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S-PSEUDOSPECTRA AND S-ESSENTIAL PSEUDOSPECTRA

Aymen Ammar, Houcem Daoud and Aref Jeribi

Abstract. In the present paper, we introduce and study the S-pseudospectra and the
essential S-pseudospectra of linear relations. We start by giving the definition and we inves-
tigate the characterization and some properties of these S-pseudospectra.

1. Introduction

The concept of pseudospectra was introduced independently by J. M. Varah [13]
and has been subsequently employed by other authors for example, H. Landau [10],
L. N. Trefethen [12], D. Hinrichsen, A. J. Pritchard [9] and E. B. Davies [8]. This
concept was especially due to L. N. Trefethen, who developed this idea for matrices
and operators, and who applied it to several highly interesting problems. This notion
of pseudospectra arose as a result of realizing that several pathological properties of
highly non-self-adjoint operators were closely related. These include the existence
of approximate eigenvalues far from the spectrum, the instability of the spectrum
even under small perturbations. The analysis of pseudospectra has been performed
in order to determine and localize the spectrum of operators, hence leading to many
applications of pseudospectra. For example, in aeronautics, eigenvalues may deter-
mine whether the flow over a wing is laminar or turbulent. In ecology, eigenvalues
may determine whether a food web will settle into a steady equilibrium. In electrical
engineering, they may determine the frequency response of an amplifier or the relia-
bility of a national power system. Moreover, in probability theory, eigenvalues may
determine the convergence rate of a Markov process and, in other fields, we can find
the eigenvalues allowing us to examine the respective properties. The definition of
pseudospectra of a closed densely linear operator T for every ε > 0 is given by:

σε(T ) := σ(T ) ∪
{
λ ∈ C such that ‖(λ− T )−1‖ > 1

ε

}
.
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By convention we write ‖(λ− T )−1‖ =∞ if (λ− T )−1 is unbounded or nonexistent,
i.e., if λ is in the spectrum σ(T ). Inspired by the notion of pseudospectra, A. Ammar
and A. Jeribi in their works [1,3,4,6], extended these results for the essential spectra
of closed, densely defined, and linear operators on a Banach space. They introduced a
new concept of essential pseudospectra of closed, densely defined, and linear operators
on a Banach space. Because of the existence of several essential spectra, they were
interested to focus their study on the pseudo-Browder essential spectrum. This set
was shown to be characterized in the way one would expect by analogy with the
essential numerical range.

Recently, A. Ammar, H. Daoud and A. Jeribi in [5], have introduced and studied
the pseudospectra and the essential pseudospectra of linear relations, in order to
extend these results for the essential spectra of linear relations by

σw,ε(T ) =
⋂

K∈KT (X)

σε(T +K) =
⋃
‖D‖<ε

D(D)⊃D(T )

σw(T +D),

where KT (X) := {K ∈ KR(X) such that D(K) ⊃ D(T ) and K(0) ⊂ T (0)}, and
σw(T ) is the Weyl essential spectrum of the linear relation T defined by σw(T ) :=⋂
K∈ KT (X) σε(T +K).

Our aim in this work is to show some properties of S-pseudospectra and S-essential
pseudospectra of closed linear relations in Banach spaces.

We organize the paper in the following way. Section 2 contains preliminary and
auxiliary properties that are needed to prove the main results of the other sections.
We begin by giving some entirely algebraic results about linear relations in vector
spaces. The main aim of Section 3 is to characterize the S-pseudospectra of a closed
multivalued linear operator and investigate some properties. In Section 4, we charac-
terize the S-essential pseudospectra of a closed multivalued linear operator, we apply
some results obtained in Section 3 to investigate the S-essential pseudospectrum and
we establish some results for perturbation and properties.

2. S-spectra of linear relation in normed space

We will introduce a definition of S-spectrum in a normed space X.

Definition 2.1. Let T ∈ LR(X), S be a continuous linear relation such that S(0) ⊂
T (0) and D(S) ⊃ D(T ). Then we define the S-resolvent set of T by ρS(T ) := {λ ∈
C such that (λS − T ) is injective, open with dense range on X}. We define the S-
spectra set of T as σS(T ) = C\ρS(T ).

In the sequel of this section, X will denote a normed space.

Lemma 2.2. Let S ∈ LR(X). Then ‖S‖ = 0 if and only if R(S) ⊂ S(0).

Proof. ‖S‖ = sup
x∈D(S)

x6=0

‖Sx‖
‖x‖

. Then ‖S‖ = 0 if and only if ‖Sx‖ = 0 for all x ∈ D(S),
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x 6= 0. This is equivalent to the condition x ∈ D(S), y ∈ Sx, d(y, S(0)) = 0, i.e.
x ∈ D(S), y ∈ Sx, y ∈ S(0). From this we get that Sx ⊂ S(0) and S(D(S)) ⊂ S(0)
which implies the result. �

Lemma 2.3. Let T ∈ LR(X) and S a continuous linear relation such that S(0) ⊂ T (0)
and D(S) ⊃ D(T ). Then ‖S‖ = 0 implies ρS(T ) = ∅ or C.

