MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК 72, 2 (2020), [165–](#page-0-0)[186](#page-21-0) June 2020

research paper оригинални научни рад

COUNTING SPACES OF EXCESSIVE WEIGHTS

Gerald Kuba

Abstract. Let κ, λ be infinite cardinal numbers with $\kappa < \lambda \leq 2^{\kappa}$. We show that there exist precisely 2^{λ} T₀-spaces of size κ and weight λ up to homeomorphism. Among these non-homeomorphic spaces we track down (i) 2^{λ} zero-dimensional, scattered, paracompact, perfectly normal spaces (which are also extremally disconnected in case that $\lambda = 2^{\kappa}$); (ii) 2^{λ} connected and locally connected Hausdorff spaces; (iii) 2^{λ} pathwise connected and locally pathwise connected, paracompact, perfectly normal spaces provided that $\kappa \geq 2^{\aleph_0}$; (iv) 2^{λ} connected, nowhere locally connected, totally pathwise disconnected, paracompact, perfectly normal spaces provided that $\kappa \geq 2^{\aleph_0}$; (v) 2^{λ} scattered, compact T₁-spaces; (vi) 2^{λ} connected, locally connected, compact T_1 -spaces; (vii) 2^{λ} pathwise connected and scattered, compact T₀-spaces; (viii) 2^{λ} scattered, paracompact P_{α} -spaces whenever $\kappa^{\leq \alpha} = \kappa$ and $\lambda^{\leq \alpha} = \lambda$ and $2^{\lambda} > 2^{\kappa}$.

1. Introduction

Write |M| for the cardinal number (the size) of a set M and define $\mathbf{c} := |\mathbb{R}| = 2^{\aleph_0}$. We use κ, λ, μ throughout to stand for *infinite* cardinal numbers. As usual, $w(X)$ denotes the weight of a topological space X. Naturally, $w(X) \leq 2^{|X|}$ and $|X| \leq 2^{w(X)}$ for every infinite T_0 -space X. It is trivial that $w(X) \leq |X|$ for every infinite, first countable space X and well-known (see [\[2,](#page-21-1) 3.3.6]) that $w(X) \leq |X|$ for every compact Hausdorff space X. Furthermore, $w(X) \geq |X|$ for every infinite, scattered T₀-space X (see Lemma [2.1](#page-2-0) below).

According to the title, we are concerned with topological spaces X satisfying the strict inequality $w(X) > |X|$. While the extreme case $w(X) = 2^{|X|}$ is of natural interest, to investigate the case $|X| < w(X) < 2^{|X|}$ is reasonable in view of the following remarkable fact.

(I) It is consistent with ZFC set theory that $\mu < \lambda$ implies $2^{\mu} < 2^{\lambda}$ and that for every regular κ there exist precisely 2^{κ} cardinals λ with $\kappa < \lambda < 2^{\kappa}$.

²⁰¹⁰ Mathematics Subject Classification: 54A525, 54D20, 54D05

Keywords and phrases: Scattered resp. connected; paracompact spaces.

A short explanation why [\(I\)](#page-0-1) is true is given in Section [2.](#page-2-1)

For fundamental enumeration theorems about spaces X with $w(X) \leq |X|$ see [\[3,](#page-21-2) [5](#page-21-3)[–7,](#page-21-4) [9\]](#page-21-5). However, it would be artificial to avoid an overlap with these enumeration theorems and hence in the following we include the case $w(X) = |X|$. The benefit of this inclusion is that we will also establish several new enumeration theorems about spaces X with $w(X) = |X|$. A short proof of the following basic estimate is given in the next section.

(II) If θ is an infinite cardinal and $\mathcal F$ is a family of mutually non-homeomorphic infinite T₀-spaces such that $\max\{|X|, w(X)\} \leq \theta$ for every $X \in \mathcal{F}$ then $|\mathcal{F}| \leq 2^{\theta}$. For abbreviation let us call a Hausdorff space X almost discrete if and only if $X \setminus \{x\}$

is a discrete subspace of X for some $x \in X$. Recall that a space is *perfectly normal* when it is normal and every closed set is a G_{δ} -set. Note that every subspace of a perfectly normal space is perfectly normal. Recall that a normal space is strongly zero-dimensional if and only if for every closed set A and every open set $U \supset A$ there is an open-closed set V with $A \subset V \subset U$. Our first goal is to prove the following enumeration theorem.

THEOREM 1.1. If $\kappa \leq \lambda \leq 2^{\kappa}$ then there exist 2^{λ} mutually non-homeomorphic scattered, strongly zero-dimensional, hereditarily paracompact, perfectly normal spaces X with $|X| = \kappa$ and $w(X) = \lambda$. In case that $\lambda \leq 2^{\mu} < 2^{\lambda}$ for some μ it can be accomplished that all these spaces are also almost discrete. Moreover, it can be accomplished that all these spaces are almost discrete and extremally disconnected in case that $\lambda = 2^{\mu}$ for some μ (which includes the case $\lambda = 2^{\kappa}$).

Since every scattered Hausdorff space is totally disconnected, the following theorem is a noteworthy counterpart of Theorem [1.1.](#page-1-0) For abbreviation, let us call a space X almost metrizable if and only if X is perfectly normal and $X \setminus \{x\}$ is metrizable for some $x \in X$. In view of Lemma [3.2](#page-4-0) in Section [3,](#page-3-0) almost metrizable space are hereditarily paracompact.

THEOREM 1.2. If $c \leq \kappa \leq \lambda \leq 2^{\kappa}$ then there exist 2^{λ} mutually non-homeomorphic pathwise connected, locally pathwise connected, almost metrizable spaces of size κ and weight λ .

The restriction $c \leq \kappa$ in Theorem [1.2](#page-1-1) is inevitable because if X is an infinite, pathwise connected Hausdorff space then X is arcwise connected (see [\[2,](#page-21-1) 6.3.12.a]) and hence $\mathbf{c} = |[0,1]| \leq |X|$. However, for infinite, *connected* Hausdorff spaces X the restriction $c \leq |X|$ is not justified and we can prove the following theorem. Note that, by applying [\(I\)](#page-0-1) for $\kappa = \aleph_0$, the existence of c infinite cardinals $\kappa < c$ is consistent with ZFC.

