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ON THE SPECTRA OF THE OPERATOR B (7,5) MAPPING IN
(Woo (A)), AND (wp (A)), WHERE X IS A NONDECREASING
EXPONENTIALLY BOUNDED SEQUENCE

Bruno de Malafosse and Eberhard Malkowsky

Abstract. Given any sequence a = (ay),>1 of positive real numbers and any set E of
complex sequences, we write E, for the set of all sequences z = (zn)n>1 such that z/a =
(Zn/an)n>1 € E. We denote by W, (A) = (weo (A)), and Wg (A) = (wo (X)), the sets of all
sequences z such that sup,, (A, Y27, |zx| /ar) < 00 and limn—ee (An' 34, |2k| /ax) =0,
where A is a nondecreasing exponentially bounded sequence. In this paper we recall some
properties of the Banach algebras (Wa (A),Wa (), and (W¢ (X),W¢ (X)), where a is a
positive sequence. We then consider the operator A,, defined by [Apx]n = Zp — Pn—1Tn—1
for all n > 1 with the convention zo, po = 0, and we give necessary and sufficient conditions
for the operator A, : E — E to be bijective, for E = wq (), or weo (A). Then we consider the
generalized operator of the first difference B (7, 5), where 7, 5 are two convergent sequences,
and defined by [B (7, 3) x}n = TnTn + Sn—1Zn—1 for all n > 1 with the convention xo, s = 0.
Then we deal with the operator B (7,3) mapping in either of the sets W, ()\), or W2 (\).
We then apply the previous results to explicitly calculate the spectrum of B (7,3) over each
of the spaces E,, where E = wg (\), or wes (A). Finally we give a characterization of the
identity (W, (A))B( = Wi ().

D)

1. Preliminary results

Let A = (ank)n’ x>1 be an infinite complex matrix and consider the complex sequence
z = (Tn),>,- We write Az = (A, (x)),>, with A, (z) = > ;o ankzr whenever the
series are convergent for all n > 1. Throughout this paper we use the convention that
any term with a subscript less than 1 is equal to naught. Let w denote the set of all
complex sequences. We write ¢, ¢, ¢ and £, for the sets of all finite, null, convergent
and bounded sequences respectively. For any given subsets E and F of w, we say that
the operator represented by the infinite matrix A = (@ni),, x>, maps E into F and
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denote this by A € (E, F), see [8], if the series A,, (z) = Y ;- | ank2y are convergent
for all n > 1 and for all z € F, and Az € F for all x € E. If F' is a subset of w, we
denote the so-called matrix domain of A in F by Fy = {x €w :y = Ax € F}. For
any nonzero sequence ¢ we write E, for the set of all sequences © = (zy),>1 such
that z/a = (zp/an)n>1 € E. Let E C w be a Banach space, with the norm ||-|| . By
B (E) we denote the set of all bounded linear operators, mapping F into itself, with
the operator norm ||L||;(E) = sup,o ([ Lzl 5 / 2]l g) for all L € B(E). It is well

known that B (E) is a Banach algebra with the operator norm H~||2(E).

A Banach space E C w is a BK space if the projections P, : z — =z, from E
into C are continuous for all n. We denote by e*) the sequence defined by e*) =
0,...,0,1,0,...), where 1 is in the k-th position and we write e = (1,1,...). A
BK space E D ¢ is said to have AK if = lim, 00 » 14 zre®) for every sequence
z = (zpn),>; € E. It is well known that if £ has AK then B(F) = (E,E). If E is
a BK space with the norm ||| 5, then (E, E) C B(E). Indeed by [19, Theorem 4.2.8
p. 57, since E is a BK space, the matrix map A € (E, E) is continuous and there is
M > 0 such that ||Az|; < M ||z|; for all z € E. By U and UT we denote the sets
of all nonzero sequences and all positive sequences, respectively. For a € UT we write
Sa = (lx),s 89 = (co),, and 55 = ¢,. Fach of the sets s, sY, and st is a BK space
with the norm [|z||, = sup,, (|z,|/an). Recall that for a, b € U*, we have s, = s
if and only if there are k; and ks > 0 such that k1 < a, /b, < ko for all n. We will
use the next argument. Since s, D s implies k1 < a,, /by, for all n, we deduce that if
a/b € ¢ and s, D sp, then lim,_ (an/by) > 0.