Proof. We will show that λ ∈ ρS(T ) if and only if T is injective, open with dense
range. Let λ ∈ ρS(T ), then T − λS is injective, open with dense range. But ‖λS‖ =
|λ|‖S‖ = 0 < γ(T − λS). Moreover, λS(0) ⊂ T (0) and D(λS) = D(S) ⊃ D(T ), hence
T − λS + λS = T is injective, open with dense range. Conversely, let T is injective,
open with dense range. Since ‖− λS‖ = |λ|‖S‖ = 0 < γ(T ), then T − λS is injective,
open with dense range. Hence λ ∈ ρS(T ). �

Theorem 2.4. Let T ∈ LR(X) be injective with dense range and S be a contin-
uous linear relation such that S(0) ⊂ T (0), D(S) ⊃ D(T ) and ‖S‖ 6= 0. Then

σS(T )⊂
{
λ ∈ C such that |λ| ≥ γ(T )

‖S‖

}
.

Proof. It suffices to show that
{
λ ∈ C such that |λ| < γ(T )

‖S‖

}
⊂ ρS(T ). Let |λ| < γ(T )

‖S‖ ,

if γ(T ) = 0, then {λ ∈ C such that |λ| < γ(T )
‖S‖ } = ∅, and there is nothing to prove.

Now, if γ(T ) > 0, then T is open, injective with dense range. We have λS(0) ⊂
T (0) and D(λS) = D(S) ⊃ D(T ). Moreover ‖λS‖ = |λ|‖S‖ < γ(T ). Then, we obtain
that λS − T is open, injective with dense range. Hence λ ∈ ρS(T ). �

Theorem 2.5. Let T ∈ LR(X) and S be a continuous linear relation such that S(0) ⊂
T (0) and D(S) ⊃ D(T ). Then ρS(T ) is an open set.

Proof. We will discuss two cases.

Case 1: If ‖S‖ = 0, then ρS(T ) = ∅ or ρS(T ) = C. Thus ρS(T ) is open.

Case 2: If ‖S‖ 6= 0. Let λ ∈ ρS(T ). Then γ(λS − T ) > 0. Let |µ− λ| < γ(λS − T )

‖S‖
,

then ‖(µ − λ)S‖ = |µ − λ|‖S‖ < γ(λS − T ). Furthermore, we have (µ − λ)S(0) ⊂
T (0) = (λS − T )(0) and D((µ− λ)S) = D(S) ⊃ D(T ) = D(λS − T ) then, µS − T is
injective, open with dense range. Then µ ∈ ρS(T ). Therefore ρS(T ) is open. �

Lemma 2.6. Let T ∈ LR(X) and S be a continuous linear relation such that S(0) ⊂
T (0) and D(S) ⊃ D(T ). Then S′ is continuous, S′(0) ⊂ T ′(0) and D(S′) ⊃ D(T ′).

Proof. By [7, Proposition III 4.6], ‖S′‖ = ‖S‖, then S′ is continuous. Also, D(S′) =

S(0)⊥ ⊃ T (0)
⊥
⊃ T (0)⊥ = D(T ′)>⊥ = D(T ′), and using [7, Proposition III 1.4],

S′(0) = D(S)⊥ ⊂ D(T )⊥ = T ′(0). �

Theorem 2.7. Let T ∈ LR(X) and S be a continuous linear relation such that S(0) ⊂
T (0) and D(S) ⊃ D(T ). Then σS(T ) = σS′(T ′) .
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Proof. We will discuss two cases. If 0 ∈ ρS(T ), it is clear that 0S − T = −T is
injective, open with dense range. Then 0 ∈ ρ(T ) = ρ(T ′). Thus 0S′ − T ′ = −T ′ is
injective, open with dense range. Hence 0 ∈ ρS′(T ′). Now, If 0 6= λ ∈ ρS(T ), then
λS−T is injective, open with dense range. Using [7, Proposition III 1.4 (a)], we have
N((λS − T )′) = (R(λS − T ))⊥ = (R(λS − T ))⊥ = X⊥, N((λS − T )′) = {0}, and
by [7, Proposition III 4.6 (b) and (d)], it holds that γ((λS − T )′) = γ(λS − T ) > 0
and R((λS − T )′) = N(λS − T )⊥ = {0}⊥, R((λS − T )′) = X ′. Therefore (λS − T )′

is injective, open with dense range. It remains to show that (λS − T )′ = λS′ − T ′.
Using [7, Proposition III 1.5], since λS is continuous and D(λS) = D(S) ⊃ D(T ),
then (λS − T )′ = (λS)′ − T ′ = λS′ − T ′ by [7, Proposition III 1.3 (c)]. Conversely,
it is clear with the same reasoning that if 0 ∈ ρS′(T ′) thus 0 ∈ ρ(T ′) = ρ(T ) then
0 ∈ ρS(T ). Now, if 0 6= λ ∈ ρS(T ), then λS′ − T ′ = (λS − T )′ is injective, open with
dense range. But G((λS − T )′) is closed. Thus λS′ − T ′ is a closed linear relation.
Using [7, Theorem III 4.2], R((λS − T )′) is closed, then R((λS − T )′) = X ′.

