MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 72, 1 (2020), 30–42 March 2020

research paper оригинални научни рад

ON THE SPECTRA OF THE OPERATOR $B(\tilde{r},\tilde{s})$ MAPPING IN $(w_{\infty}(\lambda))_a$ AND $(w_0(\lambda))_a$ WHERE λ IS A NONDECREASING EXPONENTIALLY BOUNDED SEQUENCE

Bruno de Malafosse and Eberhard Malkowsky

Abstract. Given any sequence $a = (a_n)_{n\geq 1}$ of positive real numbers and any set E of complex sequences, we write E_a for the set of all sequences $x = (x_n)_{n\geq 1}$ such that $x/a = (x_n/a_n)_{n\geq 1} \in E$. We denote by $W_a(\lambda) = (w_\infty(\lambda))_a$ and $W_a^0(\lambda) = (w_0(\lambda))_a$ the sets of all sequences x such that $\sup_n \left(\lambda_n^{-1}\sum_{k=1}^n |x_k|/a_k\right) < \infty$ and $\lim_{n\to\infty} \left(\lambda_n^{-1}\sum_{k=1}^n |x_k|/a_k\right) = 0$, where λ is a nondecreasing exponentially bounded sequence. In this paper we recall some properties of the Banach algebras $(W_a(\lambda), W_a(\lambda))$, and $(W_a^0(\lambda), W_a^0(\lambda))$, where a is a positive sequence. We then consider the operator Δ_ρ , defined by $[\Delta_\rho x]_n = x_n - \rho_{n-1}x_{n-1}$ for all $n \geq 1$ with the convention $x_0, \rho_0 = 0$, and we give necessary and sufficient conditions for the operator $\Delta_\rho : E \to E$ to be bijective, for $E = w_0(\lambda)$, or $w_\infty(\lambda)$. Then we consider the generalized operator of the first difference $B(\tilde{r}, \tilde{s})$, where \tilde{r}, \tilde{s} are two convergent sequences, and defined by $[B(\tilde{r}, \tilde{s})x]_n = r_n x_n + s_{n-1}x_{n-1}$ for all $n \geq 1$ with the operator $B(\tilde{r}, \tilde{s})$ mapping in either of the sets $W_a(\lambda)$, or $W_a^0(\lambda)$. We then apply the previous results to explicitly calculate the spectrum of $B(\tilde{r}, \tilde{s})$ over each of the spaces E_a , where $E = w_0(\lambda)$, or $w_\infty(\lambda)$. Finally we give a characterization of the identity $(W_a(\lambda))_{B(r,s)} = W_b(\lambda)$.

1. Preliminary results

Let $A = (a_{nk})_{n,k\geq 1}$ be an infinite complex matrix and consider the complex sequence $x = (x_n)_{n\geq 1}$. We write $Ax = (A_n(x))_{n\geq 1}$ with $A_n(x) = \sum_{k=1}^{\infty} a_{nk}x_k$ whenever the series are convergent for all $n \geq 1$. Throughout this paper we use the convention that any term with a subscript less than 1 is equal to naught. Let ω denote the set of all complex sequences. We write φ , c_0 , c and ℓ_{∞} for the sets of all finite, null, convergent and bounded sequences respectively. For any given subsets E and F of ω , we say that the operator represented by the infinite matrix $A = (a_{nk})_{n,k>1}$ maps E into F and

²⁰¹⁰ Mathematics Subject Classification: 40C05, 46A45

 $Keywords\ and\ phrases:$ Sequence space; BK space; Banach algebra; bounded linear operator; spectrum of an operator.

denote this by $A \in (E, F)$, see [8], if the series $A_n(x) = \sum_{k=1}^{\infty} a_{nk}x_k$ are convergent for all $n \ge 1$ and for all $x \in E$, and $Ax \in F$ for all $x \in E$. If F is a subset of ω , we denote the so-called matrix domain of A in F by $F_A = \{x \in \omega : y = Ax \in F\}$. For any nonzero sequence a we write E_a for the set of all sequences $x = (x_n)_{n\ge 1}$ such that $x/a = (x_n/a_n)_{n\ge 1} \in E$. Let $E \subset \omega$ be a *Banach space*, with the norm $\|\cdot\|_E$. By B(E) we denote the set of all bounded linear operators, mapping E into itself, with the operator norm $\|L\|_{\mathcal{B}(E)}^* = \sup_{x\neq 0} (\|Lx\|_E / \|x\|_E)$ for all $L \in B(E)$. It is well known that B(E) is a Banach algebra with the operator norm $\|\cdot\|_{\mathcal{B}(E)}^*$.

A Banach space $E \subset \omega$ is a BK space if the projections $P_n : x \mapsto x_n$ from E into \mathbb{C} are continuous for all n. We denote by $e^{(k)}$ the sequence defined by $e^{(k)} = (0, \ldots, 0, 1, 0, \ldots)$, where 1 is in the k-th position and we write $e = (1, 1, \ldots)$. A BK space $E \supset \varphi$ is said to have AK if $x = \lim_{p \to \infty} \sum_{k=1}^{p} x_k e^{(k)}$ for every sequence $x = (x_n)_{n \geq 1} \in E$. It is well known that if E has AK then $\mathcal{B}(E) = (E, E)$. If E is a BK space with the norm $\|\cdot\|_E$, then $(E, E) \subset \mathcal{B}(E)$. Indeed by [19, Theorem 4.2.8 p. 57], since E is a BK space, the matrix map $A \in (E, E)$ is continuous and there is M > 0 such that $\|Ax\|_E \leq M \|x\|_E$ for all $x \in E$. By U and U^+ we denote the sets of all nonzero sequences and all positive sequences, respectively. For $a \in U^+$ we write $s_a = (\ell_{\infty})_a, s_a^0 = (c_0)_a, \text{ and } s_a^{(c)} = c_a$. Each of the sets s_a, s_a^0 , and $s_a^{(c)}$ is a BK space with the norm $\|x\|_{s_a} = \sup_n (|x_n|/a_n)$. Recall that for $a, b \in U^+$, we have $s_a = s_b$ if and only if there are k_1 and $k_2 > 0$ such that $k_1 \leq a_n/b_n \leq k_2$ for all n. We will use the next argument. Since $s_a \supset s_b$ implies $k_1 \leq a_n/b_n$ for all n, we deduce that if $a/b \in c$ and $s_a \supset s_b$, then $\lim_{n\to\infty} (a_n/b_n) > 0$.

This paper is organized as follows. In Section 2 we consider the operator Δ_{ρ} , defined by $[\Delta_{\rho}x]_n = x_n - \rho_{n-1}x_{n-1}$ for all $n \geq 1$, and characterize the map $\Delta_{\rho} : E \to E$, for $E = w_{\infty}(\lambda)$, or $w_0(\lambda)$. In Section 3 we apply these results to deal with the operator represented by a double band matrix $B(\tilde{r}, \tilde{s})$ on E_a , where E is either of the spaces $w_{\infty}(\lambda)$, or $w_0(\lambda)$. In Section 4 we explicitly calculate the spectrum of $B(\tilde{r}, \tilde{s})$ over the spaces E_a , where E is either of the spaces $w_{\infty}(\lambda)$, or $w_0(\lambda)$. Finally we characterize the identity $(W_a(\lambda))_{B(r,s)} = W_b(\lambda)$.