This paper is organized as follows. In Section 2 we consider the operator A,
defined by [Apz], = 2 — pn_12Zn—1 for all n > 1, and characterize the map A, :
E — E, for E = wy (A\), or wp (A). In Section 3 we apply these results to deal with
the operator represented by a double band matrix B (7,5) on E,, where E is either
of the spaces wy, (M), or wo (A). In Section 4 we explicitly calculate the spectrum of
B (7,3) over the spaces E,, where E is either of the spaces wes, (A), or wg (A). Finally
we characterize the identity (Wa (A)) g Wy (A).

rs)

2. On the band matrix A, considered as an operator in each of the
spaces W (A), or wy (N)

In this section we give necessary and sufficient conditions on the sequence p = (py),,>4

for A, to be bijective from E to itself, where E is either of the spaces woo (A), or wo ().

For any given sequence p = (pn),~; € w we consider the operator A, defined by
[Apz], = 2y — pp_12y—1 for all n > 1. This operator is represented by the infinite
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matrix

-p1 1 0
A, =

Recall that a matrix T' = (tnk), x> IS & triangle if t,, = 0 for k > n and t,, # 0
(n=1,2,...). B

2.1 The Banach algebras (weo (A), we (X)) and (wp (A), wo (X))

Let A = (A\n),,»; € UT. We define by C (\) the triangle whose the nonzero entries
are defined by [C' (N)],, = 1/\, for k < n and for all n. It is well known that
its inverse is the triangular band matrix A (\) whose nonzero entries are given by
AN, ne1 = —An—1 and [A(N)],,,, = An, (see for instance [15]). For A = e we write
C(\) =% and A(X) = A, and A is called the operator of the first difference. For
A= (An),>; € UT we consider the sets of strongly bounded and summable sequences,
respectively, that is,

1 n
e ) = { €2l oy =sup (5 D lnl) <o .

" k=1

1l
and wo(x\):{wa: nl;rr;o)wz;|xk:0}.

Notice that z € wo (A) means C (M) |z| € loo, where |z| = (|2k|);~,, and z € wo ()
means C () |z] € ¢p. These sets were studied by Malkowsky, with the concept of
exponentially bounded sequences, see [16]. Recall that Maddox [7], defined and studied
the sets Woo (A) = weo and wg () = wg where A, = n for all n.

Recall that a non-decreasing sequence A = (\,,),,~; € U™ of positive reals tending
to infinity is called exponentially bounded if there is an integer m > 2 such that for all
non-negative integers v there is at least one term \,, € I,(,?) = [m”, mytt — 1]. It was
shown (cf. [16, Lemma 1]) that a non-decreasing sequence A = (\,,), - is exponentially
bounded if and only if there are reals s < ¢ such that for some subsequence (A, ),
we have B

0<8§£§t<1foralli:172,...;
Mi41
such a sequence is called an associated subsequence. It can easily be shown that
any sequence \ = (nf)n>1 with £ > 0 is exponentially bounded. Indeed, for n; =

2" we have lim,, o (2i/2i+1)£ = 1/2¢ € ]0,1[. In [17] it was shown that if A =
(An)ps1 € U™ is exponentially bounded then the class (woo (A) , weo (A)) is a Banach

algebra with the norm [[A[(,_ x).w. () = SUP (||Aa:\|w WAL (A)). When A is
b oo x#o oo oo

an exponentially bounded sequence we obtain similar results on the Banach algebra



B. de Malafosse, E. Malkowsky 33

(wo (A), wo (A)) with the norm [[A[l,, (1), (n))- In the following we will write a, =
an—1/an for all n, with ag = 1, and a® = (a;)n21 for a € Ut. We also use the
sets I' = {a cU™T: lim, ,o0a® < 1} and T = {a € Ut : lim, o a® < 1}. For any
given sequence a = (an),»; € U, we write D, for the diagonal matrix defined by

[Dq],,,, = an for all n. In the following we also use the notation D,E = E,. Here we
consider the set W, (A\) = Dywso (A), for a, A € UT. We have

, 1o~ ol
W, (A = {x cw:|lzlly, o = stlep ()\Z ak) < oo}.