Moreover, by [7, Proposition III 1.4], R(λS − T ) = R(λS − T )⊥> = N((λS −
T )′)> = {0}> = X. On the other hand, by the same proposition, we haveN(λS − T ) =
R((λS − T )′)> = X ′> = {0}, and it is clear that N(λS − T ) ⊂ N(λS − T ), in fact,
if x ∈ N(λS − T ) then 0 ∈ (λS − T )x ⊂ (λS − T )x, thus x ∈ N(λS − T ). This gives
that N(λS − T ) = 0. Hence R((λS − T )′) = X ′ = N(λS − T )⊥, by [7, Proposi-
tion III 4.6 (b)], (λS − T ) is open, moreover it is injective with dense range. Then
λ ∈ ρS(T ). �

3. S-pseudospectra of linear relation

Throughout the next sections, X will denote a Banach space, ε > 0 and S, T ∈ LR(X)
such that S is continuos, T is closed with S(0) ⊂ T (0), D(S) ⊃ D(T ) and ‖S‖ 6= 0
except where stated otherwise. The purpose of this section is to define and characterise
the S-pseudospectra of multivalued linear operator and study some properties.

Definition 3.1. We define the S-pseudospectra of T by

σε,S(T ) = σS(T ) ∪
{
λ ∈ C such that ‖(λS − T )−1‖ > 1

ε

}
.

We denote the S-pseudoresolvent set of T by

ρε,S(T ) = C\σε,S(T ) = ρS(T ) ∩
{
λ ∈ C such that ‖(λS − T )−1‖ ≤ 1

ε

}
.

Remark 3.2. If 0 < ε1 < ε2, it is clear that σε1,S(T ) ⊂ σε2,S(T ).

Lemma 3.3. Let ε > 0. If λ /∈ σS(T ) then λ ∈ σε,S(T ) if and only if there exists
x ∈ X such that ‖(λS − T )x‖ < ε‖x‖.
Proof. Let λ ∈ σε,S(T )\σS(T ) then ‖(λS−T )−1‖ > 1

ε . Since (λS−T )−1 is continuous
operator, there exists a non-zero vector y ∈ X such that

‖(λS − T )−1y‖ > 1

ε
‖y‖. (1)
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Putting x := (λS − T )−1y, then y ∈ (λS − T )x. On the other hand, (λS − T )(0) =
λS(0)− T (0) = T (0) (as S(0) ⊂ T (0)). Hence

‖(λS − T )x‖ = d(y, (λS − T )(0)) = d(y, T (0)) ≤ d(y, 0) = ‖y‖. (2)

From (1) and (2), we have ‖x‖ > 1
ε‖y‖ ≥

1
ε‖(λS − T )x‖, hence ‖(λS − T )x‖ < ε‖x‖.

Conversely, assume there exists x ∈ X such that ‖(λS − T )x‖ < ε‖x‖. Since
λ ∈ ρS(T ), it is clear that λS−T is injective and open, then γ(λS−T )‖x‖ ≤ ‖(λS−
T )x‖ < ε‖x‖, so 0 < γ(λS − T ) < ε. Hence, we have γ(λS − T ) = ‖(λS − T )−1‖−1,
therefore λ ∈ σε,S(T ). �

Theorem 3.4. Let ε > 0. Then λ ∈ σε,S(T ) if and only if there exists a continuous
linear relation B satisfying D(B) ⊃ D(T ), B(0) ⊂ T (0), ‖B‖ < ε such that λ ∈
σS(T +B).

Proof. In the first case, assume that λ ∈ σε,S(T ). It is clear that if λ ∈ σS(T ), and
we may put B = 0. So we will discuss the second case when λ /∈ σS(T ). By Lemma
3.3 there exists x0 ∈ X, ‖x0‖ = 1 such that ‖(λS − T )x0‖ < ε; then, there exists
x′ ∈ X ′ such that ‖x′‖ = 1 and x′(x0) = ‖x0‖. We can define a relation B : X → X
by B(x) = x′(x)(λS − T )x0. It is clear that B is everywhere defined and single
valued. Since ‖Bx‖ = ‖x′(x)(λS − T )x0)‖ ≤ ‖x′‖‖x‖‖(λS − T )x0‖, for x 6= 0, we

have ‖Bx‖‖x‖ ≤ ‖(λS − T )x0‖, so, ‖B‖ < ε. On the other hand,

(λS − (T +B))x0 = (λS − T )x0 −Bx0 = (λS − T )x0 − x′(x0)(λS − T )x0

= (λS − T )(0) = (λS − T )(0)−B(0) = (λS − (T +B))(0),

therefore 0 6= x0 ∈ N(λS − (T + B)) and hence (λS − (T + B)) is not injective, so,
λ ∈ σS(T +B).

