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Abstract. In this article, by introducing a new operator, we give a new generalized
contraction condition for multivalued maps. Moreover, without assumption of lower semi-
continuity, we prove some fixed point theorems in incomplete metric spaces. Our results are
extension of the corresponding results of I. Altun et al. (Nonlinear Analysis: Modeling and
control, 2016, Vol. 21, No. 2, 201–210). Also, we provide some examples to show that our
main theorem is a generalization of some previous results.

1. Introduction

Throughout this paper C(X) indicates the family of all nonempty, closed subsets of
X, CB(X) indicates the family of all nonempty, closed and bounded subsets of X,
and K(X) indicates the family of all compact subsets of X. Also, the Hausdorff
metric H on C(X) is defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

for A,B ∈ C(X) and d(x,A) = inf{d(x, y) : y ∈ A}. In recent decades, several
fixed point theorems for multivalued mappings were obtained by a large number of
researchers [2,5,6,8–10,13]. Among them, Feng and Liu [8] proved the following one.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → C(X). Assume
that the following conditions hold:
(i) the map x 7→ d(x, Tx) is lower semi-continuous;

(ii) there exist b, c ∈ (0, 1) with b < c such that for any x ∈ X, there is y ∈ Ixb
satisfying d(y, Ty) ≤ cd(x, y), where Ixb = {y ∈ Tx : bd(x, y) ≤ d(x, Tx)}.
Then T has a fixed point.
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Also, Klim and Wardowski [10] obtained a new result by proving the following
theorem.

Theorem 1.2. Let (X, d) be a complete metric space and T : X → C(X). Assume
that the following conditions hold:
(i) the map x 7→ d(x, Tx) is lower semi-continuous;

(ii) there exist b ∈ (0, 1) and ϕ : [0,∞) → [0,∞) satisfying lim supt→s+ ϕ(t) < b for
s ≥ 0, and for any x ∈ X, there is y ∈ Ixb satisfying d(y, Ty) ≤ ϕ(d(x, y))d(x, y).
Then T has a fixed point.

In recent years, Minak et al. [11], using the concept of F-contraction, introduced
by Wardowski [15] for the first time, proved the following fixed point theorems.

Definition 1.3 ([15]). Let F : (0,+∞)→ R be a function such that
(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) < F (β);

(F2) For all sets {αn} of positive numbers, lim
n→∞

αn=0 if and only if lim
n→∞

F (αn)=−∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0;

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.
We denote the family of all F : (0,+∞)→ R which satisfy conditions (F1)–(F3) and
(F1)–(F4) by F and F∗, respectively.

Theorem 1.4 ([11]). Let (X, d) be a complete metric space, T : X → K(X) and
F ∈ F . If there exists τ > 0 such that for any x ∈ X with d(x, Tx) > 0, there exists
y ∈ F xσ satisfying τ + F (d(y, Ty)) ≤ F (d(x, y)), where F xσ = {y ∈ Tx : F (d(x, y)) ≤
F (d(x, Tx)) + σ} and σ < τ , then T has a fixed point in X provided x 7→ d(x, Tx) is
lower semi-continuous.

Remark 1.5 ([11]). If F satisfies (F1) then it satisfies (F4) if and only if it is right
continuous.

If T : X → K(X), then for all σ ≥ 0 and x ∈ X with d(x, Tx) > 0, we have
F xσ 6= ∅.

If T : X → C(X), then F xσ may be empty for some x ∈ X and σ ≥ 0. But if
F ∈ F∗, then for all σ ≥ 0 and x ∈ X with d(x, Tx) > 0, we have F xσ 6= ∅.

Obviously, the following theorem is an extension of Theorem 1.1.

Theorem 1.6 ( [11]). Let (X.d) be a complete metric space, T : X → C(X) and
F ∈ F∗. If there exists τ > 0 such that for any x ∈ X with d(x, Tx) > 0, there
exists y ∈ F xσ satisfying τ + F (d(y, Ty)) ≤ F (d(x, y)), then T has a fixed point in X
provided σ < τ and x 7→ d(x, Tx) is lower semi-continuous.

Recently, Altun et al. [3] introduced a new class of multivalued maps and by
applying them, they obtained an extension of Theorem 1.2.

Theorem 1.7 ( [3]). Let (X, d) be a complete metric space, T : X → C(X) and
F ∈ F∗. Assume that the following conditions hold:
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(i) the map x→ d(x, Tx) is lower semi-continuous;

(ii) there exists σ > 0 and a function ϕ : (0,∞) → (σ,∞) such that lim inf
t→s+

τ(t) > σ

for s ≥ 0, and for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ satisfying
τ(d(x, y)) + F (d(y, Ty)) ≤ F (d(x, y)).