2. On the band matrix Δ_{ρ} considered as an operator in each of the spaces $w_{\infty}(\lambda)$, or $w_{0}(\lambda)$

In this section we give necessary and sufficient conditions on the sequence $\rho = (\rho_n)_{n \ge 1}$ for Δ_{ρ} to be bijective from E to itself, where E is either of the spaces $w_{\infty}(\lambda)$, or $w_0(\overline{\lambda})$.

For any given sequence $\rho = (\rho_n)_{n \ge 1} \in \omega$ we consider the operator Δ_{ρ} defined by $[\Delta_{\rho} x]_n = x_n - \rho_{n-1} x_{n-1}$ for all $n \ge 1$. This operator is represented by the infinite

matrix

$$\Delta_{\rho} = \begin{pmatrix} 1 & & & & \\ -\rho_1 & 1 & & 0 & \\ & \cdot & \cdot & & \\ & & -\rho_{n-1} & 1 & \\ 0 & & & \cdot & \cdot \\ & & & & \cdot & \cdot \end{pmatrix}.$$

Recall that a matrix $T = (t_{nk})_{nk \ge 1}$ is a triangle if $t_{nk} = 0$ for k > n and $t_{nn} \ne 0$ (n = 1, 2, ...).

2.1 The Banach algebras $(w_{\infty}(\lambda), w_{\infty}(\lambda))$ and $(w_{0}(\lambda), w_{0}(\lambda))$

Let $\lambda = (\lambda_n)_{n \ge 1} \in U^+$. We define by $C(\lambda)$ the triangle whose the nonzero entries are defined by $[C(\lambda)]_{nk} = 1/\lambda_n$ for $k \le n$ and for all n. It is well known that its inverse is the triangular band matrix $\Delta(\lambda)$ whose nonzero entries are given by $[\Delta(\lambda)]_{n,n-1} = -\lambda_{n-1}$ and $[\Delta(\lambda)]_{nn} = \lambda_n$, (see for instance [15]). For $\lambda = e$ we write $C(\lambda) = \Sigma$ and $\Delta(\lambda) = \Delta$, and Δ is called the *operator of the first difference*. For $\lambda = (\lambda_n)_{n\ge 1} \in U^+$ we consider the sets of *strongly bounded and summable sequences*, respectively, that is,

$$w_{\infty}(\lambda) = \left\{ x \in \omega : \|x\|_{w_{\infty}(\lambda)} = \sup_{n} \left(\frac{1}{\lambda_{n}} \sum_{k=1}^{n} |x_{k}| \right) < \infty \right\},$$
$$w_{0}(\lambda) = \left\{ x \in \omega : \lim_{n \to \infty} \frac{1}{\lambda_{n}} \sum_{k=1}^{n} |x_{k}| = 0 \right\}.$$

and

Notice that $x \in w_{\infty}(\lambda)$ means $C(\lambda) |x| \in \ell_{\infty}$, where $|x| = (|x_k|)_{k \ge 1}$, and $x \in w_0(\lambda)$ means $C(\lambda) |x| \in c_0$. These sets were studied by Malkowsky, with the concept of exponentially bounded sequences, see [16]. Recall that Maddox [7], defined and studied the sets $w_{\infty}(\lambda) = w_{\infty}$ and $w_0(\lambda) = w_0$ where $\lambda_n = n$ for all n.

Recall that a non-decreasing sequence $\lambda = (\lambda_n)_{n \ge 1} \in U^+$ of positive reals tending to infinity is called *exponentially bounded* if there is an integer $m \ge 2$ such that for all non-negative integers ν there is at least one term $\lambda_n \in I_m^{(\nu)} = [m^{\nu}, m^{\nu+1} - 1]$. It was shown (cf. [16, Lemma 1]) that a non-decreasing sequence $\lambda = (\lambda_n)_{n \ge 1}$ is *exponentially bounded* if and only if there are reals $s \le t$ such that for some subsequence $(\lambda_{n_i})_{i\ge 1}$ we have

$$0 < s \le \frac{\lambda_{n_i}}{\lambda_{n_{i+1}}} \le t < 1$$
 for all $i = 1, 2, \dots;$

such a sequence is called an *associated subsequence*. It can easily be shown that any sequence $\lambda = (n^{\xi})_{n\geq 1}$ with $\xi > 0$ is exponentially bounded. Indeed, for $n_i = 2^i$ we have $\lim_{n\to\infty} (2^i/2^{i+1})^{\xi} = 1/2^{\xi} \in [0,1[$. In [17] it was shown that if $\lambda = (\lambda_n)_{n\geq 1} \in U^+$ is *exponentially bounded* then the class $(w_{\infty}(\lambda), w_{\infty}(\lambda))$ is a *Banach algebra* with the norm $||A||_{(w_{\infty}(\lambda), w_{\infty}(\lambda))} = \sup_{x\neq 0} (||Ax||_{w_{\infty}(\lambda)} / ||x||_{w_{\infty}(\lambda)})$. When λ is an exponentially bounded sequence we obtain similar results on the Banach algebra

 $(w_0(\lambda), w_0(\lambda))$ with the norm $||A||_{(w_\infty(\lambda), w_\infty(\lambda))}$. In the following we will write $a_n^{\bullet} = a_{n-1}/a_n$ for all n, with $a_0 = 1$, and $a^{\bullet} = (a_n^{\bullet})_{n\geq 1}$ for $a \in U^+$. We also use the sets $\Gamma = \{a \in U^+ : \overline{\lim}_{n\to\infty} a_n^{\bullet} < 1\}$ and $\widehat{\Gamma} = \{a \in U^+ : \lim_{n\to\infty} a_n^{\bullet} < 1\}$. For any given sequence $a = (a_n)_{n\geq 1} \in U^+$, we write D_a for the diagonal matrix defined by $[D_a]_{nn} = a_n$ for all n. In the following we also use the notation $D_a E = E_a$. Here we consider the set $W_a(\lambda) = D_a w_\infty(\lambda)$, for $a, \lambda \in U^+$. We have

$$W_a(\lambda) = \left\{ x \in \omega : \|x\|_{W_a(\lambda)} = \sup_n \left(\frac{1}{\lambda_n} \sum_{k=1}^n \frac{|x_k|}{a_k} \right) < \infty \right\}.$$

It can easily be seen that $W_a(\lambda) = (w_{\infty}(\lambda))_a$ is a BK space with the norm the $\|\cdot\|_{W_a(\lambda)}$. Similarly we define $W_a^0(\lambda) = (w_0(\lambda))_a$. We write $W_{(r^n)_{n\geq 1}}(\lambda) = W_r(\lambda)$ for any r > 0. When $\lambda_n = n$ we put $W_a = W_a(\lambda)$ and $W_a^0 = W_a^0(\lambda)$ for $a \in U^+$, see [15]. We then have $W_a = \{x : \|x\|_{W_a} = \sup_n (n^{-1} \sum_{k=1}^n |x_k| / a_k) < \infty\}$. Now we recall a result, where we have $\Delta_{\rho} \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$, if $\rho, \lambda^{\bullet} \in \ell_{\infty}$.

