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ON THE SPECTRA OF THE OPERATOR B (r̃, s̃) MAPPING IN
(w∞ (λ))a AND (w0 (λ))a WHERE λ IS A NONDECREASING

EXPONENTIALLY BOUNDED SEQUENCE

Bruno de Malafosse and Eberhard Malkowsky

Abstract. Given any sequence a = (an)n≥1 of positive real numbers and any set E of
complex sequences, we write Ea for the set of all sequences x = (xn)n≥1 such that x/a =
(xn/an)n≥1 ∈ E. We denote by Wa (λ) = (w∞ (λ))a and W 0

a (λ) = (w0 (λ))a the sets of all
sequences x such that supn

(
λ−1
n

∑n
k=1 |xk| /ak

)
<∞ and limn→∞

(
λ−1
n

∑n
k=1 |xk| /ak

)
= 0,

where λ is a nondecreasing exponentially bounded sequence. In this paper we recall some
properties of the Banach algebras (Wa (λ) ,Wa (λ)), and

(
W 0
a (λ) ,W 0

a (λ)
)
, where a is a

positive sequence. We then consider the operator ∆ρ, defined by [∆ρx]n = xn − ρn−1xn−1

for all n ≥ 1 with the convention x0, ρ0 = 0, and we give necessary and sufficient conditions
for the operator ∆ρ : E → E to be bijective, for E = w0 (λ), or w∞ (λ). Then we consider the
generalized operator of the first difference B (r̃, s̃), where r̃, s̃ are two convergent sequences,
and defined by [B (r̃, s̃)x]n = rnxn + sn−1xn−1 for all n ≥ 1 with the convention x0, s0 = 0.
Then we deal with the operator B (r̃, s̃) mapping in either of the sets Wa (λ), or W 0

a (λ).
We then apply the previous results to explicitly calculate the spectrum of B (r̃, s̃) over each
of the spaces Ea, where E = w0 (λ), or w∞ (λ). Finally we give a characterization of the
identity (Wa (λ))B(r,s) = Wb (λ).

1. Preliminary results

Let A = (ank)n,k≥1 be an infinite complex matrix and consider the complex sequence

x = (xn)n≥1. We write Ax = (An (x))n≥1 with An (x) =
∑∞
k=1 ankxk whenever the

series are convergent for all n ≥ 1. Throughout this paper we use the convention that
any term with a subscript less than 1 is equal to naught. Let ω denote the set of all
complex sequences. We write ϕ, c0, c and `∞ for the sets of all finite, null, convergent
and bounded sequences respectively. For any given subsets E and F of ω, we say that
the operator represented by the infinite matrix A = (ank)n,k≥1 maps E into F and
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denote this by A ∈ (E,F ), see [8], if the series An (x) =
∑∞
k=1 ankxk are convergent

for all n ≥ 1 and for all x ∈ E, and Ax ∈ F for all x ∈ E. If F is a subset of ω, we
denote the so-called matrix domain of A in F by FA = {x ∈ ω : y = Ax ∈ F}. For
any nonzero sequence a we write Ea for the set of all sequences x = (xn)n≥1 such
that x/a = (xn/an)n≥1 ∈ E. Let E ⊂ ω be a Banach space, with the norm ‖·‖E . By
B (E) we denote the set of all bounded linear operators, mapping E into itself, with
the operator norm ‖L‖∗B(E) = supx 6=0 (‖Lx‖E / ‖x‖E) for all L ∈ B (E). It is well

known that B (E) is a Banach algebra with the operator norm ‖·‖∗B(E).

A Banach space E ⊂ ω is a BK space if the projections Pn : x 7→ xn from E
into C are continuous for all n. We denote by e(k) the sequence defined by e(k) =
(0, . . . , 0, 1, 0, . . .), where 1 is in the k-th position and we write e = (1, 1, . . .). A
BK space E ⊃ ϕ is said to have AK if x = limp→∞

∑p
k=1 xke

(k) for every sequence
x = (xn)n≥1 ∈ E. It is well known that if E has AK then B (E) = (E,E). If E is
a BK space with the norm ‖·‖E , then (E,E) ⊂ B (E). Indeed by [19, Theorem 4.2.8
p. 57], since E is a BK space, the matrix map A ∈ (E,E) is continuous and there is
M > 0 such that ‖Ax‖E ≤ M ‖x‖E for all x ∈ E. By U and U+ we denote the sets
of all nonzero sequences and all positive sequences, respectively. For a ∈ U+ we write

sa = (`∞)a, s0
a = (c0)a, and s

(c)
a = ca. Each of the sets sa, s0

a, and s
(c)
a is a BK space

with the norm ‖x‖sa = supn (|xn| /an) . Recall that for a, b ∈ U+, we have sa = sb
if and only if there are k1 and k2 > 0 such that k1 ≤ an/bn ≤ k2 for all n. We will
use the next argument. Since sa ⊃ sb implies k1 ≤ an/bn for all n, we deduce that if
a/b ∈ c and sa ⊃ sb, then limn→∞ (an/bn) > 0.