Conversely, we derive a contradiction from the assumption that λ /∈ σε,S(T ).
Then λ ∈ ρS(T ) and γ(λS−T ) ≥ ε. Therefore (λS−T ) is injective, open with dense
range, furthermore, B(0) ⊂ T (0) = (λS − T )(0), D(B) ⊃ D(T ) = D(λS − T ) and
‖B‖ < ε ≤ γ(λS − T ). Since λS − T −B is injective, open with dense range and so,
λ ∈ ρS(T +B) and this is a contradiction. �

Remark 3.5. (i) It follows, immediately, from Theorem 3.4, that for T ∈ CR(X)

and ε > 0: σε,S(T ) =
⋃
‖B‖<ε

B(0)⊂T (0)

D(B)⊃D(T )

σS(T +B).

(ii) Theorem 3.4 generalizes [8, Theorem 9.2.13].

Proposition 3.6. We have
⋂
ε>0

σε,S(T ) = σS(T ).

Proof. It is clear that σS(T ) ⊂ σε,S(T ) for all ε > 0, then σS(T ) ⊂
⋂
ε>0 σε,S(T ).

Conversely, if λ /∈ σS(T ) then λ ∈ ρS(T ), hence (λS − T )−1 is a bounded linear
operator, so there exists ε > 0 such that ‖(λS − T )−1‖ ≤ 1

ε . Then λ /∈ σε,S(T ) and
thus λ /∈

⋂
ε>0 σε,S(T ). �
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Proposition 3.7. Let T be injective with dense range and ‖S‖ 6= 0. Then

σε,S(T ) ⊂
{
λ ∈ C such that |λ| > γ(T )− ε

‖S‖

}
.

Proof. If γ(T ) < ε, then ‖T−1‖ = ‖(0S − T )−1‖ > 1
ε , hence 0 ∈ σε,S(T ) and there

is nothing to prove. If γ(T ) = ε > 0, then T = T − 0S is open, hence 0 ∈ ρS(T )
and furthermore ‖T−1‖ = ‖(0S − T )−1‖ = 1

ε . Then 0 /∈ σε,S(T ) and therefore
σε,S(T ) ⊂ {λ ∈ C such that |λ| > 0}. Now suppose that γ(T ) > ε. Then T is open,

injective and surjective. On the other hand, for λ ∈ C, such that |λ| ≤ γ(T )−ε
‖S‖ , then

‖λS‖ = |λ|‖S‖ ≤ γ(T )− ε, thus ‖λS‖ < γ(T ).

The relation λS − T is open, injective with dense range, i.e. λ ∈ ρS(T ) and for
x ∈ D(T ), since S(0) ⊂ T (0),

‖(λS − T )x‖ = ‖(T − λS)x‖ ≥ ‖Tx‖ − ‖λSx‖ ≥ (γ(T )− |λ|‖S‖)‖x‖.
Therefore γ(λS − T ) ≥ γ(T )− |λ|‖S‖ ≥ γ(T )− γ(T ) + ε = ε. So, ‖(λS − T )−1‖ ≤ 1

ε .

Then λ ∈ ρε,S(T ). Hence σε,S(T )⊂{λ ∈ C such that |λ| > γ(T )−ε
‖S‖ }. �

Theorem 3.8. σε,S(T ) is an open set.

Proof. Let λ ∈ ρε,S(T ). Then for r ∈]0,
ε

‖S‖
[ we have Bf (λ, r) ∩ ρε,S(T ) 6= ∅, where

Bf (λ, r) = {µ ∈ C such that |λ − µ| < r}. So there exists µ ∈ ρε,S(T ) such that
|λ−µ| ≤ r. Then µ ∈ ρS(T ) and γ(µS−T ) ≥ ε. Hence (µS−T ) is open, injective with
dense range. Also, |λ−µ| ≤ r < ε

‖S‖ , then ‖(λ−µ)S‖ = |λ−µ|‖S‖ < ε ≤ γ(µS−T ).

Hence (λ − µ)S + (µS − T ) = λS − T is open injective with dense range. Then
λ ∈ ρS(T ).

For x ∈ D(T ), since S(0) ⊂ T (0) we have

‖(λS − T )x‖ = ‖(T − µS) + (µ− λ)Sx‖ ≥ ‖(T − µS)x‖ − ‖(µ− λ)Sx‖
≥ ‖(T − µS)x‖ − |µ− λ|‖S‖‖x‖ ≥ (γ(T − µS)− |µ− λ| ‖S‖)‖x‖,

therefore γ(λS − T ) ≥ γ(µS − T ) − |µ − λ|‖S‖. Hence γ(λS − T ) ≥ ε − r‖S‖ ,
∀ 0 < r < ε

‖S‖ . Then γ(λS − T ) ≥ ε. So, λ ∈ ρε,S(T ). Therefore ρε,S(T ) is a closed

set. �

Theorem 3.9. σε,S(T ) = σε,S′(T ′).

