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Abstract. Let κ, λ be infinite cardinal numbers with κ < λ ≤ 2κ. We show that there
exist precisely 2λ T0-spaces of size κ and weight λ up to homeomorphism. Among these
non-homeomorphic spaces we track down (i) 2λ zero-dimensional, scattered, paracompact,
perfectly normal spaces (which are also extremally disconnected in case that λ = 2κ); (ii) 2λ

connected and locally connected Hausdorff spaces; (iii) 2λ pathwise connected and locally
pathwise connected, paracompact, perfectly normal spaces provided that κ ≥ 2ℵ0 ; (iv) 2λ

connected, nowhere locally connected, totally pathwise disconnected, paracompact, perfectly
normal spaces provided that κ ≥ 2ℵ0 ; (v) 2λ scattered, compact T1-spaces; (vi) 2λ connected,
locally connected, compact T1-spaces; (vii) 2λ pathwise connected and scattered, compact
T0-spaces; (viii) 2λ scattered, paracompact Pα-spaces whenever κ<α = κ and λ<α = λ and
2λ > 2κ.

1. Introduction

Write |M | for the cardinal number (the size) of a set M and define c := |R| = 2ℵ0 . We
use κ, λ, µ throughout to stand for infinite cardinal numbers. As usual, w(X) denotes
the weight of a topological space X. Naturally, w(X) ≤ 2|X| and |X| ≤ 2w(X)

for every infinite T0-space X. It is trivial that w(X) ≤ |X| for every infinite, first
countable space X and well-known (see [2, 3.3.6]) that w(X) ≤ |X| for every compact
Hausdorff space X. Furthermore, w(X) ≥ |X| for every infinite, scattered T0-space
X (see Lemma 2.1 below).

According to the title, we are concerned with topological spaces X satisfying the
strict inequality w(X) > |X|. While the extreme case w(X) = 2|X| is of natural
interest, to investigate the case |X| < w(X) < 2|X| is reasonable in view of the
following remarkable fact.

(I) It is consistent with ZFC set theory that µ < λ implies 2µ < 2λ and that for every
regular κ there exist precisely 2κ cardinals λ with κ < λ < 2κ.
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166 Counting spaces of excessive weights

A short explanation why (I) is true is given in Section 2.
For fundamental enumeration theorems about spaces X with w(X) ≤ |X| see

[3,5–7,9]. However, it would be artificial to avoid an overlap with these enumeration
theorems and hence in the following we include the case w(X) = |X|. The benefit of
this inclusion is that we will also establish several new enumeration theorems about
spaces X with w(X) = |X|. A short proof of the following basic estimate is given in
the next section.
(II) If θ is an infinite cardinal and F is a family of mutually non-homeomorphic
infinite T0-spaces such that max{|X|, w(X)} ≤ θ for every X ∈ F then |F| ≤ 2θ.
For abbreviation let us call a Hausdorff space X almost discrete if and only if X \{x}
is a discrete subspace of X for some x ∈ X. Recall that a space is perfectly normal
when it is normal and every closed set is a Gδ-set. Note that every subspace of a
perfectly normal space is perfectly normal. Recall that a normal space is strongly
zero-dimensional if and only if for every closed set A and every open set U ⊃ A there
is an open-closed set V with A ⊂ V ⊂ U . Our first goal is to prove the following
enumeration theorem.

Theorem 1.1. If κ ≤ λ ≤ 2κ then there exist 2λ mutually non-homeomorphic scat-
tered, strongly zero-dimensional, hereditarily paracompact, perfectly normal spaces X
with |X| = κ and w(X) = λ. In case that λ ≤ 2µ < 2λ for some µ it can be
accomplished that all these spaces are also almost discrete. Moreover, it can be ac-
complished that all these spaces are almost discrete and extremally disconnected in
case that λ = 2µ for some µ (which includes the case λ = 2κ).

Since every scattered Hausdorff space is totally disconnected, the following theo-
rem is a noteworthy counterpart of Theorem 1.1. For abbreviation, let us call a space
X almost metrizable if and only if X is perfectly normal and X \ {x} is metrizable
for some x ∈ X. In view of Lemma 3.2 in Section 3, almost metrizable space are
hereditarily paracompact.

Theorem 1.2. If c ≤ κ ≤ λ ≤ 2κ then there exist 2λ mutually non-homeomorphic
pathwise connected, locally pathwise connected, almost metrizable spaces of size κ and
weight λ.

The restriction c ≤ κ in Theorem 1.2 is inevitable because if X is an infinite,
pathwise connected Hausdorff space then X is arcwise connected (see [2, 6.3.12.a])
and hence c = |[0, 1]| ≤ |X|. However, for infinite, connected Hausdorff spaces X the
restriction c ≤ |X| is not justified and we can prove the following theorem. Note that,
by applying (I) for κ = ℵ0, the existence of c infinite cardinals κ < c is consistent
with ZFC.

Theorem 1.3. If κ < c and κ ≤ λ ≤ 2κ then there exist 2λ mutually non-homeomorphic
connected and locally connected Hausdorff spaces of size κ and weight λ. In particu-
lar, up to homeomorphism there exist precisely 2c countably infinite, connected, locally
connected Hausdorff spaces and precisely c countably infinite, connected, locally con-
nected, second countable Hausdorff spaces.
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No space provided by Theorem 1.3 is completely regular because, naturally, every
completely regular space of size smaller than c and greater than 1 is totally dis-
connected. Moreover, every countably infinite, regular space is totally disconnected
(see [2, 6.2.8]). The connected spaces provided by Theorem 1.3 are totally pathwise
disconnected since they are Hausdorff spaces of size smaller than c. Therefore the
following counterpart of Theorem 1.2 is worth mentioning.

Theorem 1.4. If c ≤ κ ≤ λ ≤ 2κ then there exist 2λ mutually non-homeomorphic
connected, totally pathwise disconnected, nowhere locally connected, almost metrizable
spaces of size κ and weight λ.

2. Some explanations and preparations

Referring to Jech’s profound textbook [4], a proof of (I) can be carried out as follows.
Define in Gödel’s universe L for every regular cardinal κ a cardinal number θ(κ)
by θ(κ) := min{µ | µ = ℵµ ∧ cfµ = κ+}. Then |{λ | κ < λ < θ(κ)}| = θ(κ)
holds in every generic extension of L. By applying Easton’s theorem [4, 15.18] one
can create an Easton universe E generically extending L such that the continuum
function κ 7→ 2κ = κ+ in L is changed into κ 7→ 2κ = g(κ) in E with g(κ) = θ(κ) for
every regular cardinal κ. So in E we have |{λ | κ < λ < 2κ}| = 2κ for every regular κ.
By definition, in E we have 2α < 2β whenever α, β are regular cardinals with α < β.
Therefore and in view of [4, Theorem 5.22 and Exercise 15.12], if µ is singular in E
then 2µ is a successor cardinal in E while 2κ is a limit cardinal in E for every regular
κ in E. Consequently, in E we have 2µ < 2λ whenever µ, λ are arbitrary cardinals
with µ < λ.

In order to verify (II), first of all it is clear that a topological space (X, τ) has a
basis of size λ ≤ |τ | if and only if w(X) ≤ λ. Let S be an infinite set of size ν and
let P be the power set of S, whence |P | = 2ν . Let µ(ν, λ) denote the total number
of all topologies τ on S such that (S, τ) has a basis B of size λ. Clearly, µ(ν, λ) = 0
if λ > 2ν . For λ ≤ 2ν we have µ(ν, λ) ≤ |P |λ = max{2ν , 2λ}. So if θ and F satisfy
the assumption in (II) then |F| is not greater than the sum Σ of all cardinals µ(ν, λ)
with (ν, λ) running through the set Q := {κ | κ ≤ θ}2. Thus from µ(ν, λ) ≤ 2θ for all
(ν, λ) ∈ Q we derive Σ ≤ 2θ and this concludes the proof of (II).

In the following we write down a short proof of an important fact mentioned in
the previous section.

Lemma 2.1. If X is an infinite scattered T0-space then w(X) ≥ |X|.

Proof. Since X is infinite and T0, no basis of X is finite. Assume that λ := w(X) <
|X| and let B be a basis of X with |B| = λ. Let X∗ denote the set of all x ∈ X such
that |U | > λ for every neighborhood U of x. Then X \X∗ ⊂

⋃
{U ∈ B | |U | ≤ λ} and

hence |X \X∗| ≤ λ. Consequently, X∗ 6= ∅ and if x ∈ X∗ and U is a neighborhood
of x then |X∗ ∩ U | > λ (since |U | > λ). Therefore, the nonempty set X∗ is dense in
itself and hence the space X is not scattered. �



168 Counting spaces of excessive weights

In order to settle the case 2κ = 2λ in Theorems 1.1, 1.2 and 1.4 we will apply the
following two enumeration theorems about metrizable spaces. Note that, other than
in the model E which proves (I), for κ < λ ≤ 2κ we can rule out 2κ = 2λ only in case
that λ = 2κ. (Thus the following two propositions can be ignored if Theorems 1.1, 1.2
and 1.4 are only read as enumeration theorems about spaces X of maximal possible
weights 2|X|.)

Let X + Y denote the topological sum of two Hausdorff spaces X and Y . (So
X + Y is a space S such that S = X̃ ∪ Ỹ for disjoint open subspaces X̃, Ỹ of S
where X̃ is homeomorphic to X and Ỹ is homeomorphic to Y .) If Y = ∅ then we put
X + Y = X.