" k=1
It can easily be seen that W, (A\) = (ws (X)), is a BK space with the norm the
Illyw, 5y~ Similarly we define W2 (A) = (wo (N),- We write Winy _ (A) = W, (X)
for any r > 0. When \,, = n we put W, = W, (A) and W0 = WO ()) for a € U,
see [15]. We then have W, = {z : ||z[|y, =sup, (n™' 3> ,_ |ax| /ax) < oo}
Now we recall a result, where we have A, € (woo (A) , Woo (A)), if p, A® € £,

LEMMA 2.1 ([14, Theorem 3.12, p. 210]). Let A € Ut be a non-decreasing exponen-
tially bounded squence, and let E be either of the sets woo (N), or wo (A). Assume
limy, oo |pn| < 1/lim, 00 Ay. Then for any given b € E the equation A,z = b has a

n—1
unique solution in E, which is determined by x1 = by and x,, = b, +ZZ;11( I1 pj)bk
=k
for alln > 2.
As an immediate consequence of the preceding result we obtain the next lemma.

LEMMA 2.2. Assume that A € U™ is a non-decreasing exponentially bounded sequence,
and assume p, X\* € c. If limy, o (|pn| %) < 1, then A, is bijective from E to itself,
where E is either of the sets wo (N), or wg (N).

2.2 Necessary conditions for A, to be bijective from F to E, where E =
Wos (A), or wo (A)

We need the next lemmas.

LEMMA 2.3 ([12, Lemma 4]). Letu € U, and assume (tpn/tn—1),~5 € ¢. Thenu € l
implies limy, o0 [ty /tn—1] < 1. B

LEMMA 2.4. Let A € UT. Then we have:
(i) Assume 1/X € lo. Then A € (woo (N),weo (N)) implies AeV) € s.

(ii) Assume 1/\ € co. Then A € (wo (N),wp (X)) implies AeV) € 5.

Proof. (i) The proof comes from the fact that ws, (A) C sx. Indeed 2 € we (A) implies
that there is K > 0 such that A\, ' |z,| < A1 Y00, o] < K for all n, and = € s).
Now we have e() € w, (1), since 1/ € fo,. We conclude A € (woo (A), Woo (N))
implies Ae(?) € wo, () and Ae™) € sy. (ii) It can easily be shown that wg (A) C 5.
Now we have e(t) € wq (\), since 1/\ € ¢p. We conclude A € (wg (A),wp (A)) implies
Ae™M € wy (A) and Ae™) € 9. O
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LEMMA 2.5. Let A € Ut and assume (pn—1A3),5 € c.
(1) Let 1/X\ € los. If A, is bijective from wo (A) to itself, then

Jim (lpn-1]An) < (1)
(i1) Let 1/ € co. If A, is bijective from wo () to itself, then (1) holds.

Proof. (i) Since A, is bijective from ws (A) to itself we have

ALY € (oo (A) s woe (V) - (2)
Now we have [Ap_l}nk =pk...pn—1 for k <n—1and [A;l]n =1 for all n, and by

Lemma 2.4 the condition in ( ) implies A le() € sy and there is K > 0 such that
‘/) s pn—1|
)\n
Since (pn—1An),>; € ¢, we conclude by Lemma 2.3 that lim, oo (tun/tn—1) =

limy, 00 |pn—1| A% < 1, and (1) holds.