LEMMA 2.1 ([14, Theorem 3.12, p. 210]). Let $\lambda \in U^+$ be a non-decreasing exponentially bounded squence, and let E be either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$. Assume $\overline{\lim_{n\to\infty}} |\rho_n| < 1/\overline{\lim_{n\to\infty}} \lambda_n^{\bullet}$. Then for any given $b \in E$ the equation $\Delta_{\rho} x = b$ has a unique solution in E, which is determined by $x_1 = b_1$ and $x_n = b_n + \sum_{k=1}^{n-1} (\prod_{j=k}^{n-1} \rho_j) b_k$ for all $n \ge 2$.

As an immediate consequence of the preceding result we obtain the next lemma.

LEMMA 2.2. Assume that $\lambda \in U^+$ is a non-decreasing exponentially bounded sequence, and assume ρ , $\lambda^{\bullet} \in c$. If $\lim_{n\to\infty} (|\rho_n| \lambda_n^{\bullet}) < 1$, then Δ_{ρ} is bijective from E to itself, where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$.

2.2 Necessary conditions for Δ_{ρ} to be bijective from E to E, where $E = w_{\infty}(\lambda)$, or $w_0(\lambda)$

We need the next lemmas.

LEMMA 2.3 ([12, Lemma 4]). Let $u \in U$, and assume $(u_n/u_{n-1})_{n\geq 2} \in c$. Then $u \in \ell_{\infty}$ implies $\lim_{n\to\infty} |u_n/u_{n-1}| \leq 1$.

LEMMA 2.4. Let $\lambda \in U^+$. Then we have: (i) Assume $1/\lambda \in \ell_{\infty}$. Then $A \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$ implies $Ae^{(1)} \in s_{\lambda}$.

(ii) Assume $1/\lambda \in c_0$. Then $A \in (w_0(\lambda), w_0(\lambda))$ implies $Ae^{(1)} \in s_{\lambda}^0$.

Proof. (i) The proof comes from the fact that $w_{\infty}(\lambda) \subset s_{\lambda}$. Indeed $x \in w_{\infty}(\lambda)$ implies that there is K > 0 such that $\lambda_n^{-1} |x_n| \leq \lambda_n^{-1} \sum_{k=1}^n |x_k| \leq K$ for all n, and $x \in s_{\lambda}$. Now we have $e^{(1)} \in w_{\infty}(\lambda)$, since $1/\lambda \in \ell_{\infty}$. We conclude $A \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$ implies $Ae^{(1)} \in w_{\infty}(\lambda)$ and $Ae^{(1)} \in s_{\lambda}$. (ii) It can easily be shown that $w_0(\lambda) \subset s_{\lambda}^0$. Now we have $e^{(1)} \in w_0(\lambda)$, since $1/\lambda \in c_0$. We conclude $A \in (w_0(\lambda), w_0(\lambda))$ implies $Ae^{(1)} \in w_0(\lambda)$ and $Ae^{(1)} \in s_{\lambda}^0$.

LEMMA 2.5. Let $\lambda \in U^+$ and assume $(\rho_{n-1}\lambda_n^{\bullet})_{n\geq 1} \in c$. (i) Let $1/\lambda \in \ell_{\infty}$. If Δ_{ρ} is bijective from $w_{\infty}(\lambda)$ to itself, then $\lim_{n \to \infty} (|\rho_{n-1}| \lambda_n^{\bullet}) \leq 1.$ (1)

(ii) Let $1/\lambda \in c_0$. If Δ_{ρ} is bijective from $w_0(\lambda)$ to itself, then (1) holds.

Proof. (i) Since Δ_{ρ} is bijective from $w_{\infty}(\lambda)$ to itself we have

$$\Delta_{\rho}^{-1} \in \left(w_{\infty}\left(\lambda\right), w_{\infty}\left(\lambda\right)\right).$$
⁽²⁾

Now we have $\left[\Delta_{\rho}^{-1}\right]_{nk} = \rho_k \dots \rho_{n-1}$ for $k \leq n-1$ and $\left[\Delta_{\rho}^{-1}\right]_{nn} = 1$ for all n, and by Lemma 2.4 the condition in (2) implies $\Delta_{\rho}^{-1}e^{(1)} \in s_{\lambda}$ and there is K > 0 such that

$$u_n = \frac{|\rho_1 \dots \rho_{n-1}|}{\lambda_n} \le K \text{ for all } n \ge 2.$$
(3)

Since $(\rho_{n-1}\lambda_n^{\bullet})_{n\geq 1} \in c$, we conclude by Lemma 2.3 that $\lim_{n\to\infty} (u_n/u_{n-1}) = \lim_{n\to\infty} |\rho_{n-1}| \lambda_n^{\bullet} \leq 1$, and (1) holds.

(ii) Since Δ_{ρ} is bijective from $w_0(\lambda)$ to itself we have $\Delta_{\rho}^{-1} \in (w_0(\lambda), w_0(\lambda))$, and by Lemma 2.4 we have $\Delta_{\rho}^{-1}e^{(1)} \in s_{\lambda}^0$. Then there is K > 0 such that (3) holds and we conclude using similar arguments to those in (i).

3. Some properties of the band matrix $B(\tilde{r},\tilde{s})$ considered as an operator on E_a , where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$

In all that follows we assume that $\lambda \in U^+$ is a non-decreasing exponentially bounded sequence that satisfies $\lambda^{\bullet} \in c$. Notice that any sequence of the form $(n^{\xi})_{n\geq 1}$ with $\xi > 0$ satisfies the previous hypotheses. Now we consider the sequence defined by $\lambda_1 = \lambda_2 = 1, \lambda_{3k} = 2k$, and $\lambda_{3k+1} = \lambda_{3k+2} = 2k + 1$, for all $k \geq 1$. This sequence is exponentially bounded since for $n_i = 3.2^i$, we have

$$\frac{\lambda_{n_i}}{\lambda_{n_{i+1}}} = \frac{2.2^i}{2.2^{i+1}} \rightarrow \frac{1}{2} \ (n \rightarrow \infty) \,. \label{eq:lambda_n_i}$$

It can easily be seen that $\lambda_n^{\bullet} \to 1 \ (n \to \infty)$. So this sequence also satisfies the previous conditions.

Now let $\tilde{r} = (r_n)_{n \ge 1}$ and $\tilde{s} = (s_n)_{n \ge 1}$ be two complex sequences, and denote by $B(\tilde{r}, \tilde{s})$ the triangle defined by

$$B\left(\tilde{r},\tilde{s}\right) = \begin{pmatrix} r_{1} & & & \\ s_{1} & r_{2} & & 0 & \\ & \cdot & \cdot & & \\ & s_{n-1} & r_{n} & & \\ 0 & & & \cdot & \cdot & \\ & & & & \cdot & \cdot & \end{pmatrix}$$

We consider $B(\tilde{r},\tilde{s})$ as an operator mapping E to itself, where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$. We assume $\tilde{r} \in U$, $\tilde{r}, \tilde{s} \in c$, $\lim_{n\to\infty} r_n = r \neq 0$ and

 $\lim_{n\to\infty} s_n = s$. We use the following notations. First we have $B(\tilde{r}, \tilde{s}) = D_{\tilde{r}}\Delta_{\rho}$, with $\rho_{n-1} = -s_{n-1}/r_n$, for $n \ge 2$, and $\lim_{n\to\infty} |\rho_n| = |s/r|$. Now consider the next inequalities

$$r| > |s| \lim_{n \to \infty} \lambda_n^{\bullet},\tag{4}$$

$$|r| \ge |s| \lim_{n \to \infty} \lambda_n^{\bullet}. \tag{5}$$

3.1 A sufficient condition for $B(\tilde{r},\tilde{s})$ to be bijective from E to itself, where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$

LEMMA 3.1. If the condition in (4) holds, then the operator $B(\tilde{r},\tilde{s})$ is bijective from E to itself, where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$.