This paper is organized as follows. In Section 2 we consider the operator ∆ρ,
defined by [∆ρx]n = xn − ρn−1xn−1 for all n ≥ 1, and characterize the map ∆ρ :
E → E, for E = w∞ (λ), or w0 (λ). In Section 3 we apply these results to deal with
the operator represented by a double band matrix B (r̃, s̃) on Ea, where E is either
of the spaces w∞ (λ), or w0 (λ). In Section 4 we explicitly calculate the spectrum of
B (r̃, s̃) over the spaces Ea, where E is either of the spaces w∞ (λ), or w0 (λ). Finally
we characterize the identity (Wa (λ))B(r,s) = Wb (λ).

2. On the band matrix ∆ρ considered as an operator in each of the
spaces w∞ (λ), or w0 (λ)

In this section we give necessary and sufficient conditions on the sequence ρ = (ρn)n≥1

for ∆ρ to be bijective from E to itself, where E is either of the spaces w∞ (λ), or w0 (λ).

For any given sequence ρ = (ρn)n≥1 ∈ ω we consider the operator ∆ρ defined by
[∆ρx]n = xn − ρn−1xn−1 for all n ≥ 1. This operator is represented by the infinite
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matrix

∆ρ =


1
−ρ1 1 0

. .
−ρn−1 1

0 . .
. .

 .

Recall that a matrix T = (tnk)nk≥1 is a triangle if tnk = 0 for k > n and tnn 6= 0
(n = 1, 2, . . .).

2.1 The Banach algebras (w∞ (λ) , w∞ (λ)) and (w0 (λ) , w0 (λ))

Let λ = (λn)n≥1 ∈ U+. We define by C (λ) the triangle whose the nonzero entries
are defined by [C (λ)]nk = 1/λn for k ≤ n and for all n. It is well known that
its inverse is the triangular band matrix ∆ (λ) whose nonzero entries are given by
[∆ (λ)]n,n−1 = −λn−1 and [∆ (λ)]nn = λn, (see for instance [15]). For λ = e we write
C (λ) = Σ and ∆ (λ) = ∆, and ∆ is called the operator of the first difference. For
λ = (λn)n≥1 ∈ U+ we consider the sets of strongly bounded and summable sequences,
respectively, that is,

w∞ (λ) =

{
x ∈ ω : ‖x‖w∞(λ) = sup

n

(
1

λn

n∑
k=1

|xk|
)
<∞

}
,

and w0 (λ) =

{
x ∈ ω : lim

n→∞

1

λn

n∑
k=1

|xk| = 0

}
.

Notice that x ∈ w∞ (λ) means C (λ) |x| ∈ `∞, where |x| = (|xk|)k≥1, and x ∈ w0 (λ)
means C (λ) |x| ∈ c0. These sets were studied by Malkowsky, with the concept of
exponentially bounded sequences, see [16]. Recall that Maddox [7], defined and studied
the sets w∞ (λ) = w∞ and w0 (λ) = w0 where λn = n for all n.

Recall that a non-decreasing sequence λ = (λn)n≥1 ∈ U+ of positive reals tending
to infinity is called exponentially bounded if there is an integer m ≥ 2 such that for all

non-negative integers ν there is at least one term λn ∈ I(ν)
m =

[
mν ,mν+1 − 1

]
. It was

shown (cf. [16, Lemma 1]) that a non-decreasing sequence λ = (λn)n≥1 is exponentially
bounded if and only if there are reals s ≤ t such that for some subsequence (λni

)i≥1

we have

0 < s ≤ λni

λni+1

≤ t < 1 for all i = 1, 2, . . . ;

such a sequence is called an associated subsequence. It can easily be shown that
any sequence λ =

(
nξ
)
n≥1

with ξ > 0 is exponentially bounded. Indeed, for ni =

2i we have limn→∞
(
2i/2i+1

)ξ
= 1/2ξ ∈ ]0, 1[. In [17] it was shown that if λ =

(λn)n≥1 ∈ U+ is exponentially bounded then the class (w∞ (λ) , w∞ (λ)) is a Banach

algebra with the norm ‖A‖(w∞(λ),w∞(λ)) = sup
x6=0

(
‖Ax‖w∞(λ) / ‖x‖w∞(λ)

)
. When λ is

an exponentially bounded sequence we obtain similar results on the Banach algebra
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(w0 (λ) , w0 (λ)) with the norm ‖A‖(w∞(λ),w∞(λ)). In the following we will write a•n =

an−1/an for all n, with a0 = 1, and a• = (a•n)n≥1 for a ∈ U+. We also use the

sets Γ =
{
a ∈ U+ : limn→∞a

•
n < 1

}
and Γ̂ = {a ∈ U+ : limn→∞ a•n < 1}. For any

given sequence a = (an)n≥1 ∈ U+, we write Da for the diagonal matrix defined by
[Da]nn = an for all n. In the following we also use the notation DaE = Ea. Here we
consider the set Wa (λ) = Daw∞ (λ), for a, λ ∈ U+. We have

Wa (λ) =

{
x ∈ ω : ‖x‖Wa(λ) = sup

n

(
1

λn

n∑
k=1

|xk|
ak

)
<∞

}
.