(ii) Since A, is bijective from wq ()\) to itself we have AJ! € (wo (A),wo (A)), and
by Lemma 2.4 we have A~ le( € 5. Then there is K > O such that (3) holds and
we conclude using similar arguments to those in (i). U

Uy = < K for all n > 2. (3)

3. Some properties of the band matrix B (7,5) considered as an operator
on E,, where F is either of the sets we (), or wg ()

In all that follows we assume that A € U is a non-decreasing exponentially bounded
sequence that satisfies A®* € c¢. Notice that any sequence of the form (ng)n>1 with
& > 0 satisfies the previous hypotheses. Now we consider the sequence defined by
A1 = A2 =1, Az, = 2k, and Agpy1 = Aspy2 = 2k + 1, for all £ > 1. This sequence is
exponentially bounded since for n; = 3.2°, we have

An; 2.2¢

o 29T " 3 (n — 00).
It can easily be seen that A? — 1 (n — 00). So this sequence also satisfies the previous
conditions.

Now let 7= (ry),>; and § = (sn),>; be two complex sequences, and denote by
B (7,3) the triangle defined by

We consider B (7,5) as an operator mapping E to itself, where F is either of the
sets Woo (A), or wo (A). We assume 7 € U, 7, § € ¢, limy 0o, = r # 0 and
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lim, o0 S, = s. We use the following notations. First we have B (7,5) = DA,

with pp_1 = —Sn—1/rn, for n > 2, and lim,_,« |pn| = |s/r|. Now consider the next
inequalities
7[> [s] Tim A7, (4)
> i °.
] > Js| Tim X3 (5)

3.1 A sufficient condition for B (7,3) to be bijective from E to itself, where
E is either of the sets wq, (), or wg ()

LEMMA 3.1. If the condition in (4) holds, then the operator B (7,3) is bijective from
E to itself, where E is either of the sets woo (M), or wg (A) .

Proof. We have B (7,3) € (E, E) in each of the cases E = wq, (A), or wo (A). We prove
the lemma for E = ws (A). The proof for wp (\) is similar. Let x € weo (A). Since 7,
S € ¢ C s, and X is non-decreasing, there is C' > 0 such that supy, (|rx|,|sx|) = C,
and
1 n 1 n 1 n—1
OGO ERESE Co) ITAE Lo DIET) ELcq M
k=1 k=1 k=1
for some C" > 0, and so B (7,35) x € weo (). Hence B (7,3) € (Weo (A) , Woo (N)).
Now we show [B (7,3)]”" € (woo (), wae (V). By the condition in (4) we have
Hmy, o0 [pn | limy, 00 AS = |%| limy, 00 Ay, < 1, and by Lemma 2.2 the operator rep-
resented by A, is bijective from we (A) to itself. Since r, # 0 for all n, and
lim, 0o n = 7 # 0, there are ky, ko > 0 such that k; < |r,| < ko for all n, and
it can easily be shown the operator D5 is bijective from E to itself. Finally, DA, is
bijective from FE to itself.

REMARK 3.2. Let E be either of the sets weo (A), or wp (A). If there is an integer k
for which ry, = 0, then B (7,5) € (E, E) is not bijective. Indeed let kg be the smallest
integer for which ry, = 0, and consider the equation

B(7,3) z = elko), (6)
It can easily be seen that if = satisfies the previous equation, then z; = 0 for k =
1,2,...,kp — 1, and sp,—12k,—1 = 1, which is a contradiction, and equation (6) has

no solution in E. Since e(*o) € E, we conclude that B (7,3) is not surjective.

3.2 A necessary condition for B (7,3) to be bijective

From the previous results we deduce the following.

LEMMA 3.3. If the operator represented by B (7,3) is bijective from E to itself, where
E is either of the sets weo (A), or wo (N), then the condition in (5) holds.

Proof. First we consider the case E = we (A). Since B (7,3) is bijective from
Weo (N) to itself, we have (B (7,5))" " = A Dy € (Woo (A), Weo (A)). As we have
seen above Dy is bijective from we (A) t0 wee (A), and AJT = (B (7,%) ' Dy €
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(Woo (A) , weo (A)), is also bijective from weo (A) to woo (A). Since A € UT is a
non-decreasing sequence we have 1/\ € (.. Then by Lemma 2.5 the condition
(Pr—1A}) >, € ¢ implies

2 m Al <1, (7)

n— oo

lim (o1 A7) = |

n—oo
and the condition in (5) holds.
Now we consider the case F = wg(A). By similar arguments as those above,
the operator B (7,3) is bijective and A7 = (B (7,3)) " Dy € (wo (\),wo (V) is also
bijective from wg (A\) to wp (A). Since A € U™ tends to infinity we have 1/ € ¢y C lo,
and (pp—1A%), >, € ¢, by Lemma 2.5 we conclude that the condition in (7) holds. U

r

4. Applications

In this section we apply the results obtained in the previous sections to explicitly
calculate the spectrum of the operator B (7,s) on E,, where E is either of the sets
Woo (A), Or wp (A).