Proof. We have $B(\tilde{r}, \tilde{s}) \in (E, E)$ in each of the cases $E = w_{\infty}(\lambda)$, or $w_0(\lambda)$. We prove the lemma for $E = w_{\infty}(\lambda)$. The proof for $w_0(\lambda)$ is similar. Let $x \in w_{\infty}(\lambda)$. Since \tilde{r} , $\tilde{s} \in c \subset \ell_{\infty}$, and λ is non-decreasing, there is C > 0 such that $\sup_k (|r_k|, |s_k|) = C$, and

$$\frac{1}{\lambda_n} \sum_{k=1}^n |[B\left(\widetilde{r}, \widetilde{s}\right) x]_k| \le C \left(\frac{1}{\lambda_n} \sum_{k=1}^n |x_k| + \frac{1}{\lambda_{n-1}} \lambda_n^{\bullet} \sum_{k=1}^{n-1} |x_k|\right) \le C' \|x\|_{w_{\infty}(\lambda)}$$

for some C' > 0, and so $B(\tilde{r}, \tilde{s}) x \in w_{\infty}(\lambda)$. Hence $B(\tilde{r}, \tilde{s}) \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$.

Now we show $[B(\tilde{r},\tilde{s})]^{-1} \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$. By the condition in (4) we have $\lim_{n\to\infty} |\rho_n| \lim_{n\to\infty} \lambda_n^{\bullet} = |\frac{s}{r}| \lim_{n\to\infty} \lambda_n^{\bullet} < 1$, and by Lemma 2.2 the operator represented by Δ_{ρ} is bijective from $w_{\infty}(\lambda)$ to itself. Since $r_n \neq 0$ for all n, and $\lim_{n\to\infty} r_n = r \neq 0$, there are $k_1, k_2 > 0$ such that $k_1 \leq |r_n| \leq k_2$ for all n, and it can easily be shown the operator $D_{\tilde{r}}$ is bijective from E to itself. Finally, $D_{\tilde{r}}\Delta_{\rho}$ is bijective from E to itself.

REMARK 3.2. Let *E* be either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$. If there is an integer *k* for which $r_k = 0$, then $B(\tilde{r}, \tilde{s}) \in (E, E)$ is not bijective. Indeed let k_0 be the smallest integer for which $r_{k_0} = 0$, and consider the equation

$$B\left(\tilde{r},\tilde{s}\right)x = e^{(k_0)}.\tag{6}$$

It can easily be seen that if x satisfies the previous equation, then $x_k = 0$ for $k = 1, 2, \ldots, k_0 - 1$, and $s_{k_0-1}x_{k_0-1} = 1$, which is a contradiction, and equation (6) has no solution in E. Since $e^{(k_0)} \in E$, we conclude that $B(\tilde{r}, \tilde{s})$ is not surjective.

3.2 A necessary condition for $B(\tilde{r}, \tilde{s})$ to be bijective

From the previous results we deduce the following.

LEMMA 3.3. If the operator represented by $B(\tilde{r},\tilde{s})$ is bijective from E to itself, where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$, then the condition in (5) holds.

Proof. First we consider the case $E = w_{\infty}(\lambda)$. Since $B(\tilde{r}, \tilde{s})$ is bijective from $w_{\infty}(\lambda)$ to itself, we have $(B(\tilde{r}, \tilde{s}))^{-1} = \Delta_{\rho}^{-1} D_{1/\tilde{r}} \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$. As we have seen above $D_{\tilde{r}}$ is bijective from $w_{\infty}(\lambda)$ to $w_{\infty}(\lambda)$, and $\Delta_{\rho}^{-1} = (B(\tilde{r}, \tilde{s}))^{-1} D_{\tilde{r}} \in$

 $(w_{\infty}(\lambda), w_{\infty}(\lambda))$, is also bijective from $w_{\infty}(\lambda)$ to $w_{\infty}(\lambda)$. Since $\lambda \in U^+$ is a non-decreasing sequence we have $1/\lambda \in \ell_{\infty}$. Then by Lemma 2.5 the condition $(\rho_{n-1}\lambda_n^{\bullet})_{n>1} \in c$ implies

$$\lim_{n \to \infty} \left(\left| \rho_{n-1} \right| \lambda_n^{\bullet} \right) = \left| \frac{s}{r} \right| \lim_{n \to \infty} \lambda_n^{\bullet} \le 1,$$
(7)

and the condition in (5) holds.

Now we consider the case $E = w_0(\lambda)$. By similar arguments as those above, the operator $B(\tilde{r},\tilde{s})$ is bijective and $\Delta_{\rho}^{-1} = (B(\tilde{r},\tilde{s}))^{-1} D_{\tilde{r}} \in (w_0(\lambda), w_0(\lambda))$ is also bijective from $w_0(\lambda)$ to $w_0(\lambda)$. Since $\lambda \in U^+$ tends to infinity we have $1/\lambda \in c_0 \subset \ell_{\infty}$, and $(\rho_{n-1}\lambda_n^{\bullet})_{n>1} \in c$, by Lemma 2.5 we conclude that the condition in (7) holds. \Box

4. Applications

In this section we apply the results obtained in the previous sections to explicitly calculate the spectrum of the operator $B(\tilde{r},\tilde{s})$ on E_a , where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$.

4.1 An application to the spectrum of the operator $B(\tilde{r},\tilde{s})$ on E_a , where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$

In this section we focus our study on the spectrum of the operator $B(\tilde{r},\tilde{s})$ on E_a , where E is either of the sets $w_{\infty}(\lambda)$, or $w_0(\lambda)$. Let E be a BK space and A be an operator mapping E to itself, (note that A is continuous since E is a BK space). We denote by $\sigma(A, E)$ the set of all complex numbers α such that $A - \alpha I$ considered as an operator from E to itself is not invertible. Then we write $\rho(A, E) = [\sigma(A, E)]^c$ for the resolvent set, which is the set of all complex numbers α such that $\alpha I - A$ considered as an operator from E to itself is invertible. Recall that the resolvent set of a linear operator on E is an open subset of the complex plane \mathbb{C} . We use the notation $\overline{D}(\alpha_0, r) = \{\alpha \in \mathbb{C} : |\alpha - \alpha_0| \leq r\}$ for $\alpha_0 \in \mathbb{C}$ and r > 0.