Proposition 2.2. For every κ there is a family Hκ of mutually non-homeomorphic
scattered, strongly zero-dimensional metrizable spaces of size κ such that |Hκ| = 2κ

and if D is any discrete space (including the case D = ∅) then the spaces H1 +D and
H2 +D are never homeomorphic for distinct H1, H2 ∈ Hκ.

By Lemma 2.1 and since w(Y ) ≤ |Y | for every metrizable space Y , we have
w(X) = |X| for every X ∈ Hκ. Proposition 2.2 can be verified by considering
the spaces constructed in [7] which proves [7, Theorem 1]. Because these spaces X
are revealed as mutually non-homeomorphic ones by investigating the αth Cantor
derivative X(α) for every ordinal α > 0. And, naturally, if X is any space and D is
discrete then (X+D)(α) = X(α) for every α > 0. The following proposition is proved
in [5] Section 4 (if X is connected then a ∈ X is a noncut point when a is not a cut
point, i.e. when X \ {a} remains connected.)

Proposition 2.3. For every κ ≥ c there is a family Pκ of mutually non-homeomorphic
pathwise connected, locally pathwise connected, complete metric spaces of size and
weight κ such that |Pκ| = 2κ and if H ∈ Pκ then H contains a noncut point and the
cut points of H lie dense in H.

3. Almost discrete and almost metrizable spaces

In accordance with [11], a space is completely normal when every subspace is normal.
In [2] such spaces are called hereditarily normal.

Lemma 3.1. If X is a Hausdorff space and z ∈ X such that X \{z} is a discrete sub-
space of X then X is scattered and completely normal and strongly zero-dimensional.

Proof. Put Y := X \ {z}. Since Y is a discrete and open subspace of X, every
nonempty subset of X contains an isolated point, whence X is scattered. Let A,B ⊂
X with A ∩ B = A ∩ B = ∅. If z 6∈ A ∪ B then A,B ⊂ Y and hence A ⊂ U and
B ⊂ V with the two disjoint open sets U = A and V = B. Assume z ∈ A ∪ B and,
say, z ∈ A. Then z 6∈ B and hence B ⊂ Y . Thus A ⊂ Ũ and B ⊂ Ṽ with the two
disjoint open sets Ũ = X \ B and Ṽ = B. So X is completely normal. Finally, let
A ⊂ X be closed. If z 6∈ A then A is open. If z ∈ A and U is an open neighborhood
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of A then U is closed since X \ U ⊂ Y . So every closed subset of X has a basis of
open-closed neighborhoods and hence X is strongly zero-dimensional. �

Lemma 3.2. If Z is a regular space such that Z \ {z} is paracompact for some z ∈ Z
then Z is paracompact.

Proof. Let U be an open cover of Z. Trivially, U∗ := {U \ {z} | U ∈ U} is an open
cover of the paracompact open subspace P = Z \ {z} of Z. Hence we can find an
open cover V∗ of P which is a locally finite refinement of U∗. Fix one set Uz ∈ U with
z ∈ Uz and choose a closed neighborhood C of z in the regular space Z such that
C ⊂ Uz. Now put V := {V ∗ \ C | V ∗ ∈ V∗} ∪ {Uz}. Clearly, V is an open cover of
Z which is a refinement of U . If z 6= x ∈ Z then some neighborhood of x meets only
finitely many members of V∗ and hence only finitely many members of V. And C is
a neighborhood of z which meets V ∈ V if and only if V = Uz. Therefore, the cover
V is locally finite in Z and hence Z is paracompact. �

Since metrizability implies paracompactness and since the union of two Gδ-sets is
a Gδ-set, from Lemma 3.1 and Lemma 3.2 we derive the following two corollaries.

Corollary 3.3. Let X be a Hausdorff space and z ∈ X such that X \ {z} is a
discrete subspace of X and {z} is a Gδ-set in X. Then the almost discrete space X
is hereditarily paracompact and perfectly normal.

Corollary 3.4. Let X be a regular space and z ∈ X such that the subspace X \ {z}
is metrizable and {z} is a Gδ-set in X. Then X is hereditarily paracompact and
perfectly normal and hence almost metrizable.

4. The single filter topology

Let X, z be as in Lemma 3.1 and consider the family U of all open neighborhoods of
the point z. Since {x} is open in X whenever z 6= x ∈ X, the family U coincides with
the neighborhood filter at z in the space X. Consequently, U∗ := {U \{z} | U ∈ U} is
the power set of X \ {z} if z is isolated in X or, equivalently, if X is discrete. And U∗
is a filter on the set X \ {z} if z is a limit point of X or, equivalently, if the discrete
subspace X \ {z} is dense in X. Since X is Hausdorff, it is plain that

⋂
U∗ = ∅.

Conversely, let Y be an infinite set and z 6∈ Y and let F be a filter on the set Y .
Define a topology τ [F ] on the set X := Y ∪{z} by declaring U ⊂ X open if and only
if either z 6∈ U or U = {z} ∪ F for some F ∈ F . It is plain that this is a correct
definition of a topology on the set X. Furthermore, Y is a discrete and open and
dense subspace of (X, τ [F ]), whence {z} is closed in X. It is plain that (X, τ [F ]) is
a Hausdorff space if and only if the filter F is free, i.e.

⋂
F = ∅. So by Lemma 3.1

the almost discrete space (X, τ [F ]) is hereditarily paracompact and scattered and
strongly zero-dimensional for every free filter F on Y .

For abbreviation throughout the paper let us call a filter F ω-free if and only if⋂
A = ∅ for some countable A ⊂ F . In view of Corollary 3.3 the following statement

is evident.
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(III) If F is a filter on Y then (X, τ [F ]) is almost discrete and perfectly normal if
and only if F is ω-free.

The following observation is essential for the proof of Theorem 1.1.

(IV) If F is a free filter on Y then the almost discrete space (X, τ [F ]) is extremally
disconnected if and only if F is an ultrafilter.

Proof. Firstly let F be a free ultrafilter. Let U ⊂ X be open. If U = U then U is
open. So assume U 6= U . Then U = U ∪{z} and z 6∈ U since z is the only limit point
in X. Thus U ⊂ Y and z is a limit point of U . Hence every open neighborhood of
z meets U . In other words, F ∩ U 6= ∅ for every F ∈ F . Consequently, U ∈ F since
F is an ultrafilter. Thus U = U ∪ {z} is open in X, whence (X, τ [F ]) is extremally
disconnected. Secondly, let F be a free filter and assume that (X, τ [F ]) is extremally
disconnected. Let A ⊂ Y , whence A is open in X. If A = A then X \ A is open and
hence Y \ A lies in F . If A 6= A then A = {z} ∪ A is open and hence A lies in F .
This reveals F as an ultrafilter. �

Remark 4.1. If |Y | = ℵ0 and F is a free ultrafilter on Y then τ [F ] is the well-known
single ultrafilter topology (see [11, Example 114]).

For a filter F on Y let χ(F) denote the least possible size of a filter base which
generates F . Trivially, χ(F) ≤ |F| ≤ 2|Y |. The notation χ(·) corresponds with the
obvious fact that χ(F) is the character of z in (X, τ [F ]). (The character χ(a,A) of a
point a in a space A is the smallest possible size of a local basis at a in the space A.)
Therefore, since {y} is open in (X, τ [F ]) for every y ∈ Y , we obtain:
(V) If F is a free filter on Y then the weight of (X, τ [F ]) is max{|Y |, χ(F)}.

Proposition 4.2. If |Y | = κ ≤ λ ≤ 2κ then there exist 2λ ω-free filters F on Y such
that χ(F) = λ.

Remark 4.3. The cardinal 2λ in Proposition 4.2 is best possible. Indeed, let Y be
an infinite set of size κ and let λ ≥ κ. Since a filter base on Y is a subset of the power
set of Y , there are at most 2λ filter bases B on Y with |B| = λ. Hence Y cannot carry
more than 2λ filters F with χ(F) = λ.

Proof (of Proposition 4.2). Assume |Y | = κ ≤ λ ≤ 2κ and let A be a family of subsets
of Y such that |A| = 2κ and
(VI) If D, E 6= ∅ are disjoint finite subfamilies of A then

⋂
D 6⊂

⋃
E.

A construction of such a family A is elementary, see [4, 7.7]. However, this is not
enough for our purpose. In view of the property ω-free, we additionally have to
make sure that the family A also contains a countably infinite family Aω such that⋂
Aω = ∅. By applying Lemma 11.3 in Section 11 for µ = ℵ0 we can assume that

such a family Aω ⊂ A exists. Now put Aλ := {H | Aω ⊂ H ⊂ A∧ |H| = λ}. Clearly,
|Aλ| = (2κ)λ = 2λ. By virtue of (VI), if for H ∈ Aλ we put

BH := {H1 ∩ · · · ∩Hn | n ∈ N ∧H1, . . . ,Hn ∈ H}
then ∅ 6∈ BH and hence BH is a filter base on Y . For every H ∈ Aλ let F [H] denote
the filter on Y generated by BH. Clearly, |BH| = |H| = λ for every H ∈ Aλ.
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The filter F [H] is ω-free because Aω ⊂ F [H] by definition. Furthermore, (VI)
implies that for distinct families H1,H2 ∈ Aλ the filters F [H1] and F [H2] must be
distinct. So the family {F [H] | H ∈ Aλ} consists of 2λ ω-free filters on Y .