THEOREM 1.3. If $\kappa < \mathbf{c}$ and $\kappa \leq \lambda \leq 2^{\kappa}$ then there exist 2^{λ} mutually non-homeomorphic connected and locally connected Hausdorff spaces of size κ and weight λ . In particular, up to homeomorphism there exist precisely 2^c countably infinite, connected, locally connected Hausdorff spaces and precisely c countably infinite, connected, locally connected, second countable Hausdorff spaces.

No space provided by Theorem [1.3](#page-1-2) is completely regular because, naturally, every completely regular space of size smaller than c and greater than 1 is totally disconnected. Moreover, every countably infinite, regular space is totally disconnected (see $[2, 6.2.8]$). The *connected* spaces provided by Theorem [1.3](#page-1-2) are *totally pathwise* disconnected since they are Hausdorff spaces of size smaller than c. Therefore the following counterpart of Theorem [1.2](#page-1-1) is worth mentioning.

THEOREM 1.4. If $c \leq \kappa \leq \lambda \leq 2^{\kappa}$ then there exist 2^{λ} mutually non-homeomorphic connected, totally pathwise disconnected, nowhere locally connected, almost metrizable spaces of size κ and weight λ .

2. Some explanations and preparations

Referring to Jech's profound textbook [\[4\]](#page-21-6), a proof of [\(I\)](#page-0-1) can be carried out as follows. Define in Gödel's universe L for every regular cardinal κ a cardinal number $\theta(\kappa)$ by $\theta(\kappa) := \min\{\mu \mid \mu = \aleph_{\mu} \wedge cf\mu = \kappa^+\}.$ Then $|\{\lambda \mid \kappa < \lambda < \theta(\kappa)\}| = \theta(\kappa)$ holds in every generic extension of L. By applying Easton's theorem [\[4,](#page-21-6) 15.18] one can create an Easton universe E generically extending L such that the continuum function $\kappa \mapsto 2^{\kappa} = \kappa^+$ in L is changed into $\kappa \mapsto 2^{\kappa} = g(\kappa)$ in E with $g(\kappa) = \theta(\kappa)$ for every regular cardinal κ . So in E we have $|\{\lambda \mid \kappa < \lambda < 2^{\kappa}\}| = 2^{\kappa}$ for every regular κ . By definition, in E we have $2^{\alpha} < 2^{\beta}$ whenever α, β are regular cardinals with $\alpha < \beta$. Therefore and in view of [\[4,](#page-21-6) Theorem 5.22 and Exercise 15.12], if μ is singular in E then 2^{μ} is a successor cardinal in E while 2^{κ} is a limit cardinal in E for every regular κ in E. Consequently, in E we have $2^{\mu} < 2^{\lambda}$ whenever μ, λ are arbitrary cardinals with $\mu < \lambda$.

In order to verify [\(II\),](#page-1-3) first of all it is clear that a topological space (X, τ) has a basis of size $\lambda \leq |\tau|$ if and only if $w(X) \leq \lambda$. Let S be an infinite set of size ν and let P be the power set of S, whence $|P| = 2^{\nu}$. Let $\mu(\nu, \lambda)$ denote the total number of all topologies τ on S such that (S, τ) has a basis B of size λ . Clearly, $\mu(\nu, \lambda) = 0$ if $\lambda > 2^{\nu}$. For $\lambda \leq 2^{\nu}$ we have $\mu(\nu, \lambda) \leq |P|^{\lambda} = \max\{2^{\nu}, 2^{\lambda}\}\.$ So if θ and $\mathcal F$ satisfy the assumption in [\(II\)](#page-1-3) then $|\mathcal{F}|$ is not greater than the sum Σ of all cardinals $\mu(\nu, \lambda)$ with (ν, λ) running through the set $Q := {\{\kappa \mid \kappa \leq \theta\}}^2$. Thus from $\mu(\nu, \lambda) \leq 2^{\theta}$ for all $(\nu, \lambda) \in Q$ we derive $\Sigma \leq 2^{\theta}$ and this concludes the proof of [\(II\).](#page-1-3)

In the following we write down a short proof of an important fact mentioned in the previous section.

LEMMA 2.1. If X is an infinite scattered T_0 -space then $w(X) \geq |X|$.

Proof. Since X is infinite and T_0 , no basis of X is finite. Assume that $\lambda := w(X)$ |X| and let B be a basis of X with $|\mathcal{B}| = \lambda$. Let X^{*} denote the set of all $x \in X$ such that $|U| > \lambda$ for every neighborhood U of x. Then $X \setminus X^* \subset \bigcup \{U \in \mathcal{B} \mid |U| \leq \lambda \}$ and hence $|X \setminus X^*| \leq \lambda$. Consequently, $X^* \neq \emptyset$ and if $x \in X^*$ and U is a neighborhood of x then $|X^* \cap U| > \lambda$ (since $|U| > \lambda$). Therefore, the nonempty set X^* is dense in itself and hence the space X is not scattered. \square

In order to settle the case $2^k = 2^{\lambda}$ in Theorems [1.1,](#page-1-0) [1.2](#page-1-1) and [1.4](#page-2-2) we will apply the following two enumeration theorems about metrizable spaces. Note that, other than in the model E which proves [\(I\),](#page-0-1) for $\kappa < \lambda \leq 2^{\kappa}$ we can rule out $2^{\kappa} = 2^{\lambda}$ only in case that $\lambda = 2^{\kappa}$. (Thus the following two propositions can be ignored if Theorems [1.1,](#page-1-0) [1.2](#page-1-1) and [1.4](#page-2-2) are only read as enumeration theorems about spaces X of maximal possible weights $2^{|X|}$.)

Let $X + Y$ denote the topological sum of two Hausdorff spaces X and Y. (So $X + Y$ is a space S such that $S = \tilde{X} \cup \tilde{Y}$ for disjoint open subspaces \tilde{X}, \tilde{Y} of S where \tilde{X} is homeomorphic to X and \tilde{Y} is homeomorphic to Y.) If $Y = \emptyset$ then we put $X + Y = X$.

PROPOSITION 2.2. For every κ there is a family \mathcal{H}_{κ} of mutually non-homeomorphic scattered, strongly zero-dimensional metrizable spaces of size κ such that $|\mathcal{H}_{\kappa}| = 2^{\kappa}$ and if D is any discrete space (including the case $D = \emptyset$) then the spaces $H_1 + D$ and $H_2 + D$ are never homeomorphic for distinct $H_1, H_2 \in \mathcal{H}_{\kappa}$.

