
0 , z

1
0 , . . . , z

k0−1
0 , z1 = z0

1 , z
1
1 , . . . , z

k1
1 = z1} is an

(
ε
3 , G

)
-chain from z0 to z1.

By a similar argument we obtain an
(
ε
3 , G

)
-chain from z1 to z2. Further, combining

these two chains one gets an
(
ε
3 , G

)
-chain from z0 to z2. Continuing this process we

obtain an
(
ε
3 , G

)
-chain from z0 = p and zm = q. Thus, we have

(
ε
3 , G

)
-chains from x

to p, p to q and q to y. Therefore there is an (ε,G)-chain from x to y. �
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Corollary 5.2. Let X be a compact connected metric G-space and let f : X → X be
a continuous pseudoequivariant surjective map. Then f is G-chain transitive if and
only if CRG(f) = X.

In the following theorem we obtain some more conditions under which f is G-chain
transitive.

Proposition 5.3. Let X be a compact metric G-space with G compact, f : X → X be
a continuous pseudoequivariant map and let Y be a subset of X. Suppose ΩG(f) ⊆ Y
and f is G-chain transitive on Y . Then f is G-chain transitive on X.

Proof. Let x, y ∈ X and ε > 0 be given. If x, y ∈ Ωg(f), then there is an (ε,G)-chain
from x to y as every G-nonwandering point is a G′-chain recurrent point. Assume
x, y ∈ X \ ΩG(f). We show that there is an (ε,G)-chain from y to x. Set

K =
{
w
∣∣∣ d (w,ΩG(f)) ≥ ε

4

}
.

Then K is a non-empty closed subset of X as both x, y are in K. Also, if w ∈ K,
then w is not a G-nonwandering point. Therefore for every w ∈ K there is an open
neighborhood U(w) of w such that gfm(U(w))∩U(w) = ∅, for all m ≥ 1 and all g ∈ G.

Since K is a compact set, there is {w1, w2, . . . , wk} ⊆ K, such that K ⊆
⋃k
i=1 U(wi).

Take p ∈ f−k(x). Since for all n ≥ 1, fn(U(wj))∩U(wj) = ∅, there is an n, 0 ≤ n ≤ k,
such that fn(p) /∈ K. But this implies that d(fn(p),ΩG(f)) < ε

4 . Choose a ∈ ΩG(f)
with d(fn(p), a) < ε

4 . Consider the set F = {gfn(y) : g ∈ G,n ∈ N} in X and let
b be an accumulation point of F . Then there exist m ∈ N and gm ∈ G such that
d(gmf

m(y), b) < ε
4 . Since b is a limit point it follows that b ∈ ΩG(f). Therefore there

is an
(
ε
4 , G

)
-chain from a to b. Using this fact, inequality d(fn(p), a) < ε

4 , 0 ≤ n ≤ k,
and p ∈ f−k(x) we can obtain an (ε,G)-chain from y to x. �

Since ΩG(f) ⊂ CRG(f), it follows from the above theorem that if f|CRG(f) is
G-chain transitive then f is G-chain transitive.
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