It remains to verify that χ(F [H]) = λ for every H ∈ Aλ. Assume indirectly
that for some H ∈ Aλ we have χ(F [H]) 6= λ and hence χ(F [H]) < λ. (Clearly
χ(F [H]) ≤ λ since |BH| = |H| = λ.) Choose a filter base B on Y which generates the
filter F [H] such that |B| < λ. Since B ⊂ F [H] and F [H] is generated by the filter
base BH, we can choose for every B ∈ B a finite set HB ⊂ H such that B ⊃

⋂
HB .

Put U :=
⋃
B∈BHB . Then U ⊂ H and |U| ≤ |B| < λ. Consequently, H \ U 6= ∅.

Choose any set A ∈ H \ U . Then A ∈ F [H] and hence we can find a set B ∈ B with
A ⊃ B. Then A ⊃

⋂
HB and hence A ∈ HB by virtue of (VI). But then A ∈ U in

contradiction with choosing A in H \ U . �

Proposition 4.2 can be improved in the important case λ = 2κ as follows.

Proposition 4.4. On an infinite set of size κ there exist precisely 22
κ

ω-free ultra-
filters F such that χ(F) = 2κ.

Proof. Let Y be a set of size κ. As in the previous proof let A be a family of subsets
of Y such that |A| = 2κ and (VI) holds. Here we need not consider Aω ⊂ A. Let A
denote the family of all subfamilies G of A such that |G| = 2κ. Clearly, |A| = 22

κ

. Now
for every G ∈ A defineW[G] := G∪{Y \

⋂
H | H ⊂ G∧|H| ≥ ℵ0}∪{Y \A | A ∈ A\G}.

A moment’s reflection suffices to see that (VI) implies that W1 ∩ · · · ∩Wn 6= ∅
whenever W1, . . . ,Wn ∈ W[G]. Hence for every G ∈ A we can choose an ultrafilter
U [G] on Y such that U [G] ⊃ W[G] (see [1, 7.1]).

If G1,G2 ∈ A are distinct and, say, G ∈ G1 \G2 then G ∈ W[G1] and Y \G ∈ W[G2]
and hence G ∈ U [G1] and G 6∈ U [G2] and hence the ultrafilters U [G1] and U [G2] are
distinct as well. Consequently, the family {U [G] | G ∈ A} consists of 22

κ

ultrafilters
on Y . All these ultrafilters are ω-free because if G ∈ A and H is a countably infinite
subset of G then by virtue of (VI) the family H∗ := {H \

⋂
H | H ∈ H} is countably

infinite and it is trivial that
⋂
H∗ = ∅ and from H ⊂ W[G] and Y \

⋂
H ∈ W[G] we

derive H∗ ⊂ U [G]. (Actually, by a deep argument from set theory it is superfluous to
verify that U [G] is ω-free, see the remark below.)

Finishing the proof, we claim that χ(U [G]) = 2κ for every G ∈ A. Assume
indirectly that for G ∈ A the ultrafilter U [G] is generated by a filter base B with
|B| < 2κ. Since G ⊂ U [G], for every G ∈ G we have G ⊃ B for some B ∈ B. From
|B| < |G| we derive the existence of a set B ∈ B and an infinite subset H ⊂ G such
that H ⊃ B for every H ∈ H. Consequently,

⋂
H ⊃ B and hence

⋂
H ∈ U [G]. This,

however, is a contradiction since Y \
⋂
H lies in U [G] by the definition of W[G]. �

Remark 4.5. Our proof of Proposition 4.4 is elementary and purely set-theoretical.
There is also a topological but much less elementary way to prove Proposition 4.4.
First of all, if one can prove that any set of size κ carries 22

κ

ultrafilters of character
2κ then Proposition 4.4 must be true. Because, an ultrafilter F is free if and only if
χ(F) > 1 and if a free ultrafilter F is not ω-free then it is plain that F is σ-complete.
However, the existence of a σ-complete free ultrafilter is unprovable in ZFC (see [4,
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10.2 and 10.4]). Now, consider the set Y of size κ equipped with the discrete topology
and consider the Stone-Čech compactification βY of Y and its compact remainder
Y ∗ = βY \ Y . So the points in Y ∗ are the free ultrafilters on Y and if for p ∈ Y ∗ we
consider the subspace Y ∪{p} of βY then it is clear that the character of the ultrafilter
p equals χ(p, Y ∪{p}). It is a nice exercise to verify that χ(p, Y ∪{p}) = χ(p, Y ∗) for
every p ∈ Y ∗. By embedding an appropriate Stone space of a Boolean algebra into Y ∗

it can be proved that Y ∗ must contain 22
κ

points p with χ(p, Y ∗) = 2κ, see [1, 7.13,
7.14, 7.15].

5. Proof of Theorem 1.1

Assume µ ≤ κ ≤ λ ≤ 2µ and let Y be a set of size µ. Let Fλ denote a family of ω-free
filters on Y such that |Fλ| = 2λ and χ(F) = λ for every F ∈ Fλ. Such a family exists
by Proposition 4.2. We additionally assume that if λ = 2µ then every member of Fλ
is an ultrafilter. This additional assumption is justified by Proposition 4.4.

Now fix z 6∈ Y and for every F ∈ Fλ consider the single filter topology τ [F ] on the
set X = Y ∪ {z} as in Section 4. If µ < κ then let D be a discrete space of size κ. If
µ = κ then put D = ∅. In both cases define the space (X̃, τ̃ [F ]) as the topological sum
of D and the space (X, τ [F ]). (So if µ = κ then X̃ = X and τ̃ [F ] = τ [F ].) Clearly,
X̃ is almost discrete, scattered, strongly zero-dimensional, hereditarily paracompact,
and perfectly normal. Furthermore, w(X̃) = λ and |X̃| = κ. If λ = 2µ then the space
X̃ is also extremally disconnected by virtue of (IV).

Obviously, τ̃ [F1] 6= τ̃ [F2] whenever the filters F1,F2 ∈ Fλ are distinct. (For
if F1,F2 ∈ Fλ and F ∈ F1 \ F2 then F ∪ {z} is τ̃ [F1]-open but not τ̃ [F2]-open.)
Consequently, the family Tλ := {τ̃ [F ] | F ∈ Fλ} is of size 2λ.

We distinguish the two cases 2λ > 2µ and 2λ ≤ 2µ. Assume firstly that 2λ > 2µ

or, equivalently, that |Tλ| > 2µ. Define an equivalence relation ∼ on Tλ by τ1 ∼ τ2 if
and only if the spaces (X̃, τ1) and (X̃, τ2) are homeomorphic. We claim that the size
of an equivalence class cannot be greater than 2µ.

This is clearly true if µ = κ because there are only 2µ permutations on X. So
assume µ < κ. If τ ∈ Tλ then in the space (X̃, τ) the point z is the only limit point
and every neighborhood U of z is open-closed. As a consequence, for τ1, τ2 ∈ Tλ the
spaces (X̃, τ1) and (X̃, τ2) are homeomorphic if and only if there is a homeomorphism
ϕ from the τ1-subspace X of X̃ onto some τ2-open-closed subspace of X̃. Indeed,
if f is a homeomorphism from (X̃, τ1) onto (X̃, τ2) then put ϕ(x) = f(x) for every
x ∈ X and ϕ fits since f(z) = z. Conversely, if ϕ is a homeomorphism from the
τ1-subspace X of X̃ onto some τ2-open-closed subspace of X̃ and g is any bijection
from X̃ \X onto X̃ \ϕ(X) then it is plain that a homeomorphism f from (X̃, τ1) onto
(X̃, τ2) is defined by f(x) = ϕ(x) for x ∈ X and f(x) = g(x) for x 6∈ X. Note that
|X̃ \X| = |X̃ \ ϕ(X)| since µ < κ. Therefore, since there are precisely κµ mappings
from X into X̃, the size of an eqivalence class in Tλ cannot exceed κµ. And from
2 < µ ≤ κ ≤ 2µ we derive 2µ ≤ µµ ≤ κµ ≤ (2µ)µ = 2µ and hence κµ = 2µ.

So the size of an equivalence class can indeed not be greater than 2µ. Consequently,
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|Tλ| > 2µ implies that the total number of all equivalence classes equals |Tλ| =
2λ. Thus by choosing one topology in each equivalence class we obtain 2λ mutually
non-equivalent topologies τ ∈ Tλ and hence the 2λ corresponding spaces (X̃, τ) are
mutually non-homeomorphic. This settles the case 2λ > 2µ. In particular, we have
already proved the second and the third statement in Theorem 1.1 because, under
the assumption κ ≤ λ ≤ 2κ, if λ = 2µ for some µ then λ = 2µ (and hence 2λ > 2µ)
for some µ ≤ κ and if λ ≤ 2µ < 2λ and µ > κ then 2κ ≤ 2µ < 2λ and hence 2λ > 2µ

′

for µ′ = κ.
Secondly assume that 2λ ≤ 2µ. Then we have 2λ = 2κ since µ ≤ κ ≤ λ implies

2µ ≤ 2κ ≤ 2λ. So in order to conclude the proof of Theorem 1.1 we assume κ ≤ λ ≤
2κ = 2λ. (Then, of course, κ ≤ λ < 2κ = 2λ.) Since the special case κ = λ is settled
by Proposition 2.2, we also assume κ < λ. For two spaces X1 and X2 let, again,
X1 + X2 denote the topological sum of X1 and X2. Let Hκ be a family provided
by Proposition 2.2. Due to metrizability, every space in Hκ is perfectly normal and
hereditarily paracompact.