By Lemma [2.1](#page-2-0) and since $w(Y) \leq |Y|$ for every metrizable space Y, we have $w(X) = |X|$ for every $X \in \mathcal{H}_{\kappa}$. Proposition [2.2](#page-3-1) can be verified by considering the spaces constructed in $[7]$ which proves $[7,$ Theorem 1]. Because these spaces X are revealed as mutually non-homeomorphic ones by investigating the α th Cantor derivative $X^{(\alpha)}$ for every ordinal $\alpha > 0$. And, naturally, if X is any space and D is discrete then $(X+D)^{(\alpha)} = X^{(\alpha)}$ for every $\alpha > 0$. The following proposition is proved in [\[5\]](#page-21-3) Section [4](#page-4-1) (if X is connected then $a \in X$ is a noncut point when a is not a cut point, i.e. when $X \setminus \{a\}$ remains connected.)

PROPOSITION 2.3. For every $\kappa \geq c$ there is a family \mathcal{P}_{κ} of mutually non-homeomorphic pathwise connected, locally pathwise connected, complete metric spaces of size and weight κ such that $|\mathcal{P}_{\kappa}| = 2^{\kappa}$ and if $H \in \mathcal{P}_{\kappa}$ then H contains a noncut point and the cut points of H lie dense in H.

3. Almost discrete and almost metrizable spaces

In accordance with [\[11\]](#page-21-7), a space is *completely normal* when every subspace is normal. In [\[2\]](#page-21-1) such spaces are called hereditarily normal.

LEMMA 3.1. If X is a Hausdorff space and $z \in X$ such that $X \setminus \{z\}$ is a discrete subspace of X then X is scattered and completely normal and strongly zero-dimensional.

Proof. Put $Y := X \setminus \{z\}$. Since Y is a discrete and open subspace of X, every nonempty subset of X contains an isolated point, whence X is scattered. Let $A, B \subset$ X with $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. If $z \notin A \cup B$ then $A, B \subset Y$ and hence $A \subset U$ and $B \subset V$ with the two disjoint open sets $U = A$ and $V = B$. Assume $z \in A \cup B$ and, say, $z \in A$. Then $z \notin \overline{B}$ and hence $B \subset Y$. Thus $A \subset \tilde{U}$ and $B \subset \tilde{V}$ with the two disjoint open sets $\tilde{U} = X \setminus \overline{B}$ and $\tilde{V} = B$. So X is completely normal. Finally, let $A \subset X$ be closed. If $z \notin A$ then A is open. If $z \in A$ and U is an open neighborhood

of A then U is closed since $X \setminus U \subset Y$. So every closed subset of X has a basis of open-closed neighborhoods and hence X is strongly zero-dimensional.

LEMMA 3.2. If Z is a regular space such that $Z \setminus \{z\}$ is paracompact for some $z \in Z$ then Z is paracompact.

Proof. Let U be an open cover of Z. Trivially, $U^* := \{U \setminus \{z\} \mid U \in U\}$ is an open cover of the paracompact open subspace $P = Z \setminus \{z\}$ of Z. Hence we can find an open cover \mathcal{V}^* of P which is a locally finite refinement of \mathcal{U}^* . Fix one set $U_z \in \mathcal{U}$ with $z \in U_z$ and choose a closed neighborhood C of z in the regular space Z such that $C \subset U_z$. Now put $\mathcal{V} := \{V^* \setminus C \mid V^* \in \mathcal{V}^*\} \cup \{U_z\}$. Clearly, \mathcal{V} is an open cover of Z which is a refinement of U. If $z \neq x \in Z$ then some neighborhood of x meets only finitely many members of \mathcal{V}^* and hence only finitely many members of \mathcal{V} . And C is a neighborhood of z which meets $V \in \mathcal{V}$ if and only if $V = U_z$. Therefore, the cover V is locally finite in Z and hence Z is paracompact.

Since metrizability implies paracompactness and since the union of two G_{δ} -sets is a G_{δ} -set, from Lemma [3.1](#page-3-2) and Lemma [3.2](#page-4-0) we derive the following two corollaries.

COROLLARY 3.3. Let X be a Hausdorff space and $z \in X$ such that $X \setminus \{z\}$ is a discrete subspace of X and $\{z\}$ is a G_{δ} -set in X. Then the almost discrete space X is hereditarily paracompact and perfectly normal.

COROLLARY 3.4. Let X be a regular space and $z \in X$ such that the subspace $X \setminus \{z\}$ is metrizable and $\{z\}$ is a G_{δ} -set in X. Then X is hereditarily paracompact and perfectly normal and hence almost metrizable.

4. The single filter topology

Let X, z be as in Lemma [3.1](#page-3-2) and consider the family U of all open neighborhoods of the point z. Since $\{x\}$ is open in X whenever $z \neq x \in X$, the family U coincides with the neighborhood filter at z in the space X. Consequently, $\mathcal{U}^* := \{U \setminus \{z\} \mid U \in \mathcal{U}\}\$ is the power set of $X \setminus \{z\}$ if z is isolated in X or, equivalently, if X is discrete. And \mathcal{U}^* is a filter on the set $X \setminus \{z\}$ if z is a limit point of X or, equivalently, if the discrete subspace $X \setminus \{z\}$ is dense in X. Since X is Hausdorff, it is plain that $\bigcap \mathcal{U}^* = \emptyset$.

Conversely, let Y be an infinite set and $z \notin Y$ and let F be a filter on the set Y. Define a topology $\tau[\mathcal{F}]$ on the set $X := Y \cup \{z\}$ by declaring $U \subset X$ open if and only if either $z \notin U$ or $U = \{z\} \cup F$ for some $F \in \mathcal{F}$. It is plain that this is a correct definition of a topology on the set X . Furthermore, Y is a discrete and open and dense subspace of $(X, \tau[\mathcal{F}])$, whence $\{z\}$ is closed in X. It is plain that $(X, \tau[\mathcal{F}])$ is a Hausdorff space if and only if the filter F is free, i.e. $\bigcap \mathcal{F} = \emptyset$. So by Lemma [3.1](#page-3-2) the almost discrete space $(X, \tau | \mathcal{F})$ is hereditarily paracompact and scattered and strongly zero-dimensional for every free filter $\mathcal F$ on Y .