It can easily be seen that Wa (λ) = (w∞ (λ))a is a BK space with the norm the
‖·‖Wa(λ). Similarly we define W 0

a (λ) = (w0 (λ))a. We write W(rn)n≥1
(λ) = Wr (λ)

for any r > 0. When λn = n we put Wa = Wa (λ) and W 0
a = W 0

a (λ) for a ∈ U+,
see [15]. We then have Wa =

{
x : ‖x‖Wa

= supn
(
n−1

∑n
k=1 |xk| /ak

)
<∞

}
.

Now we recall a result, where we have ∆ρ ∈ (w∞ (λ) , w∞ (λ)), if ρ, λ• ∈ `∞.

Lemma 2.1 ([14, Theorem 3.12, p. 210]). Let λ ∈ U+ be a non-decreasing exponen-
tially bounded squence, and let E be either of the sets w∞ (λ), or w0 (λ). Assume
limn→∞ |ρn| < 1/limn→∞λ

•
n. Then for any given b ∈ E the equation ∆ρx = b has a

unique solution in E, which is determined by x1 = b1 and xn = bn+
∑n−1
k=1

(n−1∏
j=k

ρj

)
bk

for all n ≥ 2.

As an immediate consequence of the preceding result we obtain the next lemma.

Lemma 2.2. Assume that λ ∈ U+ is a non-decreasing exponentially bounded sequence,
and assume ρ, λ• ∈ c. If limn→∞ (|ρn|λ•n) < 1, then ∆ρ is bijective from E to itself,
where E is either of the sets w∞ (λ), or w0 (λ).

2.2 Necessary conditions for ∆ρ to be bijective from E to E, where E =
w∞ (λ), or w0 (λ)

We need the next lemmas.

Lemma 2.3 ([12, Lemma 4]). Let u ∈ U , and assume (un/un−1)n≥2 ∈ c. Then u ∈ `∞
implies limn→∞ |un/un−1| ≤ 1.

Lemma 2.4. Let λ ∈ U+. Then we have:
(i) Assume 1/λ ∈ `∞. Then A ∈ (w∞ (λ) , w∞ (λ)) implies Ae(1) ∈ sλ.

(ii) Assume 1/λ ∈ c0. Then A ∈ (w0 (λ) , w0 (λ)) implies Ae(1) ∈ s0
λ.

Proof. (i) The proof comes from the fact that w∞ (λ) ⊂ sλ. Indeed x ∈ w∞ (λ) implies
that there is K > 0 such that λ−1

n |xn| ≤ λ−1
n

∑n
k=1 |xk| ≤ K for all n, and x ∈ sλ.

Now we have e(1) ∈ w∞ (λ), since 1/λ ∈ `∞. We conclude A ∈ (w∞ (λ) , w∞ (λ))
implies Ae(1) ∈ w∞ (λ) and Ae(1) ∈ sλ. (ii) It can easily be shown that w0 (λ) ⊂ s0

λ.
Now we have e(1) ∈ w0 (λ), since 1/λ ∈ c0. We conclude A ∈ (w0 (λ) , w0 (λ)) implies
Ae(1) ∈ w0 (λ) and Ae(1) ∈ s0

λ. �
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Lemma 2.5. Let λ ∈ U+ and assume (ρn−1λ
•
n)n≥1 ∈ c.

(i) Let 1/λ ∈ `∞. If ∆ρ is bijective from w∞ (λ) to itself, then

lim
n→∞

(|ρn−1|λ•n) ≤ 1. (1)

(ii) Let 1/λ ∈ c0. If ∆ρ is bijective from w0 (λ) to itself, then (1) holds.

Proof. (i) Since ∆ρ is bijective from w∞ (λ) to itself we have

∆−1
ρ ∈ (w∞ (λ) , w∞ (λ)) . (2)

Now we have
[
∆−1
ρ

]
nk

= ρk . . . ρn−1 for k ≤ n− 1 and
[
∆−1
ρ

]
nn

= 1 for all n, and by

Lemma 2.4 the condition in (2) implies ∆−1
ρ e(1) ∈ sλ and there is K > 0 such that

un =
|ρ1 . . . ρn−1|

λn
≤ K for all n ≥ 2. (3)

Since (ρn−1λ
•
n)n≥1 ∈ c, we conclude by Lemma 2.3 that limn→∞ (un/un−1) =

limn→∞ |ρn−1|λ•n ≤ 1, and (1) holds.