By considering an appropriate single filter topology on a set of size κ, we can
choose a perfectly normal space Z of size κ such that for some point z ∈ Z the
subspace Z \ {z} is discrete and χ(z, Z) = λ. (Consequently, w(Z) = λ.) For every
space H ∈ Hκ consider the topological sum H + Z. Of course, the topological sum
of two paracompact spaces is paracompact and (H + Z) \ {z} = H + (Z \ {z}) for
every H ∈ Hκ. Consequently, for every H ∈ Hκ the space H + Z is scattered and
strongly zero-dimensional and perfectly normal and hereditarily paracompact and
|H +Z| = |H| = κ and w(H +Z) = max{w(H), w(Z)} = max{κ, λ} = λ. Therefore,
since |Hκ| = 2κ, the case 2λ = 2κ in Theorem 1.1 is settled by showing that for
two distinct (and hence non-homeomorphic) metrizable spaces H1, H2 ∈ Hκ the two
spaces H1 + Z and H2 + Z are never homeomorphic. Assume that H1, H2 ∈ Hκ
and that f is a homeomorphism from H1 + Z onto H2 + Z. Then f(z) = z since
w((Hi + Z) \ {z}) = κ < λ and χ(z,Hi + Z) = χ(z, Z) = λ. Consequently, f
maps (H1 + Z) \ {z} onto (H2 + Z) \ {z}. Therefore, since Z \ {z} is discrete and
(H + Z) \ {z} = H + (Z \ {z}) for every H ∈ Hκ, we have H1 = H2 in view of
Proposition 2.2.

6. Proof of Theorem 1.2

In order to find a natural way to prove Theorem 1.2 (and also Theorem 1.4) we give
a short proof of the following consequence of Theorem 1.2.
(VII) If c ≤ κ ≤ λ ≤ 2κ then there exist 2λ mutually non-homeomorphic pathwise
connected, paracompact Hausdorff spaces of size κ and weight λ.
From Theorem 1.1 (VII) can easily be derived as follows. Assume c ≤ κ ≤ λ ≤ 2κ.
By Theorem 1.1 there exists a family P of 2λ mutually non-homeomorphic, totally
disconnected, paracompact Hausdorff spaces X of size κ and weight λ. For every
X ∈ F let Q(X) denote the quotient space of X × [0, 1] by its closed subspace
X × {1}. The quotient space Q(X) can be directly defined as follows. Consider the
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product space X × [0, 1[ and fix p 6∈ X × [0, 1[ and put Q(X) := {p} ∪ (X × [0, 1[).
Declare a subset U of Q(X) open if and only if U \ {p} is open in the product space
X× [0, 1[ and p ∈ U implies that (U \ {p})∪ (X×{1}) is open in the space X× [0, 1].
One can picture Q(X) as a cone with apex p and all rulings {p}∪({x}× [0, 1[)(x ∈ X)
homeomorphic to the unit interval [0, 1]. By [2, 5.1.36 and 5.1.28] both X × [0, 1] and
X × [0, 1[ are paracompact. Consequently, Q(X) is a regular space and hence Q(X)
is paracompact in view of Lemma 3.2. It is evident that Q(X) is pathwise connected.
Trivially, |Q(X)| = κ.

Unfortunately, we can be sure that w(Q(X)) = λ for every X ∈ P only if λ =
2κ. (Since |Q(X)| = κ, we have w(Q(X)) ≤ 2κ. On the other hand, w(Q(X)) ≥
w(Q(X) \ {p}) = w(X × [0, 1[) = w(X) = λ.) The problem with the weight is that if
µ is the character of the apex p then w(Q(X)) = max{w(X × [0, 1[), µ} = max{λ, µ}.
But we cannot rule out λ < µ if λ < 2κ. Of course, if X ∈ P is compact then
µ = ℵ0 and hence w(Q(X)) = λ (but also λ ≤ |X| = κ). Fortunately, we can
make the character of the apex countable also by harshly reducing the filter of the
neighborhoods of p. Let Q∗(X) be defined as the cone Q(X) but with the (only)
difference that U ⊂ {p} ∪ (X × [0, 1[) is an open neighborhood of p if and only if
U \ {p} is open in X × [0, 1[ and U ⊃ X × [t, 1[ for some t ∈ [0, 1[. Now we have
χ(p,Q∗(X)) = ℵ0 and hence w(Q∗(X)) = w(X) for every X ∈ P. Of course, Q∗(X) is
pathwise connected. By the same arguments as for Q(X), the space Q∗(X) is regular
and paracompact. Finally, the spaces Q(X)(X ∈ P) are mutually non-homeomorphic
because every X ∈ P can be recovered (up to homeomorphism) from Q(X). Indeed,
since X is totally disconected, if Z is the set of all z ∈ Q(X) such that Q(X) \ {z}
remains pathwise connected then it is evident that Z = X × {0} and hence Z is
homeomorphic with X. This concludes the proof of (VII).

In the following proof of Theorem 1.2 we will also work with cones but we cannot
use the conesQ(X) orQ∗(X) because it is evident that ifX is not discrete then neither
Q(X) nor Q∗(X) is locally connected. Furthermore, by virtue of Corollary 3.4 and
since {p} is a Gδ-set in the space Q∗(X), the cone Q∗(X) is almost metrizable if
and only if X is metrizable (then w(Q∗(X)) = w(X) = κ). Consequently, Q∗(X) is
locally connected and almost metrizable if and only if X is discrete. Now the clue
in the following proof of Theorem 1.2 is to consider Q∗(S) for one discrete spaces S
of size (and weight) κ and to reduce the topology of Q∗(S) in 2λ ways such that the
weight κ of Q∗(S) is increased to λ and that 2λ non-homeomorphic spaces as desired
are obtained. First of all we need a lemma.

Lemma 6.1. If n ∈ N and A is a topological space and a ∈ A and A1, . . . , An are
metrizable, closed subspaces of A and A = A1 ∪ · · · ∪An and Ai ∩Aj = {a} whenever
1 ≤ i < j ≤ n then the space A is metrizable.

Proof. Assume n ≥ 2. Clearly, if 1 ≤ i ≤ n then Ai \ {a} = A \
⋃
j 6=iAj is an

open subset of A. Furthermore, if a ∈ Ui ⊂ Ai and Ui is open in the subspace Ai
for 1 ≤ i ≤ n then U1 ∪ · · · ∪ Un is an open subset of the space A. (Because if
Vi is an open subset of A with Ui = Vi ∩ Ai for 1 ≤ i ≤ n then U1 ∪ · · · ∪ Un =
(V1 ∩ · · · ∩ Vn) ∪

⋃n
i=1(Vi ∩ (Ai \ {a}).) For 1 ≤ i ≤ n consider Ai equipped with
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a suitable metric di. Define a mapping from A × A into R in the following way. If
x, y ∈ Ai for some i then put d(x, y) = di(x, y). If x ∈ Ai and y ∈ Aj for distinct i, j
then put d(x, y) = di(x, a) +dj(y, a). Of course, d is a metric on the set A. (One may
regard A as a hedgehog with body a and spines A1, . . . , An.) By considering the open
neighborhoods of the point a in the space A we conclude that the topology generated
by the metric d coincides with the topology of the space A. �

Now we are ready to prove Theorem 1.2. Assume c ≤ κ < λ ≤ 2κ. (We ignore
the case κ = λ because this case is covered by Proposition 2.3.) Let S be a discrete
space of size κ and F an ω-free filter on S with χ(F) = λ. Consider the metrizable
product space S× [0, 1[ and fix p 6∈ S× [0, 1[ and define a topological space Φ[F ] in the
following way. The points in the space Φ[F ] are the elements of {p}∪(S× [0, 1[) and a
subset U of {p}∪(S× [0, 1[) is open if and only if firstly U \{p} is open in the product
space S× [0, 1[ and secondly the point p lies in U only if (S× [t, 1[)∪ (F × [0, 1[) ⊂ U
for some t ∈ [0, 1[ and some F ∈ F .

It is plain that this is a correct definition of a topological space such that the
subspace Φ[F ] \ {p} is identical with the product space S × [0, 1[. Similarly as above
we picture Φ[F ] as a cone with apex p and the rulings {p} ∪ ({x} × [0, 1[)(x ∈ X)
homeomorphic to the unit interval [0, 1]. (Obviously, the topology of Φ[F ] is strictly
coarser than the topology of the cone Q∗(S).) It is straightforward to verify that
Φ[F ] is a regular space. Hence by Corollary 3.4 the space Φ[F ] is almost metrizable.
(Since F is ω-free and [0, 1] is second countable, it is clear that {p} is a Gδ-set.) Since
the subspace {p} ∪ ({s} × [t, 1[) of Φ[F ] is a homeomorphic copy of the compact unit
interval [0, 1] for every s ∈ S and every t ∈ [0, 1[ and since S is discrete, it is clear that
Φ[F ] is pathwise connected and locally pathwise connected. Trivially, |Φ[F ]| = κ.

Clearly, if B is a filter base on S generating the filter F then
{
{p}∪ ((S \F )×]1−

2−n, 1[)∪(F × [0, 1[)
∣∣n ∈ N, F ∈ B

}
is a local basis at p in the space Φ[F ]. Conversely,

if Up is a local basis at p and if we choose for every U ∈ Up a real number tU ∈ [0, 1[
and a set FU ∈ F such that (S × [tU , 1[) ∪ (FU × [0, 1[) ⊂ U then {FU | U ∈ Up} is a
filter base on S generating the filter F . Consequently, χ(p,Φ[F ]) = χ(F). Therefore,
since w(S × [0, 1[) = κ, we have w(Φ[F ]) = χ(F) = λ.