For abbreviation throughout the paper let us call a filter $\mathcal F$ ω -free if and only if $\bigcap \mathcal{A} = \emptyset$ for some countable $\mathcal{A} \subset \mathcal{F}$. In view of Corollary [3.3](#page-4-2) the following statement is evident.

(III) If F is a filter on Y then $(X, \tau[\mathcal{F}])$ is almost discrete and perfectly normal if and only if $\mathcal F$ is ω -free.

The following observation is essential for the proof of Theorem [1.1.](#page-1-0)

(IV) If F is a free filter on Y then the almost discrete space $(X, \tau | \mathcal{F})$ is extremally disconnected if and only if F is an ultrafilter.

Proof. Firstly let F be a free ultrafilter. Let $U \subset X$ be open. If $\overline{U} = U$ then \overline{U} is open. So assume $\overline{U} \neq U$. Then $\overline{U} = U \cup \{z\}$ and $z \notin U$ since z is the only limit point in X. Thus $U \subset Y$ and z is a limit point of U. Hence every open neighborhood of z meets U. In other words, $F \cap U \neq \emptyset$ for every $F \in \mathcal{F}$. Consequently, $U \in \mathcal{F}$ since F is an ultrafilter. Thus $\overline{U} = U \cup \{z\}$ is open in X, whence $(X, \tau | \mathcal{F})$ is extremally disconnected. Secondly, let F be a free filter and assume that $(X, \tau[\mathcal{F}])$ is extremally disconnected. Let $A \subset Y$, whence A is open in X. If $\overline{A} = A$ then $X \setminus A$ is open and hence Y \ A lies in F. If $\overline{A} \neq A$ then $\overline{A} = \{z\} \cup A$ is open and hence A lies in F. This reveals $\mathcal F$ as an ultrafilter.

REMARK 4.1. If $|Y| = \aleph_0$ and F is a free ultrafilter on Y then $\tau[\mathcal{F}]$ is the well-known single ultrafilter topology (see [\[11,](#page-21-7) Example 114]).

For a filter F on Y let $\chi(\mathcal{F})$ denote the least possible size of a filter base which generates F. Trivially, $\chi(\mathcal{F}) \leq |\mathcal{F}| \leq 2^{|Y|}$. The notation $\chi(\cdot)$ corresponds with the obvious fact that $\chi(F)$ is the *character* of z in $(X, \tau[F])$. (The character $\chi(a, A)$ of a point a in a space A is the smallest possible size of a local basis at a in the space A .) Therefore, since $\{y\}$ is open in $(X, \tau | \mathcal{F})$ for every $y \in Y$, we obtain:

(V) If F is a free filter on Y then the weight of $(X, \tau[\mathcal{F}])$ is $\max\{|Y|, \chi(\mathcal{F})\}.$

PROPOSITION 4.2. If $|Y| = \kappa \leq \lambda \leq 2^{\kappa}$ then there exist 2^{λ} ω -free filters F on Y such that $\chi(\mathcal{F}) = \lambda$.

REMARK 4.3. The cardinal 2^{λ} in Proposition [4.2](#page-5-0) is best possible. Indeed, let Y be an infinite set of size κ and let $\lambda \geq \kappa$. Since a filter base on Y is a subset of the power set of Y, there are at most 2^{λ} filter bases β on Y with $|\beta| = \lambda$. Hence Y cannot carry more than 2^{λ} filters F with $\chi(\mathcal{F}) = \lambda$.

Proof (of Proposition [4.2\)](#page-5-0). Assume $|Y| = \kappa \leq \lambda \leq 2^{\kappa}$ and let A be a family of subsets of Y such that $|\mathcal{A}| = 2^{\kappa}$ and

(VI) If $\mathcal{D}, \mathcal{E} \neq \emptyset$ are disjoint finite subfamilies of A then $\bigcap \mathcal{D} \not\subset \bigcup \mathcal{E}$.

A construction of such a family A is elementary, see [\[4,](#page-21-6) 7.7]. However, this is not enough for our purpose. In view of the property ω -free, we additionally have to make sure that the family A also contains a countably infinite family \mathcal{A}_{ω} such that $\bigcap A_{\omega} = \emptyset$. By applying Lemma [11.3](#page-20-0) in Section [11](#page-18-0) for $\mu = \aleph_0$ we can assume that such a family $\mathcal{A}_{\omega} \subset \mathcal{A}$ exists. Now put $\mathbf{A}_{\lambda} := \{ \mathcal{H} \mid \mathcal{A}_{\omega} \subset \mathcal{H} \subset \mathcal{A} \wedge |\mathcal{H}| = \lambda \}.$ Clearly, $|\mathbf{A}_{\lambda}| = (2^{\kappa})^{\lambda} = 2^{\lambda}$. By virtue of [\(VI\),](#page-5-1) if for $\mathcal{H} \in \mathbf{A}_{\lambda}$ we put

$$
\mathcal{B}_{\mathcal{H}} := \{ H_1 \cap \cdots \cap H_n \mid n \in \mathbb{N} \wedge H_1, \ldots, H_n \in \mathcal{H} \}
$$

then $\emptyset \notin \mathcal{B}_{\mathcal{H}}$ and hence $\mathcal{B}_{\mathcal{H}}$ is a filter base on Y. For every $\mathcal{H} \in \mathbf{A}_{\lambda}$ let $\mathcal{F}[\mathcal{H}]$ denote the filter on Y generated by $\mathcal{B}_{\mathcal{H}}$. Clearly, $|\mathcal{B}_{\mathcal{H}}| = |\mathcal{H}| = \lambda$ for every $\mathcal{H} \in \mathbf{A}_{\lambda}$.

The filter $\mathcal{F}[\mathcal{H}]$ is ω -free because $\mathcal{A}_{\omega} \subset \mathcal{F}[\mathcal{H}]$ by definition. Furthermore, [\(VI\)](#page-5-1) implies that for distinct families $\mathcal{H}_1, \mathcal{H}_2 \in \mathbf{A}_{\lambda}$ the filters $\mathcal{F}[\mathcal{H}_1]$ and $\mathcal{F}[\mathcal{H}_2]$ must be distinct. So the family $\{\mathcal{F}[\mathcal{H}] \mid \mathcal{H} \in \mathbf{A}_{\lambda}\}$ consists of 2^{λ} ω -free filters on Y.