Recall that the spectrum and the fine spectrum of the linear operators defined by infinite matrices over certain sequence spaces have been studied by many authors. We only give a short survey of those studies. In [6,13] are given some results on the spectral theory of unbounded operators, that are used in the theory of the sum of operators (cf. [4]). Recently the fine spectra of the operator of the first difference over the sequence spaces ℓ_p and bv_p , were studied in [1], where bv_p is the space of all sequences of p-bounded variation, with $1 \leq p < \infty$. In [3] there is a study on the fine spectrum of the generalized difference operator B(r, s) on each of the sets ℓ_p and bv_p . The fine spectrum of the operator represented by the triple band matrix B(r, s, t)over the spaces ℓ_p and bv_p , (1 was studied in [5]. In [18] Srivastava and $Kumar dealt with the fine spectrum of the generalized difference operator <math>\Delta_v$ over ℓ_1 , where Δ_v is the triangle whose the nonzero entries are defined by $(\Delta_v)_{nn} = v_n$ and $(\Delta_v)_{n+1,n} = -v_n$. Recently Akhmedov and El-Sabrawy [2] determined the spectrum of the generalized difference operator $\Delta_{a,b}$ defined as a double band matrix mapping

in c. In [12] there is a study on the spectrum of Δ on the space W_a for $a^{\bullet} \in \ell_{\infty}$ and an application to matrix transformations mapping in $(W_a)_{(\Delta - \alpha I)^h}$ for $h \in \mathbb{C}$. In [11] there is a study of the spectrum of the operator $B(\tilde{r}, \tilde{s})$ on the sets E_a , where E is any of the symbols $s, s^0, s^{(c)}, \ell_p, W^0$, or W, for $1 \leq p < \infty$ and $a^{\bullet} \in c$. We also obtain the spectrum of B(r, s) over the space $(bv_p)_a = ((\ell_p)_{\Delta})_a$ of all sequences of a, p-bounded variation of order 1 (cf. [10]).

We state the main result where we write $\mathcal{R} = \{r_k : k \ge 1\}$. We still assume $\lambda \in U^+$ is a non-decreasing exponentially bounded sequence that satisfies $\lambda^{\bullet} \in c$.

THEOREM 4.1. We have

$$\sigma\left(B\left(\widetilde{r},\widetilde{s}\right),w_{\infty}\left(\lambda\right)\right)=\sigma\left(B\left(\widetilde{r},\widetilde{s}\right),w_{0}\left(\lambda\right)\right)=\overline{D}\left(r,\left|s\right|\lim_{n\to\infty}\lambda_{n}^{\bullet}\right)\cup\mathcal{R}$$

Proof. First we consider the case $E = w_{\infty}(\lambda)$. In Lemma 3.1 and Lemma 3.3, we replace \tilde{r} by the sequence $(r_k - \alpha)_{k \ge 1}$ with $\alpha \ne r_k$ for all k. We have that $|r - \alpha| > |s| \lim_{n \to \infty} \lambda_n^{\bullet}$ implies $\alpha \in \rho(B(\tilde{r}, \tilde{s}), w_{\infty}(\lambda))$ and $\alpha \in \rho(B(\tilde{r}, \tilde{s}), w_{\infty}(\lambda))$ implies $|r - \alpha| \ge |s| \lim_{n \to \infty} \lambda_n^{\bullet}$. Since we have $\sigma(B(\tilde{r}, \tilde{s}), w_{\infty}(\lambda)) = [\rho(B(\tilde{r}, \tilde{s}), w_{\infty}(\lambda))]^c$ and using Remark 3.2 we have $r_k \in \sigma(B(\tilde{r}, \tilde{s}), w_{\infty}(\lambda))$ for all k, we conclude

$$D\left(r, |s| \lim_{n \to \infty} \lambda_n^{\bullet}\right) \cup \mathcal{R} \subset \sigma\left(B\left(\widetilde{r}, \widetilde{s}\right), w_{\infty}\left(\lambda\right)\right) \subset \overline{D}\left(r, |s| \lim_{n \to \infty} \lambda_n^{\bullet}\right) \cup \mathcal{R}.$$

Now since $\sigma(B(\tilde{r},\tilde{s}), w_{\infty}(\lambda))$ is a closed subset of \mathbb{C} , it is equal to the smallest closed set containing $\overline{D}(r, |s| \lim_{n \to \infty} \lambda_n^{\bullet}) \cup \mathcal{R}$, which itself is closed. The case $E = w_0(\lambda)$ can be shown using similar arguments. This completes the proof. \Box

In this part we use the next elementary lemma.

LEMMA 4.2. Let $a, b \in U^+$, and $E, F \subset \omega$. Then $A \in (E_a, F_b)$ if and only if $D_{1/b}AD_a \in (E, F)$.

We immediately deduce the following.

THEOREM 4.3. Let $a \in U^+$ and assume $a^{\bullet} \in c$. We have $\sigma \left(B\left(\widetilde{r}, \widetilde{s}\right), W_a\left(\lambda\right) \right) = \sigma \left(B\left(\widetilde{r}, \widetilde{s}\right), W_a^0\left(\lambda\right) \right) = \overline{D}\left(r, |s| \lim_{n \to \infty} \left(a_n^{\bullet} \lambda_n^{\bullet} \right) \right) \cup \mathcal{R}.$ (8)

Proof. First we consider the case of the spectrum of $B(\tilde{r},\tilde{s})$ over $W_a(\lambda)$. We have $\alpha \in \rho(B(\tilde{r},\tilde{s}), W_a(\lambda))$ if and only if $\alpha I - B(\tilde{r},\tilde{s}) \in (W_a(\lambda), W_a(\lambda))$, is bijective. But we have $D_{1/a}(\alpha I - B(\tilde{r},\tilde{s})) D_a = \alpha I - D_{1/a}B(\tilde{r},\tilde{s}) D_a$, and so $\alpha \in \rho(B(\tilde{r},\tilde{s}), W_a(\lambda))$ if and only if $\alpha \in \rho(D_{1/a}B(\tilde{r},\tilde{s}) D_a, w_{\infty}(\lambda))$. We have $D_{1/a}B(\tilde{r},\tilde{s}) D_a = B(\tilde{r},\tilde{s'})$, with $s'_{n-1} = s_{n-1}a^{\bullet}_n$ for all $n \geq 2$. Then we have $\lim_{n\to\infty} s'_{n-1} = s\lim_{n\to\infty} a^{\bullet}_n$ and we obtain (8) by Theorem 4.1 with $B(\tilde{r},\tilde{s})$ replaced by $B(\tilde{r},\tilde{s'})$.

The case of the spectrum of $B(\tilde{r},\tilde{s})$ over $W_a^0(\lambda)$ can be shown similarly. This completes the proof.

REMARK 4.4. Notice that if $\lambda \in \Gamma$, then $W_a(\lambda) = s_{a\lambda}$. Indeed, the condition $x \in W_a(\lambda)$, means $C(\lambda) D_{1/a} |x| \in \ell_{\infty}$, and is equivalent to $|x| \in D_a \Delta(\lambda) \ell_{\infty}$. But by [9, Proposition 2,p. 159], the condition $\lambda \in \Gamma$ implies $\Delta(\lambda) \ell_{\infty} = s_{\lambda}$, and $W_a(\lambda) = s_{a\lambda}$. We conclude $\sigma(B(\tilde{r},\tilde{s}), W_a(\lambda)) = \sigma(B(\tilde{r},\tilde{s}), s_{a\lambda}) = \overline{D}(r, |s| \lim_{n \to \infty} (a_n^{\bullet} \lambda_n^{\bullet})) \cup \mathcal{R}$.