Now consider the pathwise connected, locally pathwise connected, amost metriz-
able space Φ[F ] for each of the 2λ ω-free filters F on S with χ(F) = λ. Since the size
of each space is κ and the weight of each space is λ, by the same arguments about the
size of equivalence classes as in the proof of Theorem 1.1 (for µ = κ), the statement
in Theorem 1.2 is true in case that 2λ > 2κ because it is evident that the topologies
of the spaces Φ[F1] and Φ[F2] are distinct topologies on the set {p} ∪ (S × [0, 1[)
whenever F1 and F2 are distinct ω-free filters on S.

Now assume 2λ = 2κ and let Pκ be a family as provided by Proposition 2.3.
Choose one ω-free filter F on S with χ(F) = λ and consider the space Φ[F ]. Note
that x ∈ Φ[F ] is a noncut point of Φ[F ] if and only if x = (s, 0) for some s ∈ S.
For every H ∈ Pκ create a space X(H) in the following way. Consider the compact
unit square [0, 1]2 and choose a point a1 ∈ [0, 1]2. (Clearly, a1 is a noncut point of
[0, 1]2. Note also that no connected open subset of [0, 1]2 has cut points.) Choose
a noncut point a2 in Φ[F ] and a noncut point a3 in H. Finally, let X(H) be the
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quotient of the topological sum of the three spaces [0, 1]2 and Φ[F ] and H by the
subspace {a1, a2, a3}. Roughly speaking, X(H) is created by sticking together the
three spaces so that the three points a1, a2, a3 are identified. It is clear that X(H) is
pathwise connected and locally pathwise connected and regular and |X(H)| = κ and
w(X(H)) = λ.

There is precisely one point b ∈ X(H) with χ(b,X(H)) = λ. This point b cor-
responds with the point p ∈ Φ[F ]. By virtue of Lemma 6.1 for n = 3 the subspace
X(H) \ {b} of X(H) is metrizable. Consequently, if H ∈ Pκ then X(H) is almost
metrizable. The 2κ spaces X(H)(H ∈ Pκ) are mutually non-homeomorphic because
each H ∈ Pκ can be recovered from X(H) as follows.

Since cut points in H resp. in Φ[F ] lie dense and since [0, 1]2 has no cut points,
there is precisely one point q in X(H) such that every neighborhood of q contains
two nonempty connected open sets U1, U2 where U1 has no cut points and where U2

has cut points. (This point q must be the point obtained by identifying the three
points a1, a2, a3.) The subspace X(H)\{q} has precisely three components and every
component of X(H) \ {q} is homeomorphic either with Φ[F ] \ {a2} or with H \ {a3}
or with [0, 1]2 \ {a1}. Therefore, precisely one component is not metrizable. (If
s ∈ S then the space Φ[F ] \ {(s, 0)} is not metrizable since it has no countable local
basis at p.) The two metrizable components of X(H) \ {q} can be distinguished by
the observation that one component has infinitely many cut points while the other
component has no cut points. If M is a metrizable component of X(H) \ {q} which
has cut points then the subspace M ∪ {q} of X(H) is homeomorphic with H.

7. Proof of Theorem 1.3

Lemma 7.1. There exists a second countable, countably infinite Hausdorff space H
such that H \ E is connected and locally connected for every finite set E.

Proof. Let H be the set N equipped with the coarsest topology such that if p is a
prime and a ∈ N is not divisible by p then N ∩ {p + ka | k ∈ Z} is open. Referring
to [11, Nr. 61], H is a locally connected Hausdorff space such that the intersection of
the closures of any two nonempty open subsets of H must be an infinite set. Therefore,
if E is a finite set then the subspace H \ E of H is connected. Since H is locally
connected, H \ E is locally connected for every finite set E, �

The first step in proving Theorem 1.3 is a proof of the following enumeration
theorem about countable connected spaces.

Theorem 7.2. For every λ ≤ c there exist 2λ mutually non-homeomorphic connected,
locally connected Hausdorff spaces of size ℵ0 and weight λ.

Proof. Let H be a connected, locally connected Hausdorff space with |H| = w(H) =
ℵ0 as provided by Lemma 7.1. Fix e ∈ H and note that e is a noncut point in H.
Put M := H \ {e}. So M is connected as well.
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Let S be an infinite discrete space and let F be a free filter on S with χ(F) ≥ |S|.
Consider the product space S ×M and fix p 6∈ S ×M and consider Ψ[F ] := {p} ∪
(S ×M) equipped with the following topology. A subset U of {p} ∪ (S ×M) is open
if and only if U \ {p} is open in the product space S ×M and p ∈ U implies that
(S × (V \ {e}))∪ (F ×M) ⊂ U for some neighborhood V of e in H and some F ∈ F .
Similarly as in the proof of Theorem 1.2, Ψ[F ] is a connected and locally connected
Hausdorff space and |Ψ[F ]| = |S| and w(Ψ[F ]) = χ(F).

Now let S be the discrete Euclidean space N. If 2λ > c then with the help of 2λ

free filters on N with χ(F) = λ we can track down 2λ mutually non-homeomorphic
spaces Ψ[F ]. (Note that there are only c permutations on N and use the argument
on sizes of equivalence classes.) So it remains to settle the case 2λ = c.

Let Z be the space Ψ[F ] for some free filter F on N with χ(F) = λ. So the
underlying set of Z is {p} ∪ (N× (H \ {e})) and the countable Hausdorff space Z is
connected and locally connected and w(Z) = λ due to χ(p, Z) = λ. The point p is the
only cut point of Z and Z \ {p} has infinitely many components. Keep in mind that
|H| = w(H) = ℵ0 and that if a ∈ H then the spaces H and H \ {a} and H \ {a, e}
are connected and locally connected. Fix b ∈ H \ {e} and consider the subset Ẑ :=
{(s, b) | s ∈ N} of Z. Clearly, Ẑ is closed and discrete and Z \ {z} is connected and
locally connected for every z ∈ Ẑ. Choose for every m ∈ N and every i ∈ {1, . . . ,m}
spaces H

(m)
i such that H

(m)
i is homeomorphic with H and H

(m)
i ∩H(n)

j = ∅ whenever

m 6= n or i 6= j. Furthermore assume that H
(m)
i ∩Z = ∅ for every m and every i. Let

ϕ be a choice function on the class of all infinite sets, i.e. ϕ(A) ∈ A for every infinite
set A. Now define for every nonempty set T ⊂ N a Hausdorff space Q[T ] as follows.
Consider the topological sum Σ[T ] of countably infinite and mutually disjoint spaces

where the summands are Z and all spaces H
(m)
i with m ∈ T and i ∈ {1, . . . ,m}.

Define an equivalence relation on Σ[T ] such that the non-singleton equivalence classes

are precisely the sets {(m, b)} ∪ {ϕ(H
(m)
1 ), . . . , ϕ(H

(m)
m )} with m ∈ T . (Note that

(m, b) ∈ Ẑ for every m ∈ T .) Finally, let Q[T ] denote the quotient space of Σ[T ] with
respect to this equivalence relation. Roughly speaking, Q[T ] is the union of Z and all

spaces H
(m)
i with m ∈ T and i ∈ {1, . . . ,m} where for every m ∈ T the m+ 1 points

(m, b), ϕ(H
(m)
1 ), . . . , ϕ(H

(m)
m ) are identified. We consider Z to be a subset of Q[T ].

One may picture Q[T ] as an expansion of Z created by attaching m copies of H to Z
at the point (m, b) ∈ Ẑ for every m ∈ T . It is evident that Q[T ] is a connected and
locally connected countably infinite Hausdorff space. We have w(Q[T ]) = λ since Z
is a subspace of Q[T ] with w(Z) = λ and χ(x,Q[T ]) = ℵ0 if p 6= x ∈ Q[T ]. Thus
the case 2λ = c is settled by verifying that two spaces Q[T1] and Q[T2] cannot be
homeomorphic if ∅ 6= T1, T2 ⊂ N and T1 6= T2. This must be true because the set
T ⊂ N is completely determined by the topology of Q[T ] by the following observation.

Let ∅ 6= T ⊂ N. For every point x ∈ Q[T ] let ν(x) denote the total number of all
components of the subspace Q[T ] \ {x}. The following three statements for x ∈ Q[T ]
are evident. Firstly, ν(x) ≥ ℵ0 if and only if x = p. Secondly, 1 < ν(x) < ℵ0 if and
only if x = (m, b) ∈ Ẑ for some m ∈ T . Thirdly, ν(x) = 1 if and only if x is an element
of the set Q[T ] \ ((T × {b}) ∪ {p}). Concerning the second statement we compute
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ν((m, b)) = m + 1 for every m ∈ T . Consequently, {ν(x) − 1 | x ∈ Q[T ] ∧ ν(x) ∈
N} \ {0} = T whenever T is one of the c non-empty subsets of N. �

Now in order to prove Theorem 1.3 assume ℵ0 ≤ κ < c and κ ≤ λ ≤ 2κ. Referring
to Theorem 7.2 there is nothing more to show in case that κ = ℵ0. So we also assume
that κ > ℵ0. Let S be a discrete space of size κ. By Proposition 4.2 there are 2λ free
filters F on S with χ(F) = λ. For each one of these filters F consider the connected
and locally connected Hausdorff space Ψ[F ] of size κ and weight λ as defined in the
previous proof. Hence in case that 2λ > 2κ we can track down 2λ filters F on S such
that the corresponding spaces Ψ[F ] are mutually non-homeomorphic.