(ii) Since ∆ρ is bijective from w0 (λ) to itself we have ∆−1
ρ ∈ (w0 (λ) , w0 (λ)), and

by Lemma 2.4 we have ∆−1
ρ e(1) ∈ s0

λ. Then there is K > 0 such that (3) holds and
we conclude using similar arguments to those in (i). �

3. Some properties of the band matrix B (r̃, s̃) considered as an operator
on Ea, where E is either of the sets w∞ (λ), or w0 (λ)

In all that follows we assume that λ ∈ U+ is a non-decreasing exponentially bounded
sequence that satisfies λ• ∈ c. Notice that any sequence of the form

(
nξ
)
n≥1

with

ξ > 0 satisfies the previous hypotheses. Now we consider the sequence defined by
λ1 = λ2 = 1, λ3k = 2k, and λ3k+1 = λ3k+2 = 2k + 1, for all k ≥ 1. This sequence is
exponentially bounded since for ni = 3.2i, we have

λni

λni+1

=
2.2i

2.2i+1
→ 1

2
(n→∞) .

It can easily be seen that λ•n → 1 (n→∞). So this sequence also satisfies the previous
conditions.

Now let r̃ = (rn)n≥1 and s̃ = (sn)n≥1 be two complex sequences, and denote by
B (r̃, s̃) the triangle defined by

B (r̃, s̃) =


r1

s1 r2 0
. .

sn−1 rn
0 . .

. .

 .

We consider B (r̃, s̃) as an operator mapping E to itself, where E is either of the
sets w∞ (λ), or w0 (λ). We assume r̃ ∈ U , r̃, s̃ ∈ c, limn→∞ rn = r 6= 0 and
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limn→∞ sn = s. We use the following notations. First we have B (r̃, s̃) = Dr̃∆ρ,
with ρn−1 = −sn−1/rn, for n ≥ 2, and limn→∞ |ρn| = |s/r|. Now consider the next
inequalities

|r| > |s| lim
n→∞

λ•n, (4)

|r| ≥ |s| lim
n→∞

λ•n. (5)

3.1 A sufficient condition for B (r̃, s̃) to be bijective from E to itself, where
E is either of the sets w∞ (λ), or w0 (λ)

Lemma 3.1. If the condition in (4) holds, then the operator B (r̃, s̃) is bijective from
E to itself, where E is either of the sets w∞ (λ), or w0 (λ) .

Proof. We have B (r̃, s̃) ∈ (E,E) in each of the cases E = w∞ (λ), or w0 (λ). We prove
the lemma for E = w∞ (λ). The proof for w0 (λ) is similar. Let x ∈ w∞ (λ). Since r̃,
s̃ ∈ c ⊂ `∞, and λ is non-decreasing, there is C > 0 such that supk (|rk| , |sk|) = C,
and

1

λn

n∑
k=1

|[B (r̃, s̃)x]k| ≤ C
(

1

λn

n∑
k=1

|xk|+
1

λn−1
λ•n

n−1∑
k=1

|xk|
)
≤ C ′ ‖x‖w∞(λ)

for some C ′ > 0, and so B (r̃, s̃)x ∈ w∞ (λ). Hence B (r̃, s̃) ∈ (w∞ (λ) , w∞ (λ)).

Now we show [B (r̃, s̃)]
−1 ∈ (w∞ (λ) , w∞ (λ)). By the condition in (4) we have

limn→∞ |ρn| limn→∞ λ•n =
∣∣ s
r

∣∣ limn→∞ λ•n < 1, and by Lemma 2.2 the operator rep-
resented by ∆ρ is bijective from w∞ (λ) to itself. Since rn 6= 0 for all n, and
limn→∞ rn = r 6= 0, there are k1, k2 > 0 such that k1 ≤ |rn| ≤ k2 for all n, and
it can easily be shown the operator Dr̃ is bijective from E to itself. Finally, Dr̃∆ρ is
bijective from E to itself. �

Remark 3.2. Let E be either of the sets w∞ (λ), or w0 (λ). If there is an integer k
for which rk = 0, then B (r̃, s̃) ∈ (E,E) is not bijective. Indeed let k0 be the smallest
integer for which rk0 = 0, and consider the equation

B (r̃, s̃)x = e(k0). (6)

It can easily be seen that if x satisfies the previous equation, then xk = 0 for k =
1, 2, . . . , k0 − 1, and sk0−1xk0−1 = 1, which is a contradiction, and equation (6) has
no solution in E. Since e(k0) ∈ E, we conclude that B (r̃, s̃) is not surjective.

3.2 A necessary condition for B (r̃, s̃) to be bijective

From the previous results we deduce the following.

Lemma 3.3. If the operator represented by B (r̃, s̃) is bijective from E to itself, where
E is either of the sets w∞ (λ), or w0 (λ), then the condition in (5) holds.