Then T has a fixed point.

Theorem 1.8 ( [3]). Let (X, d) be a complete metric space, T : X → K(X) and
F ∈ F . Assume that the conditions (i) and (ii) of Theorem 1.7 hold. Then, T has a
fixed point.

In this paper, we address the following questions.
(Q1) Is it possible to generalize the contraction (ii) of Theorems 1.7 and 1.8?

(Q2) Is it possible to remove the completeness of the space in Theorems 1.7 and 1.8?

(Q3) Is it possible to remove the lower semi-continuity condition of the mapping
x 7→ d(x, Tx) in Theorems 1.7 and 1.8?

To answer the above questions, we first introduce a function ψ(t1, t2, t3, t4, t5) :
R5

+ → R+ with several properties as follows and use it to improve and generalize the
condition (ii) of Theorems 1.7 and 1.8 in the next section.

Definition 1.9. Let ∆ be the class of those functions ψ : R5
+ → R+ satisfying the

following:
(∆1) ψ is increasing in t2, t3, t4 and t5;

(∆2) For all positive sequences {tn}, tn+1 < ψ(tn, tn, tn+1, tn + tn+1, 0) implies that
tn+1 < tn;

(∆3) φ(u, u, u, 2u, 0) ≤ u, for each u ∈ R+ = [0,+∞).

Example 1.10. Let ψ : R5
+ → R+ be defined by ψ(t1, t2, t3, t4, t5) =

t22 + 3t3
t1 + 3

. Then,

it is clear that (∆1) holds. To show (∆2), let {tn} be a positive sequence such that

tn+1 < ψ(tn, tn, tn+1, tn + tn+1, 0) =
t2n + 3tn+1

tn + 3
.

Therefore, (tn+1tn) + 3tn+1 < t2n + 3tn+1. This implies that tn+1 < tn. It is obvious
that the property (∆3) holds for this function, and so ψ ∈ ∆.

In the sequel, we show that Theorems 1.7 and 1.8 hold wheneverX is an incomplete
metric space. For this purpose, we apply the notation of orthogonal set (see [1]).
Indeed, we introduce the concept of SO-lower semi-continuous mapping and prove
that lower semi-continuity assumptions of the mappings x→ d(x, Tx) is not necessary.
At first, we recall some important definitions.

Definition 1.11 ([7]). Let X 6= ∅ and ⊥ ⊆ X × X be a binary relation. If “⊥”
satisfies the following condition: ∃x0: (∀y, y⊥x0) or ∀y, x0⊥y), then “⊥” is called a
strong orthogonality relation and the pair (X,⊥) is called an orthogonal set (briefly
SO-set).
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Note that in the above definition, we say that x0 is an orthogonal element. Also,
we say that elements x, y ∈ X are ⊥-comparable if either x⊥y or y⊥x.

Definition 1.12 ([14]). 1. Let (X,⊥) be an SO-set. A sequence {xn} is called
a strongly orthogonal sequence (briefly, SO-sequence) if (∀n, k; xn⊥xn+k) or
(∀n, k; xn+k⊥xn).

2. Let (X,⊥, d) be an orthogonal metric space. X is said to be strongly orthogonal
complete (briefly, SO-complete) if every Cauchy SO-sequence is convergent.

3. Let (X,⊥, d) be an orthogonal metric space. A mapping f : X → X is strongly
orthogonal continuous (briefly, SO-continuous) in x ∈ X if for each SO-sequence
{xn} in X if xn → x, then f(xn) → f(x). Also, f is SO-continuous on X if f
is SO-continuous in each x ∈ X.

Definition 1.13 ([4]). 1. Let (X,⊥, d) be an orthogonal metric space. For each
A,B ∈ CB(X), we have A ⊥ B if and only if a ⊥ b, for all a ∈ A and b ∈ B.

2. Let (X,⊥) be an SO-set. A mapping T : X → CB(X) is said to be ⊥-preserving
if x⊥y implies T (x)⊥T (y).

Here, we define the concept of SO-lower semi-continuity that is weaker than lower
semi-continuity and SO-continuity.