So it remains to settle the case 2λ = 2κ. Choose any free filter F on S with
χ(F) = λ and and consider the space Ψ := Ψ[F ] of size κ and weight λ. Fix a noncut
point z ∈ Ψ. Keep in mind that Ψ has precisely one cut point p and that Ψ[F ] \ {p}
has precisely κ and hence uncountably many components.

In view of our proof of Theorem 7.2 there is a family C of mutually non-homeomor-
phic countable Hausdorff spaces of weight κ (and hence not necessarily of weight λ)
such that |C| = 2κ and if C ∈ C then C is connected and locally connected and contains
precisely one cut point q(C) such that C \ {q(C)} has infinitely many components.
In particular, all these components are countable and ℵ0 is their total number.

For every C ∈ C consider the topological sum Ψ + C and define an equivalence
relation such that {z, q(C)} is an equivalence class and all other equivalence classes
are singletons. Let Q[C] denote the quotient space of Ψ + C with respect to this
equivalence relation. So Q[C] is obtained by sticking together the spaces Ψ and C at
one point and this point is the identification of z ∈ Ψ and q(C) ∈ C. It is clear that
Q[C] is a connected, locally connected Hausdorff space of size κ and weight λ. So
we are done by verifying that for distinct C1, C2 ∈ C the spaces Q[C1] and Q[C2] are
never homeomorphic. This must be true because each C ∈ C can be recovered from
Q[C] as follows.

There is a unique point ξ in Q[C] such that Q[C]\{ξ} has precisely ℵ0 components.
(This point ξ is the one corresponding with the equivalence class {z, q(C)}.) Among
these components there is precisely one of uncountable size. (This component is the
one which contains the point p ∈ Ψ.) Let K be the unique uncountable component
of Q[C] \ {ξ}. Then Q[C] \K is essentially identical, at least homeomorphic with the
space C.

8. Proof of Theorem 1.4

Our goal is to derive Theorem 1.4 from Theorem 1.1 by using appropriate modifica-
tions of the cones Q∗(X) considered in Section 6. In order to accomplish this we need
building blocks provided by the following lemma.

Lemma 8.1. There exists a second countable, connected, totally pathwise disconnected,
nowhere locally connected, metrizable space M of size c which contains precisely one
noncut point b, where M \ {x, b} has precisely two components whenever b 6= x ∈M .
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Proof. Let f be a function from R into R such that the graph of f is a dense and
connected subset of the Euclidean plane R2 (see [8] for a construction of such a
function f .) Automatically, f is discontinuous everywhere. Let M be the intersection
of [0,∞[×R and the graph of f . It is straightforward to check that M fits with
b = (0, f(0)). �

Now we are ready to prove Theorem 1.4. Assume c ≤ κ ≤ λ ≤ 2κ and let
Y = Y(κ, λ) be a family of precisely 2λ mutually non-homeomorphic scattered, normal
spaces of size κ and weight λ such that if Y ∈ Y then for a certain finite set γ(Y ) ⊂ Y
the subspace Y \ γ(Y ) is metrizable (and hence of weight κ) and γ(Y ) is a Gδ-set in
Y . Precisely, the set γ(Y ) is empty when κ = λ and a singleton {y} when κ < λ.
(Clearly, if γ(Y ) = {y} then χ(y, Y ) = λ.) If 2λ > 2κ then such a family Y exists
by considering the 2λ almost discrete spaces provided by Theorem 1.1. If λ > κ and
2λ = 2κ then such a family Y exists in view of the construction in Section 5 which
proves Theorem 1.1 in case that 2λ = 2κ. If λ = κ then such a family Y exists by
Proposition 2.2.

Let M be a metrizable space as in Lemma 8.1 and let b denote the noncut point
of M and fix a point a ∈M \ {b}. For an infinite, scattered, normal space X consider
the product space X ×M and fix p 6∈ X ×M and put K(X) := {p}∪ (X × (M \ {b}).
Declare a subset U of K(X) open if and only if U \ {p} is open in the product space
X×(M \{b}) and p ∈ U implies that U contains X×(N \{b}) for some neighborhood
N of b in the space M . It is plain that K(X) is a well-defined regular space. Since
M is metrizable and χ(p,K(X)) = ℵ0, if X is metrizable then K(X) has a σ-locally
finite base and hence K(X) is metrizable.

Now for Y ∈ Y consider the subspace L(Y ) := K(Y ) \ (γ(Y ) × (M \ {a, b})) of
K(Y ) and the subspace S(Y ) := L(Y ) \ (γ(Y ) × {a}) of L(Y ). Trivially, the spaces
K(Y ) and L(Y ) and S(Y ) coincide if κ = λ. Furthermore the space S(Y ) coincides
with the metrizable space K(Y \ γ(Y )). Therefore and by Corollary 3.4, L(Y ) is an
almost metrizable space since γ(Y ) × {a} is a Gδ-set in K(Y ) of size 0 or 1. We
have |L(Y )| = κ and w(L(Y )) = λ because if γ(Y ) = {y} then χ((y, a), L(Y )) = λ.
It is evident that S(Y ) is connected and totally pathwise disconnected and nowhere
locally connected. Consequently, L(Y ) is totally pathwise disconnected and nowhere
locally connected. And L(Y ) is connected since the connected set S(Y ) is dense in
L(Y ).

Finally, the spaces L(Y )(Y ∈ Y) are mutually non-homeomorphic because every
Y ∈ Y can be recovered from L(Y ). Indeed, for x ∈ L(Y ) let C(x) denote the family of
all components of the subspace L(Y )\{x} of L(Y ). Then C(x) is an infinite set if and
only if x = p. Because the scattered space Y has infinitely many isolated points and
if u ∈ Y is isolated then {u} × (M \ {b}) lies in C(x). If u ∈ Y \ γ(Y ) and b 6= v ∈M
then |C((u, v))| ≤ 2 (and |C((u, v))| = 2 when u is isolated in Y ). And if γ(Y ) = {y}
then |C((y, a))| = 1. Thus {p} = {x ∈ L(Y ) | |C(x)| ≥ ℵ0}, whence the point p can
be recovered from the space L(Y ). Now let C be the family of all components of the
space L(Y ) \ {p}. Since Y is totally disconnected, the members of C are precisely the
sets {u} × (M \ {b}) with u ∈ Y \ γ(Y ) plus the singleton γ(Y ) × {a} if and only
if γ(Y ) 6= ∅. Naturally, the quotient space of L(Y ) \ {p} by the equivalence relation
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defined via the partition C is homeomorphic with Y for every Y ∈ Y. This concludes
the proof of Theorem 1.4.

9. Compact spaces of excessive weights

While w(X) ≤ |X| for every compact Hausdorff space X (see [2, 3.3.6]), for compact
T1-spaces X one cannot rule out w(X) > |X| and actually we can prove the following
enumeration theorem by applying Theorems 1.1–1.3.

Theorem 9.1. If κ ≤ λ ≤ 2κ then there exist two families C1, C2 of mutually non-
homeomorphic compact T1-spaces of size κ and weight λ such that |C1| = |C2| = 2λ

and all spaces in C1 are scattered, all spaces in C2 are connected and locally connected,
and if κ ≥ c then all spaces in C2 are arcwise connected and locally arcwise connected.

In order to prove Theorem 9.1 we consider T1-compactifications of Hausdorff
spaces. If Y is an infinite Hausdorff space with |Y | ≤ w(Y ) then define a topo-
logical space Γ(Y ) which expands Y in the following way. Put Γ(Y ) = Y ∪{z} where
z 6∈ Y and declare U ⊂ Γ(Y ) open either when U is an open subset of Y or when
z ∈ U and Y \U is finite. It is clear that in this way a topology on Γ(Y ) is well-defined
such that Y is a dense subspace of Γ(Y ). Obviously, Γ(Y ) \ {x} is open for every
x ∈ Γ(Y ) and hence Γ(Y ) is a T1-space. Since all neighborhoods of z cover the whole
space Γ(Y ) except finitely many points, Γ(Y ) is compact. Trivially, |Γ(Y )| = |Y |.
We have w(Γ(Y )) = w(Y ) since w(Y ) ≥ |Y | and Y is a subspace of Γ(Y ) and, by
definition, there is a local basis at z of size |Y |.

Evidently, if Y is scattered then Γ(Y ) is scattered. On the other hand it is clear
that if Y is dense in itself then Γ(Y ) is connected and every neighborhood of z is
connected. So if Y is connected and locally connected then Γ(Y ) is connected and
locally connected.

We claim that if Y is pathwise connected then Γ(Y ) is arcwise connected. Assume
that the Hausdorff space Y is pathwise connected and hence arcwise connected and
let a ∈ Y . Of course it is enough to find an arc which connects the point a with the
point z 6∈ Y . Since Y is arcwise connected, we can define a homeomorphism ϕ from
[0, 1] onto a subspace of Y such that ϕ(0) = a. Define an injective function f from
[0, 1] into Γ(Y ) via f(1) = z and f(t) = ϕ(t) for t < 1. Let U be an open subset of
Γ(Y ). If z ∈ U then U \Y is finite and thus f−1(U) is a cofinite and hence open subset
of [0, 1]. If z 6∈ U then U is an open subset of Y and hence f−1(U) = ϕ−1(U) \ {1} is
an open subset of [0, 1]. Thus the injective function f is continuous.

Since every neighborhood of z contains all but finitely many points from Y , by
exactly the same arguments we conclude that if Y is locally pathwise connected then
every neighborhood of z is an arcwise connected subspace of Γ(Y ). Consequently, if
the Hausdorff space Y is locally pathwise connected then the T1-space Γ(Y ) is locally
arcwise connected.