Proof. First we consider the case E = w∞ (λ). Since B (r̃, s̃) is bijective from

w∞ (λ) to itself, we have (B (r̃, s̃))
−1

= ∆−1
ρ D1/r̃ ∈ (w∞ (λ) , w∞ (λ)). As we have

seen above Dr̃ is bijective from w∞ (λ) to w∞ (λ), and ∆−1
ρ = (B (r̃, s̃))

−1
Dr̃ ∈
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(w∞ (λ) , w∞ (λ)), is also bijective from w∞ (λ) to w∞ (λ). Since λ ∈ U+ is a
non-decreasing sequence we have 1/λ ∈ `∞. Then by Lemma 2.5 the condition
(ρn−1λ

•
n)n≥1 ∈ c implies

lim
n→∞

(|ρn−1|λ•n) =
∣∣∣s
r

∣∣∣ lim
n→∞

λ•n ≤ 1, (7)

and the condition in (5) holds.
Now we consider the case E = w0 (λ). By similar arguments as those above,

the operator B (r̃, s̃) is bijective and ∆−1
ρ = (B (r̃, s̃))

−1
Dr̃ ∈ (w0 (λ) , w0 (λ)) is also

bijective from w0 (λ) to w0 (λ). Since λ ∈ U+ tends to infinity we have 1/λ ∈ c0 ⊂ `∞,
and (ρn−1λ

•
n)n≥1 ∈ c, by Lemma 2.5 we conclude that the condition in (7) holds. �

4. Applications

In this section we apply the results obtained in the previous sections to explicitly
calculate the spectrum of the operator B (r̃, s̃) on Ea, where E is either of the sets
w∞ (λ), or w0 (λ).

4.1 An application to the spectrum of the operator B (r̃, s̃) on Ea, where
E is either of the sets w∞ (λ), or w0 (λ)

In this section we focus our study on the spectrum of the operator B (r̃, s̃) on Ea,
where E is either of the sets w∞ (λ), or w0 (λ). Let E be a BK space and A be an
operator mapping E to itself, (note that A is continuous since E is a BK space). We
denote by σ (A,E) the set of all complex numbers α such that A− αI considered as
an operator from E to itself is not invertible. Then we write ρ (A,E) = [σ (A,E)]

c

for the resolvent set, which is the set of all complex numbers α such that αI − A
considered as an operator from E to itself is invertible. Recall that the resolvent set
of a linear operator on E is an open subset of the complex plane C. We use the
notation D (α0, r) = {α ∈ C : |α− α0| ≤ r} for α0 ∈ C and r > 0.

Recall that the spectrum and the fine spectrum of the linear operators defined
by infinite matrices over certain sequence spaces have been studied by many authors.
We only give a short survey of those studies. In [6, 13] are given some results on the
spectral theory of unbounded operators, that are used in the theory of the sum of
operators (cf. [4]). Recently the fine spectra of the operator of the first difference
over the sequence spaces `p and bvp, were studied in [1], where bvp is the space of all
sequences of p-bounded variation, with 1 ≤ p <∞. In [3] there is a study on the fine
spectrum of the generalized difference operator B (r, s) on each of the sets `p and bvp.
The fine spectrum of the operator represented by the triple band matrix B (r, s, t)
over the spaces `p and bvp, (1 < p <∞) was studied in [5]. In [18] Srivastava and
Kumar dealt with the fine spectrum of the generalized difference operator ∆v over `1,
where ∆v is the triangle whose the nonzero entries are defined by (∆v)nn = vn and
(∆v)n+1,n = −vn. Recently Akhmedov and El-Sabrawy [2] determined the spectrum
of the generalized difference operator ∆a,b defined as a double band matrix mapping
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in c. In [12] there is a study on the spectrum of ∆ on the space Wa for a• ∈ `∞ and
an application to matrix transformations mapping in (Wa)(∆−αI)h for h ∈ C. In [11]

there is a study of the spectrum of the operator B (r̃, s̃) on the sets Ea, where E is
any of the symbols s, s0, s(c), `p, W

0, or W , for 1 ≤ p < ∞ and a• ∈ c. We also
obtain the spectrum of B (r, s) over the space (bvp)a =

(
(`p)∆

)
a

of all sequences of a,
p-bounded variation of order 1 (cf. [10]).

We state the main result where we writeR = {rk : k ≥ 1}. We still assume λ ∈ U+

is a non-decreasing exponentially bounded sequence that satisfies λ• ∈ c.

Theorem 4.1. We have

σ (B (r̃, s̃) , w∞ (λ)) = σ (B (r̃, s̃) , w0 (λ)) = D
(
r, |s| lim

n→∞
λ•n

)
∪R.

Proof. First we consider the case E = w∞ (λ). In Lemma 3.1 and Lemma 3.3, we
replace r̃ by the sequence (rk − α)k≥1 with α 6= rk for all k. We have that |r − α| >
|s| limn→∞ λ•n implies α ∈ ρ (B (r̃, s̃) , w∞ (λ)) and α ∈ ρ (B (r̃, s̃) , w∞ (λ)) implies
|r − α| ≥ |s| limn→∞ λ•n. Since we have σ (B (r̃, s̃) , w∞ (λ)) = [ρ (B (r̃, s̃) , w∞ (λ))]

c

and using Remark 3.2 we have rk ∈ σ (B (r̃, s̃) , w∞ (λ)) for all k, we conclude

D
(
r, |s| lim

n→∞
λ•n

)
∪R ⊂ σ (B (r̃, s̃) , w∞ (λ)) ⊂ D

(
r, |s| lim

n→∞
λ•n

)
∪R.

Now since σ (B (r̃, s̃) , w∞ (λ)) is a closed subset of C, it is equal to the smallest closed
set containing D (r, |s| limn→∞ λ•n) ∪ R, which itself is closed. The case E = w0 (λ)
can be shown using similar arguments. This completes the proof. �

In this part we use the next elementary lemma.