4.1 An application to the spectrum of the operator B (7,5) on E,, where
E is either of the sets wq, (A), or wp ()

In this section we focus our study on the spectrum of the operator B (7,3) on E,,
where E is either of the sets wy, (M), or wg (A). Let E be a BK space and A be an
operator mapping F to itself, (note that A is continuous since F is a BK space). We
denote by o (A, E) the set of all complex numbers « such that A — al considered as
an operator from E to itself is not invertible. Then we write p (A, E) = [0 (A, E)]°
for the resolvent set, which is the set of all complex numbers a such that af — A
considered as an operator from E to itself is invertible. Recall that the resolvent set
of a linear operator on F is an open subset of the complex plane C. We use the
notation D (ag,7) = {a € C: |a — ag| < r} for ag € C and r > 0.

Recall that the spectrum and the fine spectrum of the linear operators defined
by infinite matrices over certain sequence spaces have been studied by many authors.
We only give a short survey of those studies. In [6,13] are given some results on the
spectral theory of unbounded operators, that are used in the theory of the sum of
operators (cf. [4]). Recently the fine spectra of the operator of the first difference
over the sequence spaces ¢, and bv,, were studied in [1], where bv,, is the space of all
sequences of p-bounded variation, with 1 < p < co. In [3] there is a study on the fine
spectrum of the generalized difference operator B (r, s) on each of the sets ¢, and bv,.
The fine spectrum of the operator represented by the triple band matrix B (r, s, t)
over the spaces ¢, and bv,, (1 < p < 00) was studied in [5]. In [18] Srivastava and
Kumar dealt with the fine spectrum of the generalized difference operator A, over /1,
where A, is the triangle whose the nonzero entries are defined by (A,),,,, = vn and
(Av) g1 = —Vn. Recently Akhmedov and El-Sabrawy [2] determined the spectrum
of the generalized difference operator A, ; defined as a double band matrix mapping
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in ¢. In [12] there is a study on the spectrum of A on the space W, for a® € (s and
an application to matrix transformations mapping in (Wa)(AiaI)h for h € C. In [11]
there is a study of the spectrum of the operator B (7,3) on the sets F,, where F is
any of the symbols s, s°, s(), l,, WO or W, for 1 < p < oo and a® € ¢. We also
obtain the spectrum of B (r, s) over the space (bv,), = ((ZP)A)G of all sequences of a,
p-bounded variation of order 1 (cf. [10]).

We state the main result where we write R = {ry, : k > 1}. We still assume A € U™
is a non-decreasing exponentially bounded sequence that satisfies A\® € c.

THEOREM 4.1. We have
o (B (7,3) ,we (\) = 0 (B(F,3) ,wo (\)) =D (r, 5| lim A;) UR.
n o0

Proof. First we consider the case E = ws (A). In Lemma 3.1 and Lemma 3.3, we
replace 7 by the sequence (ry — ), with a # 7 for all k. We have that |r —a| >
|s|limy, 00 A, implies @ € p (B (7,5),we (V) and a € p(B(7,3),ws (A)) implies
|r —a| > |s|lim, 0o A%. Since we have o (B (T,3),weo (A)) = [p (B (7, 3) , weo (A))]°

and using Remark 3.2 we have r, € o (B (7,3) , weo (X)) for all k, we conclude
D (7’, 5| lim A;L) UR C o (B(7,3),we (\) CD (r, 5| Tim A;) UR.