Definition 1.14. Let (X,⊥, d) be an orthogonal metric space. A mapping f : X →
R∪{−∞,+∞} is strongly orthogonal lower semi-continuous (briefly, SO-lower semi-
continuous) in x ∈ X if for each SO-sequence {xn} in X with xn → x, we have
lim inf
n→∞

f(xn) ≥ f(x).

It is easy to see that every lower semi-continuous mapping is SO-lower semi-
continuous. The following example shows that the converse is not true in general.

Example 1.15. Let X = [1,∞) with the Euclidean metric. Set an orthogonal relation
“⊥” by x ⊥ y ⇔ xy ∈ {x, y}. Define f : X → X by

f(x) =

{
4 x = 1

2x x > 1.

We show that this function is not lower semi-continuous, but it is SO-lower semi-
continuous. We consider the sequence

{
n+1
n

}
, n ∈ N, and we have n+1

n → 1, but

2 = lim inf
n→∞

f
(
n+1
n

)
< f(1) = 4. Therefore, f is not lower semi-continuous. On the

other hand, since the only SO-sequence is {1} and 1 = lim inf
n→∞

f(1) = f(1) = 1, then

f is a SO-lower semi-continuous function.

Clearly, every SO-continuous function is SO-lower semi-continuous function. In
the next example f is SO-lower semi-continuous but it is not SO-continuous and
lower semi-continuous.
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Example 1.16. Let X = [0,∞) with the Euclidean metric. Set orthogonal relation
“⊥” as x ⊥ y ⇔ x = 0 or 0 < x ≤ y ≤ 1. Define f : X → X by

f(x) =


0 x = 0

1 0 < x ≤ 1
x

2
x > 1.

Clearly, f is not SO-continuous because the SO-sequence

{
1

n

}
is convergent to zero

but 1 = f
(
1
n

)
9 f(0) = 0. Also, f is not lower semi-continuous by considering the

sequence

{
n+ 1

n

}
. But, we can show that f is SO-lower semi-continuous. For this

purpose, if xn → 0, then 1 = lim inf
n→∞

(xn) > f(0) = 0. Otherwise, for each sequence

{xn} with xn → x such that 0 < x ≤ 1, we have 1 = lim inf
n→∞

f(xn) = f(x) = 1. Then,

f is a SO-lower semi-continuous function.

2. Fixed point problems

The following theorem gives a partial answer to Q1, Q2 and Q3.

Theorem 2.1. n Let (X, d,⊥) be a SO-complete (not necessarily complete) metric
space with orthogonal element x0, T : X → C(X) be ⊥-preserving and F ∈ F . Sup-
pose that T is compact or F is continuous from the right. Assume that the following
conditions hold:
(i) the map x 7→ d(x, Tx) is SO-lower semi-continuous;

(ii) there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) with lim infn→s+ τ(t) > σ for
all s ≥ 0, such that for any ⊥-comparable x, y in X with d(x, Tx) > 0 and y ∈ F xσ , we
have τ(d(x, y)) + F (d(y, Ty)) 6 F (ψ(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))),
where ψ ∈ ∆ and F xσ is the same as in Theorem 1.4. Then T has a fixed point in X.

Proof. Aiming for contradiction, assume that T has no fixed points. Then, for all
x ∈ X, d(x, Tx) > 0, and so d(x0, Tx0) > 0. Since T is compact or F is continuous
from the right and Tx0 ∈ C(X), recalling Remark 1.5, we observe that the set F x0

σ

is nonempty for any σ > 0. Therefore, there exists x1 ∈ F x0
σ . On the other hand,

since x0 is an orthogonal element, then x0 and x1 are ⊥-comparable. Applying (ii),
we have

τ(d(x0, x1)) + F (d(x1, Tx1))

≤ F (ψ(d(x0, x1), d(x0, Tx0), d(x1, Tx1), d(x0, Tx1), d(x1, Tx0))).

Similarly, for x1 ∈ X, since T is ⊥-preserving, there exists x2 ∈ F x1
σ , ⊥-comparable

with x1 such that

τ(d(x1, x2)) + F (d(x2, Tx2))

≤ F (ψ(d(x1, x2), d(x1, Tx2), d(x2, Tx2), d(x1, Tx2), d(x2, Tx1))).
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Proceed by induction to obtain an SO-sequence {xn}, where xn+1 ∈ F xn
σ and

τ(d(xn, xn+1)) + F (d(xn+1, Txn+1))

≤F (ψ(d(xn, xn+1), d(xn, Txn+1), d(xn+1, Txn+1), d(xn, Txn+1), d(xn+1, Txn))). (1)