It remains to verify that $\chi(\mathcal{F}[\mathcal{H}]) = \lambda$ for every $\mathcal{H} \in \mathbf{A}_{\lambda}$. Assume indirectly that for some $\mathcal{H} \in \mathbf{A}_{\lambda}$ we have $\chi(\mathcal{F}[\mathcal{H}]) \neq \lambda$ and hence $\chi(\mathcal{F}[\mathcal{H}]) < \lambda$. (Clearly $\chi(\mathcal{F}[\mathcal{H}]) \leq \lambda$ since $|\mathcal{B}_{\mathcal{H}}| = |\mathcal{H}| = \lambda$.) Choose a filter base \mathcal{B} on Y which generates the filter $\mathcal{F}[\mathcal{H}]$ such that $|\mathcal{B}| < \lambda$. Since $\mathcal{B} \subset \mathcal{F}[\mathcal{H}]$ and $\mathcal{F}[\mathcal{H}]$ is generated by the filter base $\mathcal{B}_{\mathcal{H}}$, we can choose for every $B \in \mathcal{B}$ a finite set $\mathcal{H}_B \subset \mathcal{H}$ such that $B \supset \bigcap \mathcal{H}_B$. Put $\mathcal{U} := \bigcup_{B \in \mathcal{B}} \mathcal{H}_B$. Then $\mathcal{U} \subset \mathcal{H}$ and $|\mathcal{U}| \leq |\mathcal{B}| < \lambda$. Consequently, $\mathcal{H} \setminus \mathcal{U} \neq \emptyset$. Choose any set $A \in \mathcal{H} \setminus \mathcal{U}$. Then $A \in \mathcal{F}[\mathcal{H}]$ and hence we can find a set $B \in \mathcal{B}$ with $A \supset B$. Then $A \supset \bigcap \mathcal{H}_B$ and hence $A \in \mathcal{H}_B$ by virtue of [\(VI\).](#page-5-1) But then $A \in \mathcal{U}$ in contradiction with choosing A in $\mathcal{H} \setminus \mathcal{U}$.

Proposition [4.2](#page-5-0) can be improved in the important case $\lambda = 2^{\kappa}$ as follows.

PROPOSITION 4.4. On an infinite set of size κ there exist precisely $2^{2^{\kappa}}$ ω -free ultrafilters F such that $\chi(\mathcal{F}) = 2^{\kappa}$.

Proof. Let Y be a set of size κ . As in the previous proof let A be a family of subsets of Y such that $|\mathcal{A}| = 2^{\kappa}$ and [\(VI\)](#page-5-1) holds. Here we need not consider $\mathcal{A}_{\omega} \subset \mathcal{A}$. Let A denote the family of all subfamilies G of A such that $|\mathcal{G}| = 2^{\kappa}$. Clearly, $|\mathbf{A}| = 2^{2^{\kappa}}$. Now for every $\mathcal{G} \in \mathbf{A}$ define $\mathcal{W}[\mathcal{G}] := \mathcal{G} \cup \{Y \setminus \bigcap \mathcal{H} \mid \mathcal{H} \subset \mathcal{G} \wedge |\mathcal{H}| \geq \aleph_0\} \cup \{Y \setminus A \mid A \in \mathcal{A} \setminus \mathcal{G}\}.$

A moment's reflection suffices to see that [\(VI\)](#page-5-1) implies that $W_1 \cap \cdots \cap W_n \neq \emptyset$ whenever $W_1, \ldots, W_n \in \mathcal{W}[\mathcal{G}]$. Hence for every $\mathcal{G} \in \mathbf{A}$ we can choose an ultrafilter $\mathcal{U}[\mathcal{G}]$ on Y such that $\mathcal{U}[\mathcal{G}] \supset \mathcal{W}[\mathcal{G}]$ (see [\[1,](#page-21-8) 7.1]).

If $\mathcal{G}_1, \mathcal{G}_2 \in \mathbf{A}$ are distinct and, say, $G \in \mathcal{G}_1 \setminus \mathcal{G}_2$ then $G \in \mathcal{W}[\mathcal{G}_1]$ and $Y \setminus G \in \mathcal{W}[\mathcal{G}_2]$ and hence $G \in \mathcal{U}[\mathcal{G}_1]$ and $G \notin \mathcal{U}[\mathcal{G}_2]$ and hence the ultrafilters $\mathcal{U}[\mathcal{G}_1]$ and $\mathcal{U}[\mathcal{G}_2]$ are distinct as well. Consequently, the family $\{\mathcal{U}[\mathcal{G}] \mid \mathcal{G} \in \mathbf{A}\}$ consists of $2^{2^{\kappa}}$ ultrafilters on Y. All these ultrafilters are ω -free because if $\mathcal{G} \in \mathbf{A}$ and H is a countably infinite subset of G then by virtue of [\(VI\)](#page-5-1) the family $\mathcal{H}^* := \{ H \setminus \bigcap \mathcal{H} \mid H \in \mathcal{H} \}$ is countably infinite and it is trivial that $\bigcap \mathcal{H}^* = \emptyset$ and from $\mathcal{H} \subset \mathcal{W}[\mathcal{G}]$ and $Y \setminus \bigcap \mathcal{H} \in \mathcal{W}[\mathcal{G}]$ we derive $\mathcal{H}^* \subset \mathcal{U}[\mathcal{G}]$. (Actually, by a deep argument from set theory it is superfluous to verify that $\mathcal{U}[\mathcal{G}]$ is ω -free, see the remark below.)

Finishing the proof, we claim that $\chi(\mathcal{U}[\mathcal{G}]) = 2^{\kappa}$ for every $\mathcal{G} \in \mathbf{A}$. Assume indirectly that for $\mathcal{G} \in \mathbf{A}$ the ultrafilter $\mathcal{U}[\mathcal{G}]$ is generated by a filter base \mathcal{B} with $|\mathcal{B}| < 2^{\kappa}$. Since $\mathcal{G} \subset \mathcal{U}[\mathcal{G}]$, for every $G \in \mathcal{G}$ we have $G \supset B$ for some $B \in \mathcal{B}$. From $|\mathcal{B}| < |\mathcal{G}|$ we derive the existence of a set $B \in \mathcal{B}$ and an infinite subset $\mathcal{H} \subset \mathcal{G}$ such that $H \supset B$ for every $H \in \mathcal{H}$. Consequently, $\bigcap \mathcal{H} \supset B$ and hence $\bigcap \mathcal{H} \in \mathcal{U}[\mathcal{G}]$. This, however, is a contradiction since $Y \setminus \bigcap \mathcal{H}$ lies in $\mathcal{U}[\mathcal{G}]$ by the definition of $\mathcal{W}[\mathcal{G}]$.