The space Y can be recovered from Γ(Y ) (up to homeomorphism) provided that
Y has at least two limit points. Because then it is evident that z is the unique point
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x ∈ Γ(Y ) such that the subspace Γ(Y ) \ {x} of Γ(Y ) is Hausdorff.
By virtue of Theorem 1.1, for κ ≤ λ ≤ 2κ let Y1(κ, λ) be a family of mutu-

ally non-homeomorphic, scattered Hausdorff spaces of size κ and weight λ such that
|Y1(κ, λ)| = 2λ. By virtue of Theorem 1.3, for κ < c and κ ≤ λ ≤ 2κ let Y2(κ, λ)
be a family of mutually non-homeomorphic connected and locally connected Haus-
dorff spaces of size κ and weight λ such that |Y2(κ, λ)| = 2λ. By virtue of Theo-
rem 1.2, for c ≤ κ ≤ λ ≤ 2κ let Y3(κ, λ) be a family of mutually non-homeomorphic
pathwise connected and locally pathwise connected Hausdorff spaces of size κ and
weight λ such that |Y3(κ, λ)| = 2λ. Now put C1 := {Γ(Y ) | Y ∈ Y1(κ, λ)} and
C2 := {Γ(Y ) | Y ∈ Yi(κ, λ)} where i = 2 when κ < c and i = 3 when κ ≥ c. Then
C1, C2 are families which prove Theorem 9.1.

The condition κ ≥ c in Theorem 9.1 is inevitable since, trivially, |X| ≥ c for
every infinite, arcwise connected space. There arises the question whether |X| ≥ c is
inevitable for infinite, pathwise connected T1-spaces. (Of course, every finite T1-space
X is discrete and hence not pathwise connected when |X| ≥ 2.) It is well-known
that a pathwise connected T1-space of size ℵ0 does not exist (see also Proposition 9.2
below). So the essential question is whether there are pathwise connected T1-spaces
X with ℵ0 < |X| < c (provided that there are cardinals µ with ℵ0 < µ < c). The
following proposition shows that there is no chance to track down such spaces X.

Proposition 9.2. Pathwise connected T1-spaces X with 2 ≤ |X| ≤ ℵ0 do not exist.
It is consistent with ZFC that |{κ | ℵ0 < κ < c}| > ℵ0 and pathwise connected
T1-spaces X with ℵ0 < |X| < c do not exist.

If X is a T1-space and f : [0, 1]→ X is continuous then {f−1({x}) | x ∈ X}\{∅} is
a decomposition of [0, 1] into precisely |f([0, 1])| nonempty closed subsets. Therefore,
Proposition 9.2 is an immediate consequence of

Proposition 9.3. Every partition of [0, 1] into at least two closed sets is uncountable.
It is consistent with ZFC that uncountably many cardinals κ with ℵ0 < κ < c exist
while still a partition P of [0, 1] into closed sets with ℵ0 < |P| < c does not exist.

Certainly, the first statement in Proposition 9.3 is an immediate consequence of
Sierpiński’s theorem [2, 6.1.27]. However, in order to prove Proposition 9.3 we need
another approach than in the proof of [2, 6.1.27].

Assume that P is a partition of [0, 1] into closed sets with |P| ≥ 2. For S ⊂ [0, 1]
let ∂S denote the boundary of S in the compact space [0, 1]. (Notice that then
∂[0, 1] = ∅.) Put V := {∂A | A ∈ P} and W :=

⋃
V. Then ∅ 6∈ V since [0, 1] 6∈ P and

hence V is a partition of W with |V| = |P|. The nonempty set W is a closed subset of
[0, 1] because W = [0, 1]\

⋃
{A\∂A | A ∈ P} since P is a partition of [0, 1]. We claim

that the closed sets V ∈ V are nowhere dense in the compact metrizable space W .
Let A ∈ P and assume indirectly that a is an interior point of ∂A in W . Then

there is an interval I open in the compact space [0, 1] with a ∈ I and I ∩W ⊂ ∂A.
Since a lies in the boundary of A the interval I intersects [0, 1] \ A and hence for
some B 6= A in the family P we have I ∩ B 6= ∅. However, I ∩ ∂B = ∅ in view of
(∂A) ∩ (∂B) = ∅ and I ∩W ⊂ ∂A. Therefore, I ∩B is a nonempty set which is open
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and closed in the connected space I and hence I ∩ B = I contrarily with A ∩ I 6= ∅
and A ∩B = ∅.

Thus V is a partition of the compact Hausdorff space W into nowhere dense subsets
with |V| = |P|. Therefore |P| ≤ ℵ0 is impossible since W is a space of second category.
This concludes the proof of the first statement. Under the assumption of Martin’s
Axiom (see [4, 16.11]) also the weaker inequality |V| = |P| < c is impossible because
it is well-known that Martin’s axiom implies that no separable, compact Hausdorff
space can be covered by less than c nowhere dense subsets. (Actually, Martin’s axiom
is equivalent to the statement that in every compact Hausdorff space of countable
cellularity any intersection of less than c dense, open sets is dense.) Therefore, the
proof of Proposition 9.3 is concluded by checking that the existence of uncountably
many infinite cardinals below c is consistent with ZFC plus Martin’s Axiom. This is
certainly true because by applying the Solovay-Tennenbaum theorem [4, 16.13] there
is a model of ZFC in which Martin’s Axiom holds and the identity 2ℵ0 = ℵω1+1 is
enforced. (If c = ℵω1+1 then |{κ | κ < c}| = ℵ1 > ℵ0.)

Remark 9.4. There is an interesting observation concerning compactness and the
Hausdorff separation axiom. By applying Theorem 9.1 and (II), there exist precisely
c compact, countable, second countable T1-spaces up to homeomorphism. If in this
statement T1 is sharpened to T2 then we obtain an unprovable hypothesis. Indeed,
due to Mazurkiewicz and Sierpiński [10], there exist precisely ℵ1 countable (and hence
second countable) compact Hausdorff spaces up to homeomorphism. The hypothesis
ℵ1 < c is irrefutable since it is a trivial consequence of (I). This discrepancy of
provability vanishes when uncountable compacta are counted up to homeomorphism.
Indeed, by virtue of [6, Theorem 1.3] it can be accomplished that in Theorem 9.1 for
κ = λ > ℵ0 all spaces in the family C1 are Hausdorff spaces. (Note that w(X) = |X|
for every scattered, compact Hausdorff space.)

10. Pathwise connected, scattered spaces

Naturally, a scattered T1-space is totally disconnected and hence far from being path-
wise connected. Furthermore it is plain that no scattered space is arcwise connected.
Therefore and in view of Proposition 9.2 the following enumeration theorem is worth
mentioning.

Theorem 10.1. If κ ≤ λ ≤ 2κ then there exist two families C,L of mutually non-
homeomorphic pathwise connected, scattered T0-spaces of size κ and weight λ such
that |C| = |L| = 2λ and all spaces in C are compact and if κ ≤ c or 2κ < 2λ then all
spaces in L are locally pathwise connected.

The existence of the family C in Theorem 10.1 can be derived from Theorem 1.1
in view of the following considerations. Let X be an infinite Hausdorff space. Fix
b 6∈ X and define a topology on the set B(X) = X ∪{b} by declaring U ⊂ B(X) open
when either U = B(X) or U is an open subset of X. Then {b} is closed and B(X) is
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the only neighborhood of b. Obviously, B(X) is a compact T0-space and b is a limit
point of every nonempty subset of X = B(X) \ {b}. It is trivial that |B(X)| = |X|
and clear that w(B(X)) = w(X). For any pair x, y of distinct points in B(X) define
a function f from [0, 1] into B(X) via f(t) = x when t < 1

2 and f( 1
2 ) = b and f(t) = y

when t > 1
2 . It is plain that f is continuous, whence B(X) is pathwise connected.

Obviously, if X is scattered then B(X) is scattered. Finally, the space X can be
recovered from B(X) since a singleton {a} is closed in B(X) if and only if a = b.

Unfortunately, if X is scattered and not discrete then B(X) is not locally con-
nected. Fortunately, finishing the proof of Theorem 10.1 we can track down a family
L as desired by adopting the proofs of Theorem 1.3 and Theorem 7.2 in Section 7 line
by line such that, throughout, the building block H in the definition of Φ[F ] provided
by Lemma 10.2 is replaced with the space G provided by the following lemma. In
Section 7 the restriction κ < c is only for avoiding an overlap between Theorem 1.2
and Theorem 1.3 and can clearly be expanded to κ ≤ c. The case 2κ < 2λ is settled
by the 2λ spaces Ψ[F ] of arbitrary size κ.

Lemma 10.2. There exists a second countable, scattered, countably infinite T0-space
G such that G\E is pathwise connected and locally pathwise connected for every finite
set E.