Proof. At first, it is clear from the proof of Theorem 2.7 that (λS − T )′ = λS′ − T ′.
Now let λ ∈ ρε,S′(T ′). Then λ ∈ ρS′(T ′) and ‖(λS − T )′−1‖ ≤ 1

ε . By Theorem 2.7,
λ ∈ ρS(T ). So, (λS − T )−1 is continuous. From [7, Proposition III 1.3 and Proposi-
tion III 4.6 (c)], ‖(λS − T )−1‖ = ‖((λS − T )−1)′‖ ≤ 1

ε , thus λ ∈ ρε,S(T ).

Conversely, if λ ∈ ρε,S(T ), then ‖(λS−T )−1‖ ≤ 1
ε . By [7, Proposition III 1.3 and

Proposition III 4.6 (c)], ‖(λS−T )−1‖ = ‖(λS′−T ′)−1‖ ≤ 1
ε . Furthermore, λ ∈ ρS′(T ′)

by Theorem 2.7. Then λ ∈ ρε,S′(T ′). �
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4. S-essential pseudospectra of linear relation

In this section, we define the S-essential pseudospectra of a closed linear relation,
study some properties and establish some results of perturbation in the context of
linear relations.

Definition 4.1. Let T be a linear relation in CR(X) and ε > 0. The essential
pseudospectrum of T is the set σw,ε,S(T ) =

⋂
K∈KT (X) σε,S(T +K) where KT (X) :=

{K ∈ KR(X) such that D(K) ⊃ D(T ) and K(0) ⊂ T (0)}, and we define the essen-
tial pseudoresolvent set ρw,ε,S(T ) = C\σw,ε,S(T ).

Theorem 4.2. The following properties are equivalent:
(i) λ /∈ σw,ε,S(T ).

(ii) For all continuous linear relations B ∈ LR(X) such that D(B) ⊃ D(T ), B(0) ⊂
T (0) and ‖B‖ < ε, we have T +B − λS ∈ Φ(X) and i(T +B − λS) = 0.

(iii) For all continuous single valued relations D ∈ LR(X) such that D(D) ⊃ D(T )
and ‖D‖ < ε, we have T +D − λS ∈ Φ(X) and i(T +D − λS) = 0.

Proof. (i) ⇒ (ii) Let λ /∈ σw,ε,S(T ). Then there exists K ∈ KT (X) such that λ /∈
σε,S(T + K). Using Theorem 3.4, for all continuous linear relations B ∈ LR(X)
such that D(B) ⊃ D(T + K) = D(T ) ∩ D(K) = D(T ) as D(K) ⊃ D(T ), B(0) ⊂
(T +K)(0) = T (0) as K(0) ⊂ T (0) and ‖B‖ < ε, we have λ ∈ ρS(T +B +K). Then
T + B +K − λS is open, injective with dense range. But T is closed, K is compact
then K is continuous so B +K − λS is continuous. Furthermore (B +K − λS)(0) ⊂
T (0), then T + B + K − λS is closed. Hence R(T + B + K − λS) is closed. So,
R(T+B+K−λS) = X. Therefore T+B+K−λS ∈ Φ(X) and i(T+B+K−λS) = 0,
for all continuous linear relations B ∈ LR(X) such that D(B) ⊃ D(T ), B(0) ⊂ T (0)
and ‖B‖ < ε. It follows from [2, Lemma 3.6] that for all continuous linear relations
B ∈ LR(X) such that D(B) ⊃ D(T ), B(0) ⊂ T (0) and ‖B‖ < ε we have T+B−λS ∈
Φ(X) and i(T +B − λS) = 0.

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Let D be a continuous single valued relation in LR(X) such that

D(D) ⊃ D(T ) and ‖D‖ < ε; then we have T +D−λS ∈ Φ(X) and i(T +D−λS) = 0.
By [7, Proposition III 1.4 (a)], N((T +D − λS)′) = R(T +D − λS)⊥.

Let n = α(T+D−λS) = β(T+D−λS), {x1, . . . , xn} be a basis for N(T+D−λS)
and {y′1, . . . , y′n} be a basis for the N((T +D− λS)′). Using [11, Theorems I 2.5 and
2.6], there are functionals x′1, . . . , x

′
n ∈ X ′ (the adjoint space of X) and elements

y1, . . . , yn such that x′j(xk) = δjk and y′j(yk) = δjk, 1 ≤ j, k ≤ n, where δjk = 0 if j 6=
k and δjk = 1 if j = k. A single valued relation K is defined by Kx =