Lemma 4.2. Let a, b ∈ U+, and E, F ⊂ ω. Then A ∈ (Ea, Fb) if and only if
D1/bADa ∈ (E,F ).

We immediately deduce the following.

Theorem 4.3. Let a ∈ U+ and assume a• ∈ c. We have

σ (B (r̃, s̃) ,Wa (λ)) = σ
(
B (r̃, s̃) ,W 0

a (λ)
)

= D
(
r, |s| lim

n→∞
(a•nλ

•
n)
)
∪R. (8)

Proof. First we consider the case of the spectrum of B (r̃, s̃) over Wa (λ). We have α ∈
ρ (B (r̃, s̃) ,Wa (λ)) if and only if αI−B (r̃, s̃) ∈ (Wa (λ) ,Wa (λ)), is bijective. But we
have D1/a (αI −B (r̃, s̃))Da = αI −D1/aB (r̃, s̃)Da, and so α ∈ ρ (B (r̃, s̃) ,Wa (λ))

if and only if α ∈ ρ
(
D1/aB (r̃, s̃)Da, w∞ (λ)

)
. We have D1/aB (r̃, s̃)Da = B

(
r̃, s̃′

)
,

with s′n−1 = sn−1a
•
n for all n ≥ 2. Then we have limn→∞ s′n−1 = s limn→∞ a•n and

we obtain (8) by Theorem 4.1 with B (r̃, s̃) replaced by B
(
r̃, s̃′

)
.

The case of the spectrum of B (r̃, s̃) over W 0
a (λ) can be shown similarly. This

completes the proof. �

Remark 4.4. Notice that if λ ∈ Γ, then Wa (λ) = saλ. Indeed, the condition x ∈
Wa (λ), means C (λ)D1/a |x| ∈ `∞, and is equivalent to |x| ∈ Da∆ (λ) `∞. But by [9,
Proposition 2,p. 159], the condition λ ∈ Γ implies ∆ (λ) `∞ = sλ, and Wa (λ) = saλ.
We conclude σ (B (r̃, s̃) ,Wa (λ)) = σ (B (r̃, s̃) , saλ) = D (r, |s| limn→∞ (a•nλ

•
n)) ∪R.
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Corollary 4.5. Let a ∈ U+ and assume ρ and a• ∈ c. Then we have

σ (∆ρ,Wa (λ)) = σ
(
∆ρ,W

0
a (λ)

)
= D

(
1, lim
n→∞

(|ρn| a•nλ•n)
)
.

Remark 4.6. Under the conditions of Theorem 4.3 we have

σ (B (r̃, s̃) ,Wa (λ)) = D
(
r, |s| lim

n→∞
(a•nλ

•
n)
)
∪
{
rk : |r − rk| > |s| lim

n→∞
(a•nλ

•
n)
}

.

Remark 4.7. Under the conditions of Theorem 4.3 we have (Wa (λ))B(r̃,s̃) = Wa (λ)

if and only if 0 ∈ ρ (B (r̃, s̃) ,Wa (λ)), that is, |s| limn→∞ (a•nλ
•
n) < |r|.

If rn = r and sn = s for all n, with r, s 6= 0, then we write B (r, s) for B (r̃, s̃).
The matrix ∆ = B (1,−1) is called the operator of the first difference.

Corollary 4.8. Let a ∈ U+ and assume a• ∈ c. Then we have:

(i) σ (B (r, s) ,Wa (λ)) = σ
(
B (r, s) ,W 0

a (λ)
)

= D (r, |s| limn→∞ (a•nλ
•
n)).

(ii) σ (B (r, s) , w∞ (λ)) = σ (B (r, s) , w0 (λ)) = D (r, |s| limn→∞ λ•n) .

(iii) σ (∆,Wa (λ)) = σ
(
∆,W 0

a (λ)
)

= D (1, limn→∞ (a•nλ
•
n)).

(iv) σ (∆, w∞ (λ)) = σ (∆, w0 (λ)) = D (1, limn→∞ λ•n).

Finally when λn = n for all n, we obtain the next proposition which is a direct
consequence of [12, Theorem 6].

Proposition 4.9. Let a ∈ U+ and assume a• ∈ `∞. Then we have σ (∆,Wa) =
σ
(
∆,W 0

a

)
= D

(
1, limn→∞a

•
n

)
.

This proposition is an extension of Theorem 4.3 in a certain sense. Indeed, if we
define the sequence a ∈ U+ by a2n = 1 and a2n+1 = 2 for all n, then we trivially have
a• ∈ `∞ \ c, and σ (∆,Wa) = σ

(
∆,W 0

a

)
= D

(
1, limn→∞a

•
n

)
= D (1, 2).

In this way we obtain the next corollaries.

Corollary 4.10. Let a ∈ U+ and assume a• ∈ c. Then we have:

(i) σ (B (r, s) ,Wa) = σ
(
B (r, s) ,W 0

a

)
= D (r, |s| limn→∞ a•n).