Remark 4.5. Our proof of Proposition [4.4](#page-6-0) is elementary and purely set-theoretical. There is also a topological but much less elementary way to prove Proposition [4.4.](#page-6-0) First of all, if one can prove that any set of size κ carries $2^{2^{\kappa}}$ ultrafilters of character 2^{κ} then Proposition [4.4](#page-6-0) must be true. Because, an ultrafilter $\mathcal F$ is free if and only if $\chi(\mathcal{F}) > 1$ and if a free ultrafilter $\mathcal F$ is not ω -free then it is plain that $\mathcal F$ is σ -complete. However, the existence of a σ -complete free ultrafilter is unprovable in ZFC (see [\[4,](#page-21-6)

10.2 and 10.4]). Now, consider the set Y of size κ equipped with the discrete topology and consider the Stone-Cech compactification βY of Y and its compact remainder $Y^* = \beta Y \setminus Y$. So the points in Y^* are the free ultrafilters on Y and if for $p \in Y^*$ we consider the subspace $Y \cup \{p\}$ of βY then it is clear that the character of the ultrafilter p equals $\chi(p, Y \cup \{p\})$. It is a nice exercise to verify that $\chi(p, Y \cup \{p\}) = \chi(p, Y^*)$ for every $p \in Y^*$. By embedding an appropriate Stone space of a Boolean algebra into Y^* it can be proved that Y^* must contain 2^{2^k} points p with $\chi(p, Y^*) = 2^{\kappa}$, see [\[1,](#page-21-8) 7.13, 7.14, 7.15].

5. Proof of Theorem [1.1](#page-1-0)

Assume $\mu \leq \kappa \leq \lambda \leq 2^{\mu}$ and let Y be a set of size μ . Let \mathbf{F}_{λ} denote a family of ω -free filters on Y such that $|\mathbf{F}_{\lambda}| = 2^{\lambda}$ and $\chi(\mathcal{F}) = \lambda$ for every $\mathcal{F} \in \mathbf{F}_{\lambda}$. Such a family exists by Proposition [4.2.](#page-5-0) We additionally assume that if $\lambda = 2^{\mu}$ then every member of \mathbf{F}_{λ} is an ultrafilter. This additional assumption is justified by Proposition [4.4.](#page-6-0)

Now fix $z \notin Y$ and for every $\mathcal{F} \in \mathbf{F}_{\lambda}$ consider the single filter topology $\tau[\mathcal{F}]$ on the set $X = Y \cup \{z\}$ as in Section [4.](#page-4-1) If $\mu < \kappa$ then let D be a discrete space of size κ . If $\mu = \kappa$ then put $D = \emptyset$. In both cases define the space $(\tilde{X}, \tilde{\tau} | \mathcal{F})$ as the topological sum of D and the space $(X, \tau[\mathcal{F}])$. (So if $\mu = \kappa$ then $\hat{X} = X$ and $\tilde{\tau}[\mathcal{F}] = \tau[\mathcal{F}]$.) Clearly, \tilde{X} is almost discrete, scattered, strongly zero-dimensional, hereditarily paracompact, and perfectly normal. Furthermore, $w(\tilde{X}) = \lambda$ and $|\tilde{X}| = \kappa$. If $\lambda = 2^{\mu}$ then the space \hat{X} is also extremally disconnected by virtue of [\(IV\).](#page-5-2)

Obviously, $\tilde{\tau}[\mathcal{F}_1] \neq \tilde{\tau}[\mathcal{F}_2]$ whenever the filters $\mathcal{F}_1, \mathcal{F}_2 \in \mathbf{F}_{\lambda}$ are distinct. (For if $\mathcal{F}_1, \mathcal{F}_2 \in \mathbf{F}_{\lambda}$ and $F \in \mathcal{F}_1 \setminus \mathcal{F}_2$ then $F \cup \{z\}$ is $\tilde{\tau}[\mathcal{F}_1]$ -open but not $\tilde{\tau}[\mathcal{F}_2]$ -open.) Consequently, the family $\mathcal{T}_{\lambda} := \{ \tilde{\tau}[\mathcal{F}] \mid \mathcal{F} \in \mathbf{F}_{\lambda} \}$ is of size 2^{λ} .

We distinguish the two cases $2^{\lambda} > 2^{\mu}$ and $2^{\lambda} \leq 2^{\mu}$. Assume firstly that $2^{\lambda} > 2^{\mu}$ or, equivalently, that $|\mathcal{T}_{\lambda}| > 2^{\mu}$. Define an equivalence relation \sim on \mathcal{T}_{λ} by $\tau_1 \sim \tau_2$ if and only if the spaces (\tilde{X}, τ_1) and (\tilde{X}, τ_2) are homeomorphic. We claim that the size of an equivalence class cannot be greater than 2^{μ} .