COROLLARY 4.5. Let $a \in U^+$ and assume ρ and $a^{\bullet} \in c$. Then we have

$$\sigma\left(\Delta_{\rho}, W_{a}\left(\lambda\right)\right) = \sigma\left(\Delta_{\rho}, W_{a}^{0}\left(\lambda\right)\right) = \overline{D}\left(1, \lim_{n \to \infty} \left(\left|\rho_{n}\right| a_{n}^{\bullet} \lambda_{n}^{\bullet}\right)\right)$$

REMARK 4.6. Under the conditions of Theorem 4.3 we have

 $\sigma\left(B\left(\widetilde{r},\widetilde{s}\right),W_{a}\left(\lambda\right)\right)=\overline{D}\left(r,\left|s\right|\lim_{n\to\infty}\left(a_{n}^{\bullet}\lambda_{n}^{\bullet}\right)\right)\cup\left\{r_{k}:\left|r-r_{k}\right|>\left|s\right|\lim_{n\to\infty}\left(a_{n}^{\bullet}\lambda_{n}^{\bullet}\right)\right\}.$

REMARK 4.7. Under the conditions of Theorem 4.3 we have $(W_a(\lambda))_{B(\tilde{r},\tilde{s})} = W_a(\lambda)$ if and only if $0 \in \rho(B(\tilde{r},\tilde{s}), W_a(\lambda))$, that is, $|s| \lim_{n \to \infty} (a_n^{\bullet} \lambda_n^{\bullet}) < |r|$.

If $r_n = r$ and $s_n = s$ for all n, with $r, s \neq 0$, then we write B(r, s) for $B(\tilde{r}, \tilde{s})$. The matrix $\Delta = B(1, -1)$ is called the operator of the first difference.

COROLLARY 4.8. Let
$$a \in U^+$$
 and assume $a^{\bullet} \in c$. Then we have:
(i) $\sigma(B(r,s), W_a(\lambda)) = \sigma(B(r,s), W_a^0(\lambda)) = \overline{D}(r, |s| \lim_{n \to \infty} (a_n^{\bullet} \lambda_n^{\bullet}))$
(ii) $\sigma(B(r,s), w_{\infty}(\lambda)) = \sigma(B(r,s), w_0(\lambda)) = \overline{D}(r, |s| \lim_{n \to \infty} \lambda_n^{\bullet})$.
(iii) $\sigma(\Delta, W_a(\lambda)) = \sigma(\Delta, W_a^0(\lambda)) = \overline{D}(1, \lim_{n \to \infty} (a_n^{\bullet} \lambda_n^{\bullet}))$.

$$(iv) \ \sigma \left(\Delta, w_{\infty} \left(\lambda\right)\right) = \sigma \left(\Delta, w_{0} \left(\lambda\right)\right) = \overline{D}\left(1, \lim_{n \to \infty} \lambda_{n}^{\bullet}\right).$$

Finally when $\lambda_n = n$ for all n, we obtain the next proposition which is a direct consequence of [12, Theorem 6].

PROPOSITION 4.9. Let $a \in U^+$ and assume $a^{\bullet} \in \ell_{\infty}$. Then we have $\sigma(\Delta, W_a) = \sigma(\Delta, W_a^0) = \overline{D}(1, \overline{\lim}_{n \to \infty} a_n^{\bullet})$.

This proposition is an extension of Theorem 4.3 in a certain sense. Indeed, if we define the sequence $a \in U^+$ by $a_{2n} = 1$ and $a_{2n+1} = 2$ for all n, then we trivially have $a^{\bullet} \in \ell_{\infty} \setminus c$, and $\sigma(\Delta, W_a) = \sigma(\Delta, W_a^0) = \overline{D}(1, \overline{\lim}_{n \to \infty} a_n^{\bullet}) = \overline{D}(1, 2)$. In this way we obtain the next corollaries.

COROLLARY 4.10. Let $a \in U^+$ and assume $a^{\bullet} \in c$. Then we have: (i) $\sigma(B(r,s), W_a) = \sigma(B(r,s), W_a^0) = \overline{D}(r, |s| \lim_{n \to \infty} a_n^{\bullet}).$

- (*ii*) $\sigma(B(r,s), w_{\infty}) = \sigma(B(r,s), w_0) = \overline{D}(r, |s|).$
- (*iii*) $\sigma(\Delta, W_a) = \sigma(\Delta, W_a^0) = \overline{D}(1, \lim_{n \to \infty} a_n^{\bullet}).$

(iv)
$$\sigma(\Delta, w_{\infty}) = \sigma(\Delta, w_0) = \overline{D}(1, 1).$$

COROLLARY 4.11. Let R > 0. Then we have: (i) $\sigma(B(r,s), W_R) = \sigma(B(r,s), W_R^0) = \overline{D}(r, |s|/R)$. (ii) $\sigma(\Delta, W_R) = \sigma(\Delta, W_R^0) = \overline{D}(1, 1/R)$.

4.2 Applications to equations of the form $(W_a(\lambda))_{B(r,s)} = W_b(\lambda)$

4.2.1 On the identity $(W_a(\lambda))_{B(r,s)} = W_b(\lambda)$.

In this section, assuming that $r, s \neq 0$, and $a, b \in U^+$, we characterize the next statement. The condition that $\sup_n \left(\lambda_n^{-1} \sum_{k=1}^n |x_k| / b_k\right) < \infty$ holds if and only if $\sup_n \left(\lambda_n^{-1} \sum_{k=1}^n |x_k + sx_{k-1}| / a_k\right) < \infty$ for all x can be written in the form

$$(W_a(\lambda))_{B(r,s)} = W_b(\lambda).$$
(9)

To simplify we focus on identity (9), but we obtain similar results for the identity $(W_a^0(\lambda))_{B(r,s)} = W_b^0(\lambda)$. First we need the next lemma.

LEMMA 4.12. Let $a, b \in U^+$. Then $W_a(\lambda) = W_b(\lambda)$ if and only if $s_a = s_b$.

Proof. We show that $W_a(\lambda) \subset W_b(\lambda)$ if and only if $s_a \subset s_b$. Necessity. Let $x \in W_a(\lambda)$. Then $y = C(\lambda) D_{1/a} |x| \in \ell_{\infty}$ and $|x| = D_a \Delta(\lambda) y$. So the condition $x \in W_b(\lambda)$ means $C(\lambda) D_{1/b} |x| = C(\lambda) D_{1/b} D_a \Delta(\lambda) y \in \ell_{\infty}$ for all $y \in \ell_{\infty}$. So the inclusion $W_a(\lambda) \subset W_b(\lambda)$ is equivalent to $C(\lambda) D_{a/b} \Delta(\lambda) \in (\ell_{\infty}, \ell_{\infty})$ and to

$$\sup_{n} \left(\frac{1}{\lambda_n} \sum_{k=1}^{n-1} \left| \frac{a_k}{b_k} - \frac{a_{k+1}}{b_{k+1}} \right| \lambda_k + \frac{a_n}{b_n} \right) < \infty,$$

see [13, Lemma 3.2, p. 596]. This implies $\sup_n (a_n/b_n) < \infty$ and $s_a \subset s_b$. In the same way we obtain that $W_b(\lambda) \subset W_a(\lambda)$ implies $s_b \subset s_a$. Conversely, we assume $s_a \subset s_b$. Let $x \in W_a(\lambda)$. Since $a/b \in s_1$ there is K > 0 such that

$$\frac{1}{\lambda_n} \sum_{k=1}^n \frac{|x_k|}{b_k} \le \left(\sup_k \frac{a_k}{b_k} \right) \left(\frac{1}{\lambda_n} \sum_{k=1}^n \frac{|x_k|}{a_k} \right) \le K \text{ for all } n$$

So we have shown $x \in W_b(\lambda)$ and $W_a(\lambda) \subset W_b(\lambda)$. We conclude $s_a \subset s_b$ if an only if $W_a(\lambda) \subset W_b(\lambda)$. Similarly we obtain $W_a(\lambda) \supset W_b(\lambda)$ if and only if $s_a \supset s_b$. This completes the proof.