We will show that {xn} is Cauchy SO-sequence. Since xn+2 ∈ F xn+1
σ , thus

F (d(xn+1, xn+2)) ≤ F (d(xn+1, Txn+1)) + σ. (2)

In view of (1), (2), (F1) and (∆1), we have

τ(d(xn, xn+1))− σ + F (d(xn+1, xn+2))

≤F (ψ(d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1), d(xn, Txn+1), d(xn+1, Txn)))

≤F (ψ(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)))

≤F (ψ(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+1)+d(xn+1, xn+2), 0)). (3)

Let an = d(xn, xn+1) for all n ∈ N; we have an > 0. Then, (3) implies that F (an+1) ≤
F (ψ(an, an, an+1, an + an+1, 0)). Bearing (F1) and (∆2) in mind, we have

an+1 ≤ an for all n ∈ N. (4)

That is, {an} is a decreasing sequence. Thus, there exists δ ≥ 0 such that lim
n→∞

an = δ.

Let δ > 0. Applying (4), (3) and (∆3), we obtain

F (an+1) ≤ F (ψ(an, an, an+1, an + an+1, 0)) + σ − τ(an)

≤ F (ψ(an, an, an, 2an, 0)) + σ − τ(an) ≤ F (an) + σ − τ(an). (5)

By (5), we can write

F (an+1) ≤ F (an) + σ − τ(an) ≤ F (an−1) + 2σ − τ(an)− τ(an−1)

≤ . . . ≤ F (a0) + nσ − τ(an)− τ(an−1)− . . .− τ(a0). (6)

Let τ(apn) = min{τ(a0), τ(a1), . . . , τ(an)} for all n ∈ N. Applying (6), we have

F (an+1) ≤ F (a0) + n(σ − τ(apn)). (7)

Here, we consider two cases for the sequence {τ(apn)} as follows:

Case 1. For each n ∈ N, there is m > n such that τ(apn) > τ(apm). Then we obtain
a subsequence {apnk

} of {apn} with τ(apnk
) > τ(apnk+1

) for all k. Since apnk
→ δ, this

implies that lim infk→∞ τ(apnk
) > σ. Therefore, F (ank

) ≤ F (a0)+nk(σ−τ(apnk
)) for

all k, and so lim infk→∞ F (ank
) = −∞. Recalling (F2), we observe limk→∞(apnk

) = 0,
which contradicts the fact limn→∞(apn) > 0.

Case 2. There is n0 ∈ N such that τ(apn0
) = τ(apm) for all m > n0. Therefore,

F (am) ≤ F (a0) + m(σ − τ(apn0
)) for all m > n0, and so lim infm→∞ F (am)=−∞.

In view of (F2), we conclude that limm→∞ am = 0, which contradicts the fact
limm→∞ am > 0. Thus, limn→∞ an = 0. Applying (F3), there exists k ∈ (0, 1)
such that limn→∞ aknF (an) = 0. Using (7), we obtain aknF (an)− aknF (a0) ≤ aknn(σ−
τ(apn) ≤ 0. Letting n→∞ in the above inequality, we deduce that limn→∞na

k
n = 0.

So, there exists n0 ∈ N such that nakn ≤ 1 for all n ≥ n0. Hence, for all n ≥ n0,
we have

an ≤
1

n1/k
. (8)
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Let m,n ∈ N be such that m > n ≥ n1. Applying triangular inequality and (8), we
can write

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1∑
i=n

d(xi, xi+1) 6
∞∑
i=n

d(xi, xi+1) 6
∞∑
i=n

1

i1/k
.

This proves that {xn} is a Cauchy SO-sequence. Since (X,⊥, d) is a SO-complete
metric space, there exists z ∈ X such that lim

n→∞
xn = z. On the other hand, since

xn+1 ∈ F xn
σ , we have

F (d(xn, xn+1)) ≤ F (d(xn, Txn)) + σ. (9)

Applying (1), (4), (F1), (∆1), (∆2) and (9), we deduce that

τ(d(xn, xn+1)) + F (d(xn+1, Txn+1))

≤ F (ψ(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+1) + d(xn+1, xn+2), 0))

≤ F (ψ(d(xn, xn+1), d(xn, xn+1)), d(xn, xn+1)), 2d(xn, xn+1), 0))

= F (d(xn, xn+1)) ≤ F (d(xn, Txn)) + σ.