Now since o (B (7, 5) ,woo (A)) is a closed subset of C, it is equal to the smallest closed

set containing D (r,|s|lim, oo A%) U R, which itself is closed. The case E = wq ()
can be shown using similar arguments. This completes the proof. O

In this part we use the next elementary lemma.

LEMMA 4.2. Let a, b € UY, and E, F C w. Then A € (Eq, Fy) if and only if
D, AD, € (B, F).

We immediately deduce the following.

THEOREM 4.3. Let a € UT and assume a® € c. We have
7 (B(7,3),Wa (N) = 0 (B(75), W2 (V) = D (r]s| lim (agA%)) UR.  (8)

Proof. First we consider the case of the spectrum of B (7,5) over W, (A\). We have o €
p (B (1,3),W, (X)) if and only if af — B (7,3) € (W, (A), W, (), is bijective. But we
have Dy, (al — B(7,5)) Do = ol — D1;,B (7,5) Dy, and so a € p (B (7,5), W (A))

if and only if o € p (Dy /B (7,3) Da, wes (). We have Dy, B (7,5) Dy = B (?, ;5/),
with s/,_; = sp_1ap for all n > 2. Then we have lim,,_, o s, _; = slim, o a, and
we obtain (8) by Theorem 4.1 with B (7,3) replaced by B (F, ;’)

The case of the spectrum of B (7,3) over W2 (\) can be shown similarly. This
completes the proof. 0

REMARK 4.4. Notice that if A € ', then W, (\) = s41. Indeed, the condition x €
Wa (), means C () Dy, || € Lo, and is equivalent to |z] € DyA (A) L. But by [9,
Proposition 2,p. 159], the condition A € T implies A (A) £oo = s, and Wy, (A) = sqi.

We conclude o (B (7,5) , W, (X)) = 0 (B(7,3),8q4x) = D (r,]s|limy, 00 (af A2)) UR.
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COROLLARY 4.5. Let a € UT and assume p and a® € c. Then we have

7 (B, Wa (V) = (8, WE () =D (1, lim (pulan2)) -

REMARK 4.6. Under the conditions of Theorem 4.3 we have
o (B(7,3),W,(\) =D (r, s nli_>m (a;)\;)) U {rk D= > |8 nh—>Holo (a;)\:l)} .

o

REMARK 4.7. Under the conditions of Theorem 4.3 we have (Wa (A)) g5 = Wa (A)
if and only if 0 € p (B (7,3), W, (A\)), that is, |s|lim, 00 (apnA2) < |r].

If r, = r and s, = s for all n, with r, s # 0, then we write B (r, s) for B (7,3).
The matrix A = B (1, —1) is called the operator of the first difference.

COROLLARY 4.8. Let a € UT and assume a® € c. Then we have:

(i) o (B(r,s),Wa(\) =0 (B (r,s), Wg (N) = D (r,|s|limpo0 (a A7)
(ii) o (B (r,s),we (N) = 0 (B (r,5) ,wo (X)) = D (r, || limp 00 A7) -
(iti) o (A, Wo (X)) =0 (A, W (X)) =D (1,limp—00 (an A)).

(i) & (A 1w (V) = 0 (A, wp (A)) = D (1, im0 D).

Finally when \,, = n for all n, we obtain the next proposition which is a direct
consequence of [12, Theorem 6].

PROPOSITION 4.9. Let a € Ut and assume a® € l. Then we have o (A, W,) =
o (A, Wg) =D (l,limn_)ooa;).

This proposition is an extension of Theorem 4.3 in a certain sense. Indeed, if we
define the sequence a € UT by ag, = 1 and az,1 = 2 for all n, then we trivially have
a® €l \ ¢, and o (A, W,) =0 (A, W) =D (1,lim,—0af) = D (1,2).

In this way we obtain the next corollaries.

COROLLARY 4.10. Let a € Ut and assume a® € c. Then we have:
(i) o (B(r,s),W,) =0 (B (r,s) ,Wg) = D (r,|s|lim, o a?).

(ii) o (B (r,5) ,ws) = 0 (B (r,8),wo) = D (r,]s]) .

(iii) o (A, Wo) =0 (A, W2) =D (1,limy, 00 af).