This is clearly true if $\mu = \kappa$ because there are only 2^{μ} permutations on X. So assume $\mu < \kappa$. If $\tau \in \mathcal{T}_{\lambda}$ then in the space (\tilde{X}, τ) the point z is the only limit point and every neighborhood U of z is open-closed. As a consequence, for $\tau_1, \tau_2 \in \mathcal{T}_{\lambda}$ the spaces (\tilde{X}, τ_1) and (\tilde{X}, τ_2) are homeomorphic if and only if there is a homeomorphism φ from the τ_1 -subspace X of X onto some τ_2 -open-closed subspace of X. Indeed, if f is a homeomorphism from (\tilde{X}, τ_1) onto (\tilde{X}, τ_2) then put $\varphi(x) = f(x)$ for every $x \in X$ and φ fits since $f(z) = z$. Conversely, if φ is a homeomorphism from the τ_1 -subspace X of \tilde{X} onto some τ_2 -open-closed subspace of \tilde{X} and g is any bijection from $\tilde{X} \setminus X$ onto $\tilde{X} \setminus \varphi(X)$ then it is plain that a homeomorphism f from (\tilde{X}, τ_1) onto (\tilde{X}, τ_2) is defined by $f(x) = \varphi(x)$ for $x \in X$ and $f(x) = g(x)$ for $x \notin X$. Note that $|\tilde{X} \setminus X| = |\tilde{X} \setminus \varphi(X)|$ since $\mu < \kappa$. Therefore, since there are precisely κ^{μ} mappings from X into \tilde{X} , the size of an eqivalence class in \mathcal{T}_{λ} cannot exceed κ^{μ} . And from $2 < \mu \leq \kappa \leq 2^{\mu}$ we derive $2^{\mu} \leq \mu^{\mu} \leq \kappa^{\mu} \leq (2^{\mu})^{\mu} = 2^{\mu}$ and hence $\kappa^{\mu} = 2^{\mu}$.

So the size of an equivalence class can indeed not be greater than 2^{μ} . Consequently,

 $|\mathcal{T}_{\lambda}| > 2^{\mu}$ implies that the total number of all equivalence classes equals $|\mathcal{T}_{\lambda}| =$ 2^{λ} . Thus by choosing one topology in each equivalence class we obtain 2^{λ} mutually non-equivalent topologies $\tau \in \mathcal{T}_{\lambda}$ and hence the 2^{λ} corresponding spaces (\tilde{X}, τ) are mutually non-homeomorphic. This settles the case $2^{\lambda} > 2^{\mu}$. In particular, we have already proved the second and the third statement in Theorem [1.1](#page-1-0) because, under the assumption $\kappa \leq \lambda \leq 2^{\kappa}$, if $\lambda = 2^{\mu}$ for some μ then $\lambda = 2^{\mu}$ (and hence $2^{\lambda} > 2^{\mu}$) for some $\mu \leq \kappa$ and if $\lambda \leq 2^{\mu} < 2^{\lambda}$ and $\mu > \kappa$ then $2^{\kappa} \leq 2^{\mu} < 2^{\lambda}$ and hence $2^{\lambda} > 2^{\mu'}$ for $\mu' = \kappa$.

Secondly assume that $2^{\lambda} \leq 2^{\mu}$. Then we have $2^{\lambda} = 2^{\kappa}$ since $\mu \leq \kappa \leq \lambda$ implies $2^{\mu} \leq 2^{\kappa} \leq 2^{\lambda}$. So in order to conclude the proof of Theorem [1.1](#page-1-0) we assume $\kappa \leq \lambda \leq$ $2^{\kappa} = 2^{\lambda}$. (Then, of course, $\kappa \leq \lambda < 2^{\kappa} = 2^{\lambda}$.) Since the special case $\kappa = \lambda$ is settled by Proposition [2.2,](#page-3-1) we also assume $\kappa < \lambda$. For two spaces X_1 and X_2 let, again, $X_1 + X_2$ denote the topological sum of X_1 and X_2 . Let \mathcal{H}_{κ} be a family provided by Proposition [2.2.](#page-3-1) Due to metrizability, every space in \mathcal{H}_{κ} is perfectly normal and hereditarily paracompact.

By considering an appropriate single filter topology on a set of size κ , we can choose a perfectly normal space Z of size κ such that for some point $z \in Z$ the subspace $Z \setminus \{z\}$ is discrete and $\chi(z, Z) = \lambda$. (Consequently, $w(Z) = \lambda$.) For every space $H \in \mathcal{H}_{\kappa}$ consider the topological sum $H + Z$. Of course, the topological sum of two paracompact spaces is paracompact and $(H + Z) \setminus \{z\} = H + (Z \setminus \{z\})$ for every $H \in \mathcal{H}_{\kappa}$. Consequently, for every $H \in \mathcal{H}_{\kappa}$ the space $H + Z$ is scattered and strongly zero-dimensional and perfectly normal and hereditarily paracompact and $|H + Z| = |H| = \kappa$ and $w(H + Z) = \max\{w(H), w(Z)\} = \max\{\kappa, \lambda\} = \lambda$. Therefore, since $|\mathcal{H}_\kappa| = 2^\kappa$, the case $2^\lambda = 2^\kappa$ in Theorem [1.1](#page-1-0) is settled by showing that for two distinct (and hence non-homeomorphic) metrizable spaces $H_1, H_2 \in \mathcal{H}_\kappa$ the two spaces $H_1 + Z$ and $H_2 + Z$ are never homeomorphic. Assume that $H_1, H_2 \in \mathcal{H}_\kappa$ and that f is a homeomorphism from $H_1 + Z$ onto $H_2 + Z$. Then $f(z) = z$ since $w((H_i+Z)\setminus\{z\}) = \kappa < \lambda$ and $\chi(z, H_i+Z) = \chi(z, Z) = \lambda$. Consequently, f maps $(H_1 + Z) \setminus \{z\}$ onto $(H_2 + Z) \setminus \{z\}$. Therefore, since $Z \setminus \{z\}$ is discrete and $(H+Z)\setminus\{z\} = H+(Z\setminus\{z\})$ for every $H \in \mathcal{H}_{\kappa}$, we have $H_1 = H_2$ in view of Proposition [2.2.](#page-3-1)

6. Proof of Theorem [1.2](#page-1-1)

In order to find a natural way to prove Theorem [1.2](#page-1-1) (and also Theorem [1.4\)](#page-2-2) we give a short proof of the following consequence of Theorem [1.2.](#page-1-1)

(VII) If $c \leq \kappa \leq \lambda \leq 2^{\kappa}$ then there exist 2^{λ} mutually non-homeomorphic pathwise connected, paracompact Hausdorff spaces of size κ and weight λ .