So, we can write

F (d(xn+1, Txn+1)) ≤ F (d(xn, Txn)) + σ − τ(d(xn, xn+1)). (10)

Similarly to (6), we can conclude from (10) that

F (d(xn+1, Txn+1)) ≤ F (d(x0, Tx0)) + n(σ − τ(apn)). (11)

Now, (11) and (F2) imply that lim
n→∞

d(xn, Txn) = 0. Since x 7→ d(x, Tx) is SO-

lower semi-continuous, therefore 0 < d(z, Tz) ≤ lim inf
n→∞

d(xnTxn) = 0. This is a

contradiction. Hence, T has a fixed point.

In the following, by setting ψ(t1, t2, t3, t4, t5) = t1, we have a generalization of
Theorems 1.7 and 1.8 again.

Corollary 2.2. Let (X,⊥, d) be an SO-complete metric space. Let
(i) T : X → C(X) be ⊥-preserving and F ∈ F , or

(ii) T : X → K(X) be ⊥-preserving and F ∈ F∗.
If there exists τ > 0 such that for any ⊥-comparable x, y ∈ X with d(x, Tx) > 0
and y ∈ F xσ , we have τ + F (d(y, Ty)) 6 F (ψ(d(x, y)), then T has a fixed point in X
provided σ < τ and x 7→ d(x, Tx) is SO-lower semi-continuous.

We can also extend Theorems 1.1 and 1.2 as follows.

Corollary 2.3. Let (X,⊥, d) be an SO-complete metric space. Let T : X → K(X)
be ⊥-preserving. Assume that the following conditions hold:
(i) the map x 7→ d(x, Tx) is SO-lower semi-continuous;

(ii) there exist constants c, b ∈ (0, 1) with b < c such that for any ⊥-comparable
x, y ∈ X with y ∈ Ixb , we have d(y, Ty) ≤ cd(x, y).
Then T has a fixed point.
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Corollary 2.4. Let (X,⊥, d) be an SO-complete metric space with orthogonal ele-
ment x0. Suppose that T : X → K(X) is ⊥-preserving. Assume that the following
conditions hold:
(i) the map x→ d(x, Tx) is SO-lower semi-continuous;

(ii) there exist constant b ∈ (0, 1) and ϕ : [0,∞)→ [0, b) satisfying lim sup
t→s+

ϕ(t) < b for

s ≥ 0, and for any ⊥-comparable x, y ∈ X with y ∈ Ixb , we have d(y, Ty) ≤ cd(x, y).
Then T has a fixed point.

As a direct consequence of [12, Theorem 2.7], we obtain the following corollaries.

Corollary 2.5. Let (X,⊥, d) be an SO-complete metric space with orthogonal el-
ement x0. Suppose that T : X → P (X) is ⊥-preserving, F ∈ F∗. Suppose there
exists τ > 0 such that for any ⊥-comparable x, y ∈ X with d(x, Tx) > 0 and y ∈ F xσ
satisfying d(y, Ty) > 0, τ + F (d(y, Ty)) ≤ F (d(x, y)) holds. If d(x0, Tx0) > 0 and
for all convergent SO-sequence {xn} with xn+1 ∈ Txn, we have that T (limxn) is
closed, then T has a fixed point in X provided σ < τ and x −→ d(x, Tx) is SO-lower
semi-continuous.

Corollary 2.6. Let (X,⊥, d) be an SO-complete metric space with orthogonal el-
ement x0. Let T : X → P (X) be ⊥-preserving. Suppose there exists c ∈ (0, 1)
such that for any ⊥-comparable x, y ∈ X with d(x, Tx) > 0 and y ∈ Ix(b ∈ (0, 1)),
0 < d(y, Ty) ≤ cd(x, y) holds. If d(x0, Tx0) > 0 and for all convergent SO-sequence
{xn} with xn+1 ∈ Txn, we have that T (limxn) is closed, then T has a fixed point in
X provided c < b and x −→ d(x, Tx) is SO-lower semi-continuous.

3. Some examples

Now, the main result can be illustrated by the following examples.

Example 3.1. Let X = {xn = n(n+ 1)/2, 1 ≤ n ≤ 11} and d(x, y) = |x− y|. Define
a mapping T : X → C(X) as

T (x) =

{
{xn} x = xn, n ∈ {1, 2, 9, 10, 11}
{xn+1, xn+2} x = xn, 3 ≤ n ≤ 8.