PROPOSITION 4.13. Let $a, b \in U^+$ and $r, s \neq 0$. Assume b/a and $a^{\bullet} \in c$. Then the identity in (9) holds if and only if

(i) $\lim_{n \to \infty} (b_n/a_n) > 0$ and (ii) $\lim_{n \to \infty} (a_n^{\bullet} \lambda_n^{\bullet}) < |r/s|$.

Proof. First we show the necessity of the conditions (i) and (ii). The identity in (9) means that B(r, s) is bijective from $W_b(\lambda)$ to $W_a(\lambda)$. Then the operator $D_{1/a}B(r, s) D_b \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$ is bijective. But we have $D_{1/a}B(r, s) D_b = B\left(\tilde{r'}, \tilde{s'}\right)$, where $r'_n = rb_n/a_n$, and $s'_n = sb_n/a_{n+1}$ for all n, and since each of the sequences $(r'_n)_{n\geq 1}$ and $(s'_n)_{n\geq 1}$, where $s'_n = s(b_n/a_n) a^{\bullet}_{n+1}$, converges, we may apply Theorem 4.3. So we have $0 \notin \sigma (D_{1/a}B(r, s) D_b, w_{\infty}(\lambda))$ implies

$$|r|\lim_{n\to\infty}\frac{b_n}{a_n} > |s|\lim_{n\to\infty}\frac{b_n}{a_{n+1}}\lim_{n\to\infty}\lambda_n^{\bullet} = |s|\lim_{n\to\infty}\left(\frac{b_n}{a_n}a_{n+1}^{\bullet}\right)\lim_{n\to\infty}\lambda_n^{\bullet}.$$

But the conditions b/a and $a^{\bullet} \in c$ imply

$$|r|\lim_{n\to\infty}\frac{b_n}{a_n} > |s|\lim_{n\to\infty}\frac{b_n}{a_n}\lim_{n\to\infty}a_n^{\bullet}\lim_{n\to\infty}\lambda_n^{\bullet}, \text{ and } |r|\lim_{n\to\infty}\frac{b_n}{a_n}\left(1-\left|\frac{s}{r}\right|\lim_{n\to\infty}\left(a_n^{\bullet}\lambda_n^{\bullet}\right)\right) > 0.$$

Since $|r| \lim_{n \to \infty} (b_n/a_n) > 0$, we have $\lim_{n \to \infty} (a_n^{\bullet} \lambda_n^{\bullet}) < \left|\frac{r}{s}\right|$ and $\lim_{n \to \infty} \frac{b_n}{a_n} = L > 0$, and (i) and (ii) hold.

Conversely assume that (i) and (ii) hold. Then (ii) implies $0 \in \rho(B(r, s), W_a(\lambda))$, by Corollary 4.5 and B(r, s) is bijective from $W_a(\lambda)$ to itself, so we obtain $(W_a(\lambda))_{B(r,s)} = W_a(\lambda)$. Then (i) implies $s_a = s_b$ and by Lemma 4.12 we conclude $W_a(\lambda) = W_b(\lambda)$. This completes the proof.

EXAMPLE 4.14. For instance the equation $(W_2(\lambda))_{B(r,s)} = W_{(n)_{n\geq 1}}(\lambda)$ has no solution, since $\lim_{n\to\infty} n/2^n = 0$.

EXAMPLE 4.15. The equation $(W_{R_1}(\lambda))_{B(r,s)} = W_{R_2}(\lambda)$ for $0 < R_2 \leq R_1$ is equivalent to $R_1 = R_2$ and $\lim_{n\to\infty} \lambda_n^{\bullet} < R_1 |r/s|$. This result comes from Proposition 4.13 where we have $b/a = ((R_2/R_1)^n)_{n\geq 1} \in c$ and $a^{\bullet} \in c$.

As a direct consequence of the preceding we obtain the next corollary.

COROLLARY 4.16. Let $a, b \in U^+$ and assume b/a and $a^{\bullet} \in c$. Then $(W_a(\lambda))_{\Delta} = W_b(\lambda)$ (10)

if and only if $\lim_{n\to\infty} a_n/b_n > 0$ and $a\lambda \in \widehat{\Gamma}$. Especially, if $\lambda_n = n$ for all n, then the identity in (10) holds if and only if $\lim_{n\to\infty} (a_n/b_n) > 0$ and $a \in \widehat{\Gamma}$.

REMARK 4.17. If b/a, $a^{\bullet} \in c$, then the identity $(W_a)_{\Delta} = W_b$ implies $a \notin c$. Indeed, if $\lim_{n \to \infty} a_n > 0$, then we have $\lim_{n \to \infty} a_n^{\bullet} = 1$ and $a \notin \widehat{\Gamma}$. If $\lim_{n \to \infty} a_n = 0$, then we have $a \notin \widehat{\Gamma}$, since the condition $a \in \widehat{\Gamma}$, implies $\sum_{n=1}^{\infty} 1/a_n < \infty$ and $a_n \to \infty$ $(n \to \infty)$. In this way it can easily be seen that each of the equations $(w_{\infty})_{\Delta} = W_{(1/n)_{n \geq 1}}$, and $(w_{\infty})_{\Delta} = W_r$ for 0 < r < 1, has no solution.

For $a = b \in U^+$, we obtain the next corollary which is a direct consequence of Proposition 4.13.

COROLLARY 4.18. Let $a \in U^+$ and assume $a^{\bullet} \in c$ and $r, s \neq 0$. Then we have: (i) $(W_a(\lambda))_{B(r,s)} = W_a(\lambda)$ if and only if $\lim_{n\to\infty} (a_n^{\bullet}\lambda_n^{\bullet}) < |r/s|$.

- (*ii*) $(W_a(\lambda))_{B(r,s)} = W_a$ if and only if $\lim_{n \to \infty} a_n^{\bullet} < |r/s|$.
- (*iii*) $(w_{\infty}(\lambda))_{B(r,s)} = w_{\infty}(\lambda)$ if and only if $\lim_{n \to \infty} \lambda_n^{\bullet} < |r/s|$.
- (iv) $(W_a(\lambda))_{\Lambda} = W_a(\lambda)$ if and only if $a\lambda \in \widehat{\Gamma}$.
- (v) $(w_{\infty}(\lambda))_{\Lambda} = w_{\infty}(\lambda)$ if and only if $\lambda \in \widehat{\Gamma}$.
- (vi) $(W_a)_{\Lambda} = W_a$ if and only if $a \in \widehat{\Gamma}$.