(iv) o (A, wee) = 0 (A, we) = D (1,1).

COROLLARY 4.11. Let R > 0. Then we have:

(i) o (B(r,s),Wr) =0 (B (r,s),Wp) = D (r,|s| /R).

(ii)) o (A, Wg) =0 (A, W) =D (1,1/R).
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4.2 Applications to equations of the form (W, (})) g, ) = Ws (V)
4.2.1 On the identity (W, (\))p(,.,) = Ws (A).
In this section, assuming that r, s # 0, and a, b € U, we characterize the next

statement. The condition that sup,, (A, > ;_; |zx| /bx) < oo holds if and only if
sup,, (At Xop_y Iree + szp—1| /ak) < oo for all  can be written in the form

To simplify we focus on identity (9)7 but we obtain similar results for the identity

(W O‘))B(ns) = W} ()\). First we need the next lemma.

LEMMA 4.12. Let a, be UT. Then W, (A) = Wy, (X\) if and only if sq = sp.

Proof. We show that W, (A\) C W, (\) if and only if s, C sp. Necessity. Let z €
Wa(N). Then y = C(N\)Dyjolz| € Lo and |z| = DyA(N)y. So the condition
x € Wy (X) means C (X) Dy || = C (X) D1/pDaA (N)y € Lo for all y € L. So the

inclusion W, (A) C Wy, (A) is equivalent to C' (A) Dy/pA () € (foo, foo) and to
n—1
1 Ak Qg4

su

P <>\ Z b brs1

b

n

)\k-i-%) < 00,

see [13, Lemma 3.2, p. 596]. Thlb implies sup,, (an/by) < oo and s, C sp. In the
same way we obtain that Wy (\) C W, (A) implies s, C s,. Conversely, we assume
Sq C sp. Let x € W, (A). Since a/b € s; there is K > 0 such that

\$k| 1 o~ |2l
Z xza < K for all n.
" k=1 k=1

So we have shown z € W;, (A) and W, (A\) C W, (A). We conclude s, C 3 if an only
if W, (A\) C Wy, (A\). Similarly we obtain W, (A) D W}, (A) if and only if s, D s. This
completes the proof. O

kbk

PROPOSITION 4.13. Let a, b€ UT and r, s # 0. Assume b/a and a® € c¢. Then the
identity in (9) holds if and only if
(i) limy, oo (b /an) >0 and (%) lim, o0 (apAn) < |r/s|.

Proof. First we show the necessity of the conditions (i) and (ii). The identity in (9)
means that B (r, s) is bijective from W} () to W, (A). Then the operator Dy, B (r,s) Dy €
(Woo (A) ; Weo (A)) is bijective. But we have Dy,,B (r,s) Dy = B (r s )
rbn/an, and s, = sby/an41 for all n, and since each of the sequences (77,),~; and
(87)p>1, where s), = s(bn/an) a1, converges, we may apply Theorem 4.3. So we
have 0 ¢ o (Dl/aB (r,8) Dp, Woo ()\)) implies

bn by,

|r| lim — > |s| lim lim AP =|s| lim (a:L_H) lim A?.
Qn

n—00 A n—00 (py41 N0 n— oo n— 0o

/I
, Where ), =

But the conditions b/a and a® € ¢ imply

bn bn by
|r| im — > |s| lim — lim a hm)\,and |7 hm—(l—'

n—00 Ay N—00 (A N—>00 —o0

nlggo (an/\n)) >0



40 On the spectra of the operator B (7,5) mapping

bn
An

Since |r|limy, o0 (by/an) > 0, we have lim,, (a;/\%) < ’§| and lim,_ o =L>
0, and (i) and (ii) hold.

Conversely assume that (i) and (ii) hold. Then (ii) implies 0 € p (B (r,s), W, (N)),
by Corollary 4.5 and B (r, s) is bijective from W, (A) to itself, so we obtain (Wa (A)) g(,. )
= W, (A). Then (i) implies s, = s, and by Lemma 4.12 we conclude W, (\) = W, ()).
This completes the proof. O

EXAMPLE 4.14. For instance the equation (W2 (A)) g, 5) = Win), ., (A) has no solu-
tion, since lim, o, n/2"™ = 0. -

ExAMPLE 4.15. The equation (Wg, (A)) (.. 5) = Wk, (A) for 0 < Ry < Ry is equiva-
lent to Ry = Ry and lim,, 0o A% < Ry |r/s|. This result comes from Proposition 4.13
where we have b/a = ((Rz/R1)"),», € cand a® € c.