∑n
k=1 x

′
k(x)yk,

x ∈ X. K is bounded, since D(K) = X and ‖Kx‖ ≤ ‖x‖(
∑n
k=1 ‖x′k‖‖yk‖). Moreover,

the range of K is contained in a finite subspace of X. Then K is a finite rank relation
in X. By [7, Proposition V 1.3], K is compact. Let x ∈ N(T + D − λS), then
x =

∑n
k=1 αkxk, therefore, x′j(x) = αj , 1 ≤ j ≤ n. On the other hand, if x ∈ N(K)

then x′j(x) = 0, 1 ≤ j ≤ n. This proves that N(T + D − λS) ∩ N(K) = {0}. Now,
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if y ∈ R(K), then y =
∑n
k=1 αkyk, and hence, y′j(y) = αj , 1 ≤ j ≤ n. But, if

y ∈ R(T +D − λS), then y′j(y) = 0, 1 ≤ j ≤ n. Thus we obtain that

N(T +D − λS) ∩N(K) = {0} and R(T +D − λS) ∩R(K) = {0}. (3)

On the other hand, K ∈ KT (X) = KT+D−λS(X) since K(0) ⊂ T (0) = (T + D −
λS)(0) and D(K) ⊃ D(T ) = D(T + D − λS). We deduce from [2, Lemma 3.6] that
T +D +K − λS ∈ Φ(X) and i(T +D +K − λS) = 0.

If x ∈ N(T+D+K−λS) then 0 ∈ Tx+Dx+Kx−λSx, hence−Kx ∈ (T+D−λS)x
and so, Kx ∈ R(K)∩R(T+D−λS) = {0}. Therefore Kx = 0 and 0 ∈ (T+D−λS)x.
This implies that x ∈ N(T+D−λS)∩N(K), hence x = 0. Thus α(T+D+K−λS) = 0.
In the same way, one proves that R(T +D +K − λS) = X. Since T +D +K − λS
is closed by [2, Lemma 3.5], then λ ∈ ρS(T +D+K) for all continuous single valued
relations D ∈ LR(X) such that D(D) ⊃ D(T ) and ‖D‖ < ε.

But from the proof of Theorem 3.4 ((i) ⇒ (ii)), if λ ∈ σε,S(T +K) there exists a
continuous single valued relation D ∈ LR(X) satisfying D(D) ⊃ D(T + K) = D(T )
and ‖D‖ < ε such that λ ∈ σS(T + K + D). Hence λ /∈ σε,S(T + K) and since
K ∈ KT (X) λ /∈

⋂
K∈KT (X) σε,S(T +K), so λ /∈ σw,ε,S(T ). �

Remark 4.3. It follows immediately from Theorem 4.2 that for T ∈ CR(X) and
ε > 0, σw,ε,S(T ) =

⋃
‖D‖<ε

D(D)⊃D(T )

σw,S(T +D) =
⋃
‖B‖<ε

B(0)⊂T (0)

D(B)⊃D(T )

σw,S(T +B).

Proposition 4.4. Let T ∈ CR(X). Then:
(i) If 0 < ε1 < ε2 then σw,S(T ) ⊂ σw,ε1,S(T ) ⊂ σw,ε2,S(T ).

(ii) For ε > 0, σw,ε,S(T ) ⊂ σε,S(T ).

(iii)
⋂
ε>0 σw,ε,S(T ) = σw,S(T ).

Proof. (i) If λ /∈ σw,ε2,S(T ) then by Theorem 4.2 for all continuous linear relations B ∈
LR(X) such that D(B) ⊃ D(T ), B(0) ⊂ T (0) and ‖B‖ < ε2, we have T +B − λS ∈
Φ(X) and i(T + B − λS) = 0. Hence for all continuous linear relations B ∈ LR(X)
such that D(B) ⊃ D(T ), B(0) ⊂ T (0) and ‖B‖ < ε1, we have T + B − λS ∈ Φ(X)
and i(T +B − λS) = 0. Then λ /∈ σε1,S(T ).

On other hand, if λ /∈ σw,ε1,S(T ) then for all continuous linear relations B ∈
LR(X) such that D(B) ⊃ D(T ), B(0) ⊂ T (0) and ‖B‖ < ε1, we have T +B − λS ∈
Φ(X) and i(T +B − λS) = 0. In particular B = 0. Then λ /∈ σw,S(T ).

(ii) σw,ε,S(T ) =
⋂
K∈KT (X) σε,S(T + K) ⊂ σε,S(T + K) for all K ∈ KT (X). In

particular, K = 0.
(iii) From (i), σw,S(T ) ⊂ σw,ε,S(T ) for all ε > 0. Then σw,S(T ) ⊂

⋂
ε>0 σw,ε,S(T ).

Conversely, If λ /∈ σw,S(T ) then T − λS ∈ Φ(X) and i(T − λS) = 0. Therefore
R(T − λS) is closed and by [7, Theorem III 4.2] T − λS is open, so γ(T − λS) > 0.