4.2.2 Some other properties of the identity $(W_a)_{\Lambda} = W_b$

In the next proposition we give a result in which we do not assume b/a, $a^{\bullet} \in c$.

PROPOSITION 4.19. Let $a, b \in U^+$. If the equation $(W_a)_{\Delta} = W_b$ holds, then we have

$$\sup_{n} \left(\frac{b_{n}}{na_{n}}\right) < \infty \tag{11}$$
$$\sup_{n} \left(\frac{1}{n}\sum_{k=1}^{n}a_{k}\right) < \infty. \tag{12}$$

and

Proof. The c

are given by

Proof. The condition
$$W_b \subset (W_a)_{\Delta}$$
 implies $\Delta \in (W_b, W_a)$, hence $D_{1/a}\Delta D_b \in (w_{\infty}, w_{\infty})$.
As we have seen in the proof of Lemma 2.4 we have $(w_{\infty}, w_{\infty}) \subset \left(\ell_{\infty}, (\ell_{\infty})_{(n)_{n\geq 1}}\right)$, so $D_{(1/na_n)_{n\geq 1}}\Delta D_b \in (\ell_{\infty}, \ell_{\infty})$. Then the nonzero entries of the matrix $D_{(1/ka_k)_{k\geq 1}}\Delta D_b$ are given by $\left[D_{(1/ka_k)_{k\geq 1}}\Delta D_b\right]_{n,n-1} = -b_{n-1}/na_n$, for all $n \geq 2$, and $\left[D_{(1/ka_k)_{k\geq 1}}\Delta D_b\right]_{nn}$

 $= b_n/na_n$ for all $n \ge 1$. We conclude $\sup_n \left\{ \frac{1}{na_n} \left(b_{n-1} + b_n \right) \right\} < \infty$ and the condition in (11) holds. Now the condition $(W_a)_{\Delta} \subset W_b$ implies $D_{1/b} \Sigma D_a \in (w_{\infty}, w_{\infty})$ and as we have just seen $D_{(1/nb_n)_{n\geq 1}} \Sigma D_a \in (\ell_{\infty}, \ell_{\infty})$. Then (12) holds since the nonzero entries of the triangle $D_{(1/mb_m)_{m\geq 1}}\Sigma D_a$ are given by $\left[D_{(1/mb_m)_{m\geq 1}}\Sigma D_a\right]_{nk} = a_k/nb_n$, for all $k \leq n$ and for all n.

EXAMPLE 4.20. For $R_1, R_2 > 0$ we consider the identity

$$(W_{R_1})_{\Delta} = W_{R_2}.$$
 (13)

The identity in (13) holds if and only if $R_1 = R_2 > 1$. Indeed, by Proposition 4.19 (i) the identity in (13) implies $\sup_n \{n^{-1} (R_2/R_1)^n\} < \infty$ and $R_2 \leq R_1$. Then we may apply Proposition 4.13 where $b/a = ((R_2/R_1)^n)_{n\geq 1} \in c$ and $a^{\bullet} \in c$, and we conclude $R_1 = R_2 > 1$. Conversely if $R_1 = R_2 > 1$ we deduce $(W_{R_1})_{\Delta} = W_{R_1} = W_{R_2}$.

EXAMPLE 4.21. As a direct consequence of Proposition 4.19 it can easily be seen that here is no R > 0 for which $\left(W_{(n)_{n \ge 1}}\right)_{\Lambda} = W_R$.

ACKNOWLEDGEMENT. Research of the second author supported by the research projects #174025 of the Serbian Ministry of Science, Technology and Environment, and # 114F104 of Tübitak.

References

- [1] A. M. Akhmedov, F. Başar, On the fine spectrum of the operator Δ over the sequence space bv_p (1 $\leq p < \infty$), Acta Math. Sin. Eng. Ser., **23(10)** (2007), 1757–1768
- [2] A. M. Akhmedov, S. R. El-Shabrawy, On the fine spectrum of the operator $\Delta_{a,b}$ over the sequence space c, Comp. Math. Appl., 61(10) (2011), 2994–3002.
- [3] H. Bilgiç, H. Furkan, On the fine spectrum of the generalized difference operator B(r,s) over the sequence spaces ℓ_p and bv_p (1 , Nonlinear Anal.,**68(3)**(2008), 499–506.
- [4] G. Da Prato, P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. IX Ser., 54 (1975), 305-387.

(12)

- [5] H. Furkan, H. Bilgiç, F. Başar, On the fine spectrum of the operator B(r, s, t) over the sequence spaces ℓ_p and bv_p , (1 , Comp. Math. Appl.,**60(7)**(2010), 2141–2152.
- [6] R. Labbas, B. de Malafosse, An application of the sum of linear operators in infinite matrix theory, Comm. Fac. Sci. Univ. Ankara, 46 (1997), 191–210.
- [7] I. J. Maddox, On Kuttner's theorem, J. London Math. Soc., 43 (1968), 285–290.
- [8] I. J. Maddox, Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
- [9] B. de Malafosse, Sets of sequences that are strongly τ- bounded and matrix transformations between these sets, Demonstratio Math 36(1) (2003), 155–171.
- [10] B. de Malafosse, On the set of α, p-bounded variation of order h, Tamkang J. Math., 38(2) (2007), 121–137.
- [11] B. de Malafosse, On some Banach algebras and applications to the spectra of the operator B(r̃, s̃) mapping in new sequence spaces, Pure Appl. Math. Letters, 2 (2014), 7–18.
- [12] B. de Malafosse, On the spectra of the operator of the first difference on the spaces W_{τ} and W_{τ}^0 and application to matrix transformations, Gen. Math. Notes, **22(2)** (2014), 7–21.
- [13] B. de Malafosse, E. Malkowsky, Matrix transformations between sets of the form W_{ξ} and operator generators of analytic semigroups, Jordan J. Math. Stat., 1(1) (2008), 51–67.
- [14] B. de Malafosse, E. Malkowsky, On the Banach algebra (w_∞ (Λ), w_∞ (Λ)) and applications to the solvability of matrix equations in w_∞ (Λ), Pub. Math. Debr. Math. J., 84(1-2) (2014), 197–217.
- [15] B. de Malafosse, V. Rakočević, Calculations in new sequence spaces and application to statistical convergence, Cubo A, 12(3) (2010), 117–132.
- [16] E. Malkowsky, The continuous duals of the spaces c₀ (Λ) and c (Λ) for exponentially bounded sequences Λ, Acta Sci. Math (Szeged), 61 (1995), 241–250.
- [17] E. Malkowsky, Banach algebras of matrix transformations between spaces of strongly bounded and sommable sequences, Adv. Dyn. Syst. Appl., 6(1) (2011), 241–250.
- [18] P. D. Srivastava, S. Kumar, Fine spectrum of the generalized difference operator Δ_v on sequence space l_1 , Thai J. Math., 8(2) (2010), 221–233.
- [19] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

(received 01.08.2018; in revised form 25.11.2018; available online 26.07.2019)

BP 4006 I.U.T Le Havre 76610 Le Havre, France

E-mail: bdemalaf@wanadoo.fr

Državni Univerzitet u Novom Pazaru, Vuka Karadžića b
b, 36300 Novi Pazar, Serbia $\ensuremath{\textit{E-mail: Eberhard.Malkowsky@math.uni-giessen.de}}$