Clearly, x 7→ d(x, Tx) is continuous. Set x ⊥ y ⇔ (x, y) ∈ X × X. Then T is

⊥-preserving. Taking F (x) = ln(x), τ(t) = ln
t+ 9

4
, σ = ln

9

4
and φ(t1, t2, t3, t4, t5) =

t4 + 12t5
2

, clearly, for all x ∈ X, with d(x, Tx) > 0, there exists y ∈ F x⊥σ such that

the condition (ii) of Theorem 2.1 is satisfied. Applying Theorem 2.1, T has a fixed
point in X.

It is simple to verify that Theorem 1.7 cannot be applied to our example. In fact, it
is just enough to show that the condition (ii) of Theorem 1.7 is not satisfied. Note that
if d(x, y) > 0, then x = xn for 3 ≤ n ≤ 8. In this case Txn = {xn+1, xn+2}. If we set
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x = x3, we have two cases for y. If y = x4 ∈ F x3
σ , we have 5 = d(y, Ty) > d(x, y) = 4,

and so the condition (ii) of Theorem 1.7 for each F ∈ F∗ is not satisfied. Otherwise,
let y = x5 ∈ F x3

σ . Since d(y, Ty) = 6, d(x, y) = 9 and d(x, Tx) = 4, for each F ∈ F∗
with F (d(x, y)) ≤ F (d(x, Tx)) + σ, we should have σ ≥ F (9) − F (4). Therefore,
since lim inf

t→s+
τ(t) > σ for all s ≥ 0, we have τ(d(x, y)) + F (d(y, Ty)) = τ(9) + F (6) ≥

F (9)−F (4) +F (6) ≥ F (9) = F (d(x, y)). Hence, the condition (ii) of Theorem 2.1 is
not satisfied and we cannot apply Theorem 1.7 for this example.

Example 3.2. Let X = [0, 2). Set x ⊥ y ⇔ x = 0. Then (X,⊥) is an SO-
set with orthogonal element x0 = 0. Clearly, X with the Euclidean metric is not
a complete metric space but it is an SO-complete metric space. Define a mapping
T : X → C(X) as

T (x) =



{
n− 1

2(n+ 1)
,

3n+ 1

2(n+ 1)
, 0

}
x =

n

n+ 1
, n ∈ N

{1

3
, 0} x = 1

x otherwise.

Clearly, T is ⊥-preserving. It is easy to compute that

d(x, Tx) =


1

2
x =

n

n+ 1
, n ∈ N

2

3
x = 1

0 otherwise.

Therefore x 7→ d(x, Tx) is not lower semi-continuous, because {xn} = { n

n+ 1
} is con-

vergent to 1 and we have
1

2
= lim inf

n→∞
d(

n

n+ 1
, T (

n

n+ 1
)) < d(1, T (1)) =

2

3
. Therefore

condition (i) of Theorem 1.7 is not satisfied, but we will show that condition (i) of The-
orem 2.1 is satisfied. Note that x 7→ d(x, Tx) is SO-lower semi-continuous, because
our only SO-sequence is zero and we have 0 = lim inf

n→∞
d(0, T (0)) ≥ d(0, T (0)) = 0.

Now, let F (x) = ln(x). If d(x, Tx) > 0, then

(
x =

n

n+ 1
, n ∈ N

)
or (x = 1).

If x =
n

n+ 1
, n ∈ N, then for y = 0 ∈ Tx, we have d(x, y) =

n

n+ 1
, d(x, Tx) =

1

2
,

d(y, Ty) = 0, and so ln(d(x, y))− ln(d(x, Tx))= ln(
n

n+ 1
)− ln(

1

2
)< ln(1)+ ln(2)= ln(2),

and −∞=
n

n+ 1
+ ln(3)+ ln(0) ≤ ln(

n

n+ 1
). Therefore y = 0 ∈ F xσ , and τ(d(x, y)) +

F (d(y, Ty)) ≤ F (d(x, y)) is satisfied for σ = ln(2) and τ(t) = t + ln(3). If x = 1,

then for y = 0 ∈ Tx, we have d(x, y) = 1, d(x, Tx) =
2

3
, d(y, Ty) = 0, and so

ln(d(x, y))− ln(d(x, Tx)) = ln(1)− ln(
2

3
)= ln(

3

2
), and −∞=1+ ln(

3

2
)−∞ ≤ ln(1)=0.

Hence, y = 0 ∈ F xσ , and τ(d(x, y)) + F (d(y, Ty)) ≤ F (d(x, y)) is satisfied by taking

σ= ln(
3

2
) and τ(t)=t+ ln(2). Then, T has a fixed point according to Theorem 2.1.
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