Let ε be such that 0 < ε ≤ γ(T − λS) and let D be a single valued linear relation
in LR(X) such that D(D) ⊃ D(T ) and ‖D‖ < ε ≤ γ(T − λS).

By [7, Theorem III 4.6 (d)], γ(T−λS) = γ((T−λS)′) then ‖D‖ < ε ≤ γ((T−λS)′);
so from [7, Theorem V 5.12], T+D−λS ∈ Φ−(X). Now by [7, Theorem III 7.4], α(T+
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D − λS) ≤ α(T − λS) < ∞, and hence by [7, Proposition V 5.13] T + D − λS ∈
Φ+(X), so T + D − λS ∈ Φ(X). Furthermore from [7, Corollary V 15.7], we have
i(T + D − λS) = i(T − λS) = 0. Hence by Theorem 4.2, λ /∈ σw,ε,S(T ) and s,
λ /∈

⋂
ε>0 σw,ε,S(T ). It follows that

⋂
ε>0σw,ε(T ) ⊂ σw,S(T ). �

Theorem 4.5. σw,ε,S(T ) is a closed set.

Proof. Let λ ∈ ρw,ε,S(T ), then λ /∈ σw,ε,S(T ). Let D be a single valued continuous
linear relation such that D(D) ⊃ D(T ) and ‖D‖ < ε. Hence by Theorem 4.2, T +
D − λS ∈ Φ(X) and i(T + D − λS) = 0. So, R(T + D − λS) is closed and from [2,
Lemma 3.5], we have T +D−λS is closed. Then by [7, Theorem III 4.4], T +D−λS
is open and hence γ(T +D − λS) > 0.

Furthermore by [7, Theorem III 4.6 (d)], γ(T +D − λS) = γ((T +D − λS)′).

Let r > 0 such that r < γ(T+D−λS)
‖S‖ , let µ ∈ Bf (λ, r); then ‖(λ− µ)S‖ ≤ r‖S‖ <

γ(T +D−λS) = γ((T +D−λS)′). Therefore by [7, Theorem V 5.12], T +D−λS+
(λ − µ)S = T + D − µS ∈ Φ−(X), also by [7, Theorem III 7.4], α(T + D − µS) ≤
γ(T + D − λS) < ∞ as T + D − λS ∈ Φ(X). Then by [7, Proposition V 5.13],
T +D − µS ∈ Φ+(X), hence T +D − µS ∈ Φ(X).

On the other hand i(T +D − µS) = i(T +D − λS) = 0. Then for all continuous
single valued relations D ∈ LR(X) such that D(D) ⊃ D(T ) and ‖D‖ < ε, we have
T +D−µS ∈ Φ(X) and i(T +D−µS) = 0. By Theorem 4.2, µ ∈ ρw,ε,S(T ) and thus
there exists r > 0 such that Bf (λ, r) ⊂ ρw,ε,S(T ), Hence ρw,ε,S(T ) is an open set. �

Theorem 4.6. σw,ε,S(T ) = σw,ε,S′(T ′).

Proof. Let K ∈ KT (X); then K is compact, therefore it is continuous and by [7,
Corollary V 2.3 and Proposition V 5.3], K ′ is compact. Moreover, by Lemma 2.6,
K ′(0) ⊂ T ′(0) and D(K ′) ⊃ D(T ′). Hence KT (X) ⊂ {K ∈ LR(X) such that K is
continuous and K ′ ∈ KT ′(X ′)}. Now, let K ∈ {K ∈ LR(X) such that K is continuous
K ′ ∈ KT ′(X ′)}; by [7, Proposition V 5.3] K is compact.

From [7, Proposition III 1.4 (b)] K ′(0) = D(K)⊥ ⊂ T ′(0) = D(T )⊥; then D(K) ⊃
D(T ). Also, by [7, Proposition III 1.4 (d)], K(0) ⊂ K(0) = D(K ′)> ⊂ D(T ′)> = T (0)
as T is closed.

Then K ∈ KT (X). Hence,

KT (X) = {K ∈ LR(X) such that K is continuous and K ′ ∈ KT ′(X ′)}. (4)

On the other hand for K ∈ KT (X), T+K is closed. Using Theorem 3.9, σε,S(T+K) =
σε,S′((T + K)′). But D(K) ⊃ D(T ) and K is continuous; then by [7, Proposi-
tion III 1.5 (b)] (T +K)′ = T ′ +K ′ hence σε,S(T +K) = σε,S′(T ′ +K ′) for all K ∈
KT (X). Therefore by using (4) we have

σw,ε,S(T ) =
⋂

K∈KT (X)

σε,S(T +K) =
⋂

K′∈KT ′ (X′)

K∈LR(X)

K continuous

σε,S′(T ′ +K ′)

⊃
⋂

K′∈KT ′ (X′)

K∈LR(X)

σε,S′(T ′ +K ′) = σw,ε,S′(T ′).
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Let O :=
⋂

K′∈KT ′ (X′)

K∈LR(X)