(ii) σ (B (r, s) , w∞) = σ (B (r, s) , w0) = D (r, |s|) .

(iii) σ (∆,Wa) = σ
(
∆,W 0

a

)
= D (1, limn→∞ a•n).

(iv) σ (∆, w∞) = σ (∆, w0) = D (1, 1).

Corollary 4.11. Let R > 0. Then we have:

(i) σ (B (r, s) ,WR) = σ
(
B (r, s) ,W 0

R

)
= D (r, |s| /R).

(ii) σ (∆,WR) = σ
(
∆,W 0

R

)
= D (1, 1/R).
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4.2 Applications to equations of the form (Wa (λ))B(r,s) = Wb (λ)

4.2.1 On the identity (Wa (λ))B(r,s) = Wb (λ).

In this section, assuming that r, s 6= 0, and a, b ∈ U+, we characterize the next
statement. The condition that supn

(
λ−1
n

∑n
k=1 |xk| /bk

)
< ∞ holds if and only if

supn
(
λ−1
n

∑n
k=1 |rxk + sxk−1| /ak

)
<∞ for all x can be written in the form

(Wa (λ))B(r,s) = Wb (λ) . (9)

To simplify we focus on identity (9), but we obtain similar results for the identity(
W 0
a (λ)

)
B(r,s)

= W 0
b (λ). First we need the next lemma.

Lemma 4.12. Let a, b ∈ U+. Then Wa (λ) = Wb (λ) if and only if sa = sb.

Proof. We show that Wa (λ) ⊂ Wb (λ) if and only if sa ⊂ sb. Necessity. Let x ∈
Wa (λ). Then y = C (λ)D1/a |x| ∈ `∞ and |x| = Da∆ (λ) y. So the condition
x ∈ Wb (λ) means C (λ)D1/b |x| = C (λ)D1/bDa∆ (λ) y ∈ `∞ for all y ∈ `∞. So the
inclusion Wa (λ) ⊂Wb (λ) is equivalent to C (λ)Da/b∆ (λ) ∈ (`∞, `∞) and to

sup
n

(
1

λn

n−1∑
k=1

∣∣∣∣akbk − ak+1

bk+1

∣∣∣∣λk +
an
bn

)
<∞,

see [13, Lemma 3.2, p. 596]. This implies supn (an/bn) < ∞ and sa ⊂ sb. In the
same way we obtain that Wb (λ) ⊂ Wa (λ) implies sb ⊂ sa. Conversely, we assume
sa ⊂ sb. Let x ∈Wa (λ). Since a/b ∈ s1 there is K > 0 such that

1

λn

n∑
k=1

|xk|
bk
≤
(

sup
k

ak
bk

)(
1

λn

n∑
k=1

|xk|
ak

)
≤ K for all n.

So we have shown x ∈ Wb (λ) and Wa (λ) ⊂ Wb (λ). We conclude sa ⊂ sb if an only
if Wa (λ) ⊂Wb (λ). Similarly we obtain Wa (λ) ⊃Wb (λ) if and only if sa ⊃ sb. This
completes the proof. �

Proposition 4.13. Let a, b ∈ U+ and r, s 6= 0. Assume b/a and a• ∈ c. Then the
identity in (9) holds if and only if

(i) limn→∞ (bn/an) > 0 and (ii) limn→∞ (a•nλ
•
n) < |r/s| .

Proof. First we show the necessity of the conditions (i) and (ii). The identity in (9)
means thatB (r, s) is bijective fromWb (λ) toWa (λ). Then the operatorD1/aB (r, s)Db ∈
(w∞ (λ) , w∞ (λ)) is bijective. But we have D1/aB (r, s)Db = B

(
r̃′, s̃′

)
, where r′n =

rbn/an, and s′n = sbn/an+1 for all n, and since each of the sequences (r′n)n≥1 and
(s′n)n≥1, where s′n = s (bn/an) a•n+1, converges, we may apply Theorem 4.3. So we

have 0 /∈ σ
(
D1/aB (r, s)Db, w∞ (λ)

)
implies

|r| lim
n→∞

bn
an

> |s| lim
n→∞

bn
an+1

lim
n→∞

λ•n = |s| lim
n→∞

(
bn
an
a•n+1

)
lim
n→∞

λ•n.

But the conditions b/a and a• ∈ c imply

|r| lim
n→∞

bn
an

> |s| lim
n→∞

bn
an

lim
n→∞

a•n lim
n→∞

λ•n, and |r| lim
n→∞

bn
an

(
1−

∣∣∣s
r

∣∣∣ lim
n→∞

(a•nλ
•
n)
)
> 0.
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Since |r| limn→∞ (bn/an) > 0, we have limn→∞ (a•nλ
•
n) <

∣∣ r
s

∣∣ and limn→∞
bn
an

= L >
0, and (i) and (ii) hold.