As a direct consequence of the preceding we obtain the next corollary.

COROLLARY 4.16. Let a, b € U' and assume b/a and a® € c. Then

Wa (A)a =Ws(N) (10)
if and only if lim, o0 an /by > 0 and aX € L. Especially, if A, = n for all n, then the
identity in (10) holds if and only if lim, o (ar/bn) >0 and a € T.

REMARK 4.17. If b/a, a® € ¢, then the identity (W,), = W} implies a ¢ c. Indeed, if
lim,, 0 an > 0, then we have hmn_>OO ar =1and a ¢ L. If lim,, o0 an, = 0, then we

have a ¢ T, since the condition a € T, implies > 1/an < o0 and a, — 0o (n — o).

In this way it can easily be seen that each of the equations (we), = Wayny, ., and

(Woo) o = Wy for 0 < r < 1, has no solution.

For a = b € U™, we obtain the next corollary which is a direct consequence of
Proposition 4.13.

COROLLARY 4.18. Let a € UT and assume a® € c and r, s # 0. Then we have:
(i) (Wa (M) p(rs) = Wa (A) if and only if lim, 0 (an A7) < [1/s].

(ii) (Wa (N) p(rs) = Wa if and only if limy, o0 afy < |r/s].

(i) (oo (\)) p(r.s) = Woo (A) if and only if lim,_,ee A < |7/s].
(iv) (Wa (M)A = Wa (N) if and only if ax € T.

() (Woo (A)) A = Weo (A) if and only if A € T.

(vi) (Wa)a = W, if and only ifaeT.
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4.2.2 Some other properties of the identity (W,), =W

In the next proposition we give a result in which we do not assume b/a, a® € c.

PROPOSITION 4.19. Let a, b € UT. If the equation (W), = W4 holds, then we have

sup (bn> < 00 (11)

n nan

1 n
d — . 12
an sup (nbn ;ak> < 00 (12)

n

Proof. The condition W, C (W) 5 implies A € (Wy, W,,), hence Dy /o ADy € (Woo, Woo)-
As we have seen in the proof of Lemma 2.4 we have (Weo, Woo) C (8007 (o) (n) >1>, so

D(l/nan)nzlADb € (Lo, £oo). Then the nonzero entries of the matrix D(l/kak)k21ADb

are given by |:D(1/kak)k21ADb:| = —bp_1/nay, foralln > 2, and |:D(1/kak)k21ADb:|

n,n—1 nn

= b, /na, for all n > 1. We conclude sup,, i (b1 + bn)} < 00 and the condition

n (11) holds. Now the condition (W,), C W} implies Dy /XD, € (Woo, Weo) and
as we have just seen D(y/np,) _ 2Dq € (foo, foo). Then (12) holds since the nonzero

entries of the triangle D1 /ms,,) ZDG} L= ag/nby,
n

m>1 m>1

YD, are given by [D(l Jmbum)

for all £ < n and for all n.

ExAMPLE 4.20. For Ry, R > 0 we consider the identity

(Wry)a = Wh,. (13)
The identity in (13) holds if and only if Ry = Ry > 1. Indeed, by Proposition 4.19 (i)
the identity in (13) implies sup,, {n~' (R2/R1)"} < 0o and Ry < Ry. Then we may
apply Proposition 4.13 where b/a = ((R2/R1)"),~; € ¢ and a® € ¢, and we conclude
Ri = Ry > 1. Conversely if Ry = Ry > 1 we deduce (Wg, ), = Wgr, = Wh,.

EXAMPLE 4.21. As a direct consequence of Proposition 4.19 it can easily be seen that
here is no R > 0 for which (W( = Wkg.

”)n21 A
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