K continuous

σε,S′(T ′ +K ′),

then O = σw,ε,S(T ) ⊃ σw,ε,S′(T ′). (5)

On the other hand, let λ ∈ O; hence for all K ∈ LR(X), K continuous such that
K ′ ∈ KT ′(X), λ ∈ σε,S′(T ′ + K ′). Let K ∈ LR(X) such that K ′ ∈ KT ′(X); by

[7, Corollary V.5.15] K̃ is compact; but G(K̃) is the completion of G(K) in the
complete space X, hence G(K̃) = G(K) = G(K). Hence K̃ = K is compact and hence

continuous. Furthermore, G(K
′
) = G(−K −1)⊥ = G(−K−1)

⊥
= G(−K−1)⊥ =

G(K ′). Hence K
′

= K ′. Thus K in LR(X), K is continuous and K ′ = K ′ ∈
KT ′(X ′); since λ ∈ O then λ ∈ σε,S′(T ′ +K

′
) = σε,S′(T ′ +K ′). We conclude that if

λ ∈ O, for all K ∈ LR(X) such that K ′ ∈ KT ′(X), then λ ∈ σε,S′(T ′ + K ′). Then
λ ∈

⋂
K′∈KT ′ (X′)

K∈LR(X)

σε,S′(T ′ + K ′) = σw,ε,S′(T ′). Hence O ⊂ σw,ε,S′(T ′). Using (5) we

have O = σw,ε,S(T ) = σw,ε,S′(T ′). �

Corollary 4.7. From Proposition 4.4 (iii), we obtain that σw,S(T ) = σw,S′(T ′).

Definition 4.8. Let P ∈ LR(X,Y ) be continuous where X, Y are normed spaces.
(i) P is called a Fredholm perturbation if T + P ∈ Φ(X,Y ) whenever T ∈ Φ(X,Y ).

(ii) P is called an upper semi-Fredholm perturbation if T + P ∈ Φ+(X,Y ) whenever
T ∈ Φ+(X,Y ).

(iii) P is called a lower semi-Fredholm perturbation if T + P ∈ Φ−(X,Y ) whenever
T ∈ Φ−(X,Y ).

The sets of Fredholm, upper and lower semi-Fredholm perturbations are denoted
by P(X,Y ), P+(X,Y ), and P−(X,Y ), respectively. If X = Y , we denote by P(X) :=
P(X,X), P+(X) := P+(X,X) and P−(X) := P−(X,X).

We denote also the set PT (X,Y ) := {P ∈ P(X,Y ) such that P (0) ⊂ T (0) and
D(P ) ⊃ D(T )}, P+T

(X,Y ) := {P ∈ P+(X,Y ) such that P (0) ⊂ T (0) and D(P ) ⊃
D(T )} and P−T

(X,Y ) := {P ∈ P−(X,Y ) such that P (0) ⊂ T (0) and D(P ) ⊃
D(T )}. We write P+T

(X) := P+T
(X,X), P−T

(X) := P−T
(X,X) and PT (X) :=

PT (X,X).

In general, by [2, Lemma 3.6], we have KT (X,Y ) ⊂ P+T
(X,Y ) ⊂ PT (X,Y ) and

KT (X,Y ) ⊂ P−T
(X,Y ) ⊂ PT (X,Y ).

Theorem 4.9. σw,ε,S(T ) =
⋂

P∈PT (X)

σε,S(T + P ).

Proof. Let O :=
⋂
P∈PT (X) σε,S(T + P ). Since KT (X) ⊂ PT (X), we infer that

O ⊂ σw,ε,S(T ). Conversely, let λ /∈ O; then there exists P ∈ PT (X) such that
λ /∈ σε,S(T + P ), or P is continuous. Then, T + P is closed. Thus, by Theorem 3.4
we see that λ ∈ ρS(T + B + P ) for all continuous linear relations B ∈ LR(X) such
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that B(0) ⊂ (T + P )(0) = T (0), D(B) ⊃ D(T + P ) = D(T ) ∩ D(P ) = D(T ) and
‖B‖ < ε. But (B + P − λS)(0) ⊂ T (0), D(B + P − λS) = D(B) ∩D(P ) ⊃ D(T ) and
T is closed, and T + B + P − λS is closed. Hence T + B + P − λS is injective and
surjective. Then we have T + B + P − λS ∈ Φ(X) and i(T + B + P − λS) = 0.
Since −P ∈ P(X), −P (0) = P (0) ⊂ (T + B + P − λS)(0) and D(−P ) = D(P ) ⊃
D(T +B+P −λS) = D(T )∩D(B)∩D(P )∩D(S), −P is in PT+B+P−λS(X). Hence
for all continuous linear relations B ∈ LR(X) such that B(0) ⊂ T (0), D(B) ⊃ D(T )
and ‖B‖ < ε, T + B − λS ∈ Φ(X) and i(T + B − λS) = 0. Finally, Theorem 4.2
shows that λ /∈ σw,ε,S(T ). �
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