Proof. Let G be the set {n ∈ Z | n ≥ 2} equipped with divisor topology as defined
in [11, 57]. A basis of the divisor topology is the family of all sets {m ∈ Z | m ≥
2 ∧m | n} with n ∈ G. In view of the considerations in [11], it is straightforward to
verify that G fits. �

Remark 10.3. If i ∈ {0, 1, 2} and Fi is a family of mutually non-homeomorphic
compact Ti-spaces X with w(X) ≤ κ then |Fi |≤ 2κ is true for i = 2. (Because
any compact Hausdorff space of weight at most κ is embeddable into the Hilbert
cube [0, 1]κ and, since w([0, 1]κ) = κ and |X| = 2κ, the compact Hausdorff space
[0, 1]κ has precisely 2κ closed subspaces.) However, the estimate |Fi |≤ 2κ is false
for i = 0 because |F0| = 22

κ

can be achieved for every κ. (In view of (II) and
since max{|X|, w(X)} ≤ min{2|X|, 2w(X)} for every infinite T0-space X, 22

κ

is the
maximal possible cardinality.) Indeed, consider for X = [0, 1]κ the compact T0-
space B(X) = X ∪ {b} of size 2κ and weight κ defined as above. Clearly, for every
nonempty S ⊂ X the subspace S ∪ {b} of B(X) is compact. Since X is Hausdorff
and w(X) = κ, there are 2|X| = 22

κ

mutually non-homeomorphic subspaces of X and
hence 22

κ

mutually non-homeomorphic compact subspaces of B(X). There arises the
interesting question whether the estimate |Fi| ≤ 2κ is generally true for i = 1.

11. Counting P-spaces

A natural modification of the proof of Theorem 1.1 leads to a noteworthy enumeration
theorem about P -spaces. As usual (see [1]), a Hausdorff space is a P-space if and only
if any intersection of countably many open sets is open. More generally, a Hausdorff
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space X is a Pα-space if and only if α is an infinite cardinal number and
⋂
U is an

open subset of X whenever U is a family of open subsets of X with 0 6= |U| < α. So if
α = ℵ0 then every Hausdorff space is a Pα-space and if α = ℵ1 then X is a Pα-space
if and only if X is a P -space. Clearly, if X is a Pα-space and |X| < α then X is
discrete. (It is plain that if X is a Pα-space and |X| = α and α is a singular cardinal
then X is discrete.)

For an infinite cardinal α let us call a Hausdorff space α-normal when it is com-
pletely normal and every closed set is an intersection of at most α open sets. So a
Hausdorff space is perfectly normal if and only if it is ℵ0-normal. It is dull to con-
sider perfectly normal P -spaces because, trivially, a perfectly normal P -space must
be discrete. More generally, if µ < α then every µ-normal Pα-space is discrete. How-
ever, the enumeration problem concerning completely normal P -spaces and α-normal
Pα-spaces is not trivial and can be solved under certain cardinal restrictions.

As usual, κ+ denotes the smallest cardinal greater than κ, whence κ+ ≤ 2κ and
ℵ1 = (ℵ0)+. Furthermore, for arbitrary κ, µ the cardinal number κ<µ is defined as
usual (see [4]). Note that if µ ≤ κ+ then κ<µ = |{T | T ⊂ S ∧ |T | < µ}| whenever
S is a set of size κ. In particular, κ<ℵ0 = κ and κ<ℵ1 = κℵ0 for every κ. Naturally,
if µ = κ+ then κ<µ = 2κ. Consequently, if µ > κ then κ < κ<µ. (If κ is a cardinal
number of cofinality smaller than µ++ then κ < κ<µ due to [4, Theorem 5.14].) On
the other hand, for every µ the cardinals κ satisfying κ<µ = κ form a proper class Kµ
such that 2θ ∈ Kµ for every cardinal θ with θ+ ≥ µ and if κ ∈ Kµ then the cardinal
successor κ+ of κ also lies in Kµ due to the Hausdorff formula [4, (5.22)]. In particular,
the cardinals c, c+, c++, . . . lie in Kµ for µ = ℵ1. Furthermore, if κ<µ = κ ≤ λ and
there are only finitely many cardinals θ with κ ≤ θ ≤ λ then λ<µ = λ. (Note, again,
that κ<α = κ implies α ≤ κ.)

Theorem 11.1. Let α be an uncountable cardinal. Assume κ = κ<α and κ ≤ λ ≤ 2κ

and λ<α = λ ≤ 2µ < 2λ for some µ ≤ κ with µ<α = µ. Then there exist 2λ mutually
non-homeomorphic scattered, strongly zero-dimensional, hereditarily paracompact, α-
normal Pα-spaces of size κ and weight λ. In particular, for every κ with κ = κℵ0

there exist precisely 22
κ

mutually non-homeomorphic paracompact P-spaces of size κ
and weight 2κ up to homeomorphism.

As usual (see [1,4]), a filter F is κ-complete if and only if
⋂
A ∈ F for every A ⊂ F

with 0 6= |A| < κ. Trivially, every filter is ℵ0-complete. Obviously, an ω-free filter is
not κ-complete for any κ > ℵ0. Let us call a filter F κ-free if and only if

⋂
A = ∅ for

some A ⊂ F with |A| ≤ κ. (So a filter is ω-free if and only if it is ℵ0-free.) Clearly, if
the topology of an almost discrete space X is the single filter topology defined with
a free filter F then for every infinite cardinal α the (completely normal) space X is
α-normal if and only if F is α-free, and X is a Pα-space if and only if F is α-complete.
Therefore, in view of the following counterpart of Proposition 4.2, Theorem 11.1 can
be easily proved by simply adopting the proof of the case 2λ > 2µ in Theorem 1.1 line
by line while replacing the property ω-free with α-complete and α-free throughout.

Proposition 11.2. If |Y | = κ = κ<µ and κ ≤ λ = λ<µ ≤ 2κ then there exist 2λ

µ-complete, µ-free filters F on Y such that χ(F) = λ.
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For the proof of Proposition 11.2 we need a lemma that also guarantees the ex-
istence of the family Aω in the proof of Proposition 4.2 since κ<µ = κ for µ = ℵ0.

Lemma 11.3. Let Y be an infinite set of size κ and assume κ<µ = κ. Then there
exists a family A of subsets of Y such that |A| = 2κ and A has a subfamily K of size
µ with

⋂
K = ∅ and if D, E 6= ∅ are disjoint subfamilies of A of size smaller than µ

then
⋂
D is not a subset of

⋃
E.

Proof. For an infinite set S put Pµ(S) := {T | T ⊂ S ∧ |T | < µ}. Let Y be a
set of size κ and assume κ<µ = κ, whence κ ≥ µ. Choose any set X of size κ.
Then |Pµ(X)| = κ<µ = κ and hence |Pµ(Pµ(X))| = κ<µ = κ. Therefore we may
identify Y with the set Pµ(X)×Pµ(Pµ(X)). Now for Y := Pµ(X)×Pµ(Pµ(X)) put
A[S] := {(H,H) ∈ Y | ∅ 6= H ∩ S ∈ H} whenever S ⊂ X. Clearly, A[S] = ∅ if and
only if S = ∅. We observe that A[S1] 6= A[S2] whenever S1, S2 ⊂ X are distinct.
Indeed, if S1, S2 are subsets of X and s ∈ S1 \ S2 then ({s}, {{s}}) ∈ A[S1] \ A[S2].
Put A := {A[S] | ∅ 6= S ⊂ X}. Then |A| = 2κ and we claim that A is a family as
desired.

For 0 6= |I × J | < µ let {Si | i ∈ I} and {Tj | j ∈ J} be disjoint families of
nonempty subsets of X. Choose ai,j ∈ (Si \ Tj) ∪ (Tj \ Si) for every (i, j) ∈ I × J
and bi ∈ Si for every i ∈ I and put V := {ai,j | i ∈ I, j ∈ J} ∪ {bi | i ∈ I}. Then
| V | < µ and ∅ 6= V ∩ Si 6= V ∩ Tj whenever i ∈ I and j ∈ J . Hence the pair
(V, {V ∩ Si | i ∈ I}) lies in

⋂
i∈I A[Si] but not in

⋃
j∈J A[Tj ]. Finally, since |H| < µ

whenever (H,H) ∈ A[S], if K is any subfamily of {A[{x}] | x ∈ X} with |K| = µ then⋂
K = ∅. �

Remark 11.4. The previous proof is very similar to Hausdorff’s classic construction
of independent sets as carried out in the proof of [4, 7.7]. However, by Hausdorff
(and in [4, 7.7]) only the special case µ = ℵ0 is considered and, unfortunately, from
Hausdorff’s construction one cannot obtain ω-free resp. α-free filters in a natural way.
In order to accomplish this we have modified the proof of [4, 7.7] in a subtle but
crucial way by including the condition ∅ 6= H ∩ S in our definition of A[S]. This
condition guarantees that A has a subfamily K as desired and hence that the family
Aω in the proof of Proposition 4.2 actually exists.

Now in order to prove Proposition 11.2 let A and K be families as in Lemma 11.3.
For every family H with K ⊂ H ⊂ A and |H| = λ put BH := {

⋂
G | ∅ 6= G ⊂ H∧|G| <

µ}. Then ∅ 6∈ BH and thus BH is a filter base for a µ-complete filter F [H]. Since
K ⊂ F [H], the filter F [H] is µ-free. Since λ<µ = λ, we have |BH| = χ(F [H]) = λ by
exactly the same arguments as in the proof of Proposition 4.2.

Remark 11.5. Since for no cardinal κ > ℵ0 the existence of a κ-complete ultrafilter
is provable in ZFC (see [4]), in Theorem 11.1 we cannot include the property ex-
tremally disconnected. While Theorem 11.1 modifies Theorem 1.1 for P -spaces, there
is no pendant of Theorem 1.2 for P -spaces because an infinite P -space is clearly not
pathwise connected and, moreover, every regular P -space X is zero-dimensional. (If
x ∈ U where U ⊂ X is open then choose open neighborhoods Un of x such that
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U ⊃ Un ⊃ Un ⊃ Un+1 ⊃ Un+1 for every n ∈ N. Then V :=
⋂∞
n=1 Un =

⋂∞
n=1 Un is an

open-closed neighborhood of x and V ⊂ U .)
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