Conversely assume that (i) and (ii) hold. Then (ii) implies 0 ∈ ρ (B (r, s) ,Wa (λ)),
by Corollary 4.5 andB (r, s) is bijective fromWa (λ) to itself, so we obtain (Wa (λ))B(r,s)

= Wa (λ). Then (i) implies sa = sb and by Lemma 4.12 we conclude Wa (λ) = Wb (λ).
This completes the proof. �

Example 4.14. For instance the equation (W2 (λ))B(r,s) = W(n)n≥1
(λ) has no solu-

tion, since limn→∞ n/2n = 0.

Example 4.15. The equation (WR1 (λ))B(r,s) = WR2 (λ) for 0 < R2 ≤ R1 is equiva-

lent to R1 = R2 and limn→∞ λ•n < R1 |r/s|. This result comes from Proposition 4.13
where we have b/a = ((R2/R1)

n
)n≥1 ∈ c and a• ∈ c.

As a direct consequence of the preceding we obtain the next corollary.

Corollary 4.16. Let a, b ∈ U+ and assume b/a and a• ∈ c. Then

(Wa (λ))∆ = Wb (λ) (10)

if and only if limn→∞ an/bn > 0 and aλ ∈ Γ̂. Especially, if λn = n for all n, then the

identity in (10) holds if and only if limn→∞ (an/bn) > 0 and a ∈ Γ̂.

Remark 4.17. If b/a, a• ∈ c, then the identity (Wa)∆ = Wb implies a /∈ c. Indeed, if

limn→∞ an > 0, then we have limn→∞ a•n = 1 and a /∈ Γ̂. If limn→∞ an = 0, then we

have a /∈ Γ̂, since the condition a ∈ Γ̂, implies
∑∞
n=1 1/an <∞ and an →∞ (n→∞).

In this way it can easily be seen that each of the equations (w∞)∆ = W(1/n)n≥1
, and

(w∞)∆ = Wr for 0 < r < 1, has no solution.

For a = b ∈ U+, we obtain the next corollary which is a direct consequence of
Proposition 4.13.

Corollary 4.18. Let a ∈ U+ and assume a• ∈ c and r, s 6= 0. Then we have:

(i) (Wa (λ))B(r,s) = Wa (λ) if and only if limn→∞ (a•nλ
•
n) < |r/s|.

(ii) (Wa (λ))B(r,s) = Wa if and only if limn→∞ a•n < |r/s|.

(iii) (w∞ (λ))B(r,s) = w∞ (λ) if and only if limn→∞ λ•n < |r/s|.

(iv) (Wa (λ))∆ = Wa (λ) if and only if aλ ∈ Γ̂.

(v) (w∞ (λ))∆ = w∞ (λ) if and only if λ ∈ Γ̂.

(vi) (Wa)∆ = Wa if and only if a ∈ Γ̂.
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4.2.2 Some other properties of the identity (Wa)∆ = Wb

In the next proposition we give a result in which we do not assume b/a, a• ∈ c.

Proposition 4.19. Let a, b ∈ U+. If the equation (Wa)∆ = Wb holds, then we have

sup
n

(
bn
nan

)
<∞ (11)

and sup
n

(
1

nbn

n∑
k=1

ak

)
<∞. (12)

Proof. The conditionWb ⊂ (Wa)∆ implies ∆ ∈ (Wb,Wa), henceD1/a∆Db ∈ (w∞, w∞).

As we have seen in the proof of Lemma 2.4 we have (w∞, w∞) ⊂
(
`∞, (`∞)(n)n≥1

)
, so

D(1/nan)n≥1
∆Db ∈ (`∞, `∞). Then the nonzero entries of the matrix D(1/kak)k≥1

∆Db

are given by
[
D(1/kak)k≥1

∆Db

]
n,n−1

= −bn−1/nan, for all n ≥ 2, and
[
D(1/kak)k≥1

∆Db

]
nn

= bn/nan for all n ≥ 1. We conclude supn

{
1
nan

(bn−1 + bn)
}
<∞ and the condition

in (11) holds. Now the condition (Wa)∆ ⊂ Wb implies D1/bΣDa ∈ (w∞, w∞) and
as we have just seen D(1/nbn)n≥1

ΣDa ∈ (`∞, `∞). Then (12) holds since the nonzero

entries of the triangle D(1/mbm)m≥1
ΣDa are given by

[
D(1/mbm)m≥1

ΣDa

]
nk

= ak/nbn,

for all k ≤ n and for all n. �

Example 4.20. For R1, R2 > 0 we consider the identity

(WR1)∆ = WR2 . (13)

The identity in (13) holds if and only if R1 = R2 > 1. Indeed, by Proposition 4.19 (i)
the identity in (13) implies supn

{
n−1 (R2/R1)

n}
< ∞ and R2 ≤ R1. Then we may

apply Proposition 4.13 where b/a = ((R2/R1)
n
)n≥1 ∈ c and a• ∈ c, and we conclude

R1 = R2 > 1. Conversely if R1 = R2 > 1 we deduce (WR1
)∆ = WR1

= WR2
.

Example 4.21. As a direct consequence of Proposition 4.19 it can easily be seen that

here is no R > 0 for which
(
W(n)n≥1

)
∆

= WR.
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