From Theorem [1.1](#page-1-0) [\(VII\)](#page-8-0) can easily be derived as follows. Assume $c \le \kappa \le \lambda \le 2^{\kappa}$. By Theorem [1.1](#page-1-0) there exists a family P of 2^{λ} mutually non-homeomorphic, totally disconnected, paracompact Hausdorff spaces X of size κ and weight λ . For every $X \in \mathcal{F}$ let $\mathcal{Q}(X)$ denote the quotient space of $X \times [0,1]$ by its closed subspace $X \times \{1\}$. The quotient space $\mathcal{Q}(X)$ can be directly defined as follows. Consider the

product space $X \times [0,1]$ and fix $p \notin X \times [0,1]$ and put $\mathcal{Q}(X) := \{p\} \cup (X \times [0,1])$. Declare a subset U of $\mathcal{Q}(X)$ open if and only if $U \setminus \{p\}$ is open in the product space $X \times [0, 1]$ and $p \in U$ implies that $(U \setminus \{p\}) \cup (X \times \{1\})$ is open in the space $X \times [0, 1]$. One can picture $\mathcal{Q}(X)$ as a *cone* with apex p and all rulings $\{p\} \cup (\{x\} \times [0, 1])$ $(x \in X)$ homeomorphic to the unit interval [0, 1]. By [\[2,](#page-21-1) 5.1.36 and 5.1.28] both $X \times [0, 1]$ and $X \times [0,1]$ are paracompact. Consequently, $\mathcal{Q}(X)$ is a regular space and hence $\mathcal{Q}(X)$ is paracompact in view of Lemma [3.2.](#page-4-0) It is evident that $\mathcal{Q}(X)$ is pathwise connected. Trivially, $|Q(X)| = \kappa$.

Unfortunately, we can be sure that $w(Q(X)) = \lambda$ for every $X \in \mathcal{P}$ only if $\lambda =$ 2^κ. (Since $|Q(X)| = \kappa$, we have $w(Q(X)) \leq 2^{\kappa}$. On the other hand, $w(Q(X)) \geq$ $w(Q(X) \setminus \{p\}) = w(X \times [0,1]) = w(X) = \lambda$. The problem with the weight is that if μ is the character of the apex p then $w(Q(X)) = \max\{w(X \times [0,1]), \mu\} = \max\{\lambda, \mu\}.$ But we cannot rule out $\lambda < \mu$ if $\lambda < 2^{\kappa}$. Of course, if $X \in \mathcal{P}$ is compact then $\mu = \aleph_0$ and hence $w(\mathcal{Q}(X)) = \lambda$ (but also $\lambda \leq |X| = \kappa$). Fortunately, we can make the character of the apex countable also by harshly reducing the filter of the neighborhoods of p. Let $\mathcal{Q}^*(X)$ be defined as the cone $\mathcal{Q}(X)$ but with the (only) difference that $U \subset \{p\} \cup (X \times [0,1])$ is an open neighborhood of p if and only if $U \setminus \{p\}$ is open in $X \times [0,1]$ and $U \supset X \times [t,1]$ for some $t \in [0,1]$. Now we have $\chi(p, \mathcal{Q}^*(X)) = \aleph_0$ and hence $w(\mathcal{Q}^*(X)) = w(X)$ for every $X \in \mathcal{P}$. Of course, $\mathcal{Q}^*(X)$ is pathwise connected. By the same arguments as for $\mathcal{Q}(X)$, the space $\mathcal{Q}^*(X)$ is regular and paracompact. Finally, the spaces $\mathcal{Q}(X)(X \in \mathcal{P})$ are mutually non-homeomorphic because every $X \in \mathcal{P}$ can be recovered (up to homeomorphism) from $\mathcal{Q}(X)$. Indeed, since X is totally disconected, if Z is the set of all $z \in \mathcal{Q}(X)$ such that $\mathcal{Q}(X) \setminus \{z\}$ remains pathwise connected then it is evident that $Z = X \times \{0\}$ and hence Z is homeomorphic with X . This concludes the proof of [\(VII\).](#page-8-0)

In the following proof of Theorem [1.2](#page-1-1) we will also work with cones but we cannot use the cones $\mathcal{Q}(X)$ or $\mathcal{Q}^*(X)$ because it is evident that if X is not discrete then neither $\mathcal{Q}(X)$ nor $\mathcal{Q}^*(X)$ is locally connected. Furthermore, by virtue of Corollary [3.4](#page-4-3) and since $\{p\}$ is a G_{δ} -set in the space $\mathcal{Q}^*(X)$, the cone $\mathcal{Q}^*(X)$ is almost metrizable if and only if X is metrizable (then $w(Q^*(X)) = w(X) = \kappa$). Consequently, $Q^*(X)$ is locally connected and almost metrizable if and only if X is discrete. Now the clue in the following proof of Theorem [1.2](#page-1-1) is to consider $\mathcal{Q}^*(S)$ for one discrete spaces S of size (and weight) κ and to reduce the topology of $\mathcal{Q}^*(S)$ in 2^{λ} ways such that the weight κ of $\mathcal{Q}^*(S)$ is increased to λ and that 2^{λ} non-homeomorphic spaces as desired are obtained. First of all we need a lemma.

LEMMA 6.1. If $n \in \mathbb{N}$ and A is a topological space and $a \in A$ and A_1, \ldots, A_n are metrizable, closed subspaces of A and $A = A_1 \cup \cdots \cup A_n$ and $A_i \cap A_j = \{a\}$ whenever $1 \leq i \leq j \leq n$ then the space A is metrizable.

Proof. Assume $n \geq 2$. Clearly, if $1 \leq i \leq n$ then $A_i \setminus \{a\} = A \setminus \bigcup_{j \neq i} A_j$ is an open subset of A. Furthermore, if $a \in U_i \subset A_i$ and U_i is open in the subspace A_i for $1 \leq i \leq n$ then $U_1 \cup \cdots \cup U_n$ is an open subset of the space A. (Because if V_i is an open subset of A with $U_i = V_i \cap A_i$ for $1 \leq i \leq n$ then $U_1 \cup \cdots \cup U_n =$ $(V_1 \cap \cdots \cap V_n) \cup \bigcup_{i=1}^n (V_i \cap (A_i \setminus \{a\})\)$ For $1 \leq i \leq n$ consider A_i equipped with

a suitable metric d_i . Define a mapping from $A \times A$ into $\mathbb R$ in the following way. If $x, y \in A_i$ for some i then put $d(x, y) = d_i(x, y)$. If $x \in A_i$ and $y \in A_j$ for distinct i, j then put $d(x, y) = d_i(x, a) + d_i(y, a)$. Of course, d is a metric on the set A. (One may regard A as a hedgehog with body a and spines A_1, \ldots, A_n .) By considering the open neighborhoods of the point a in the space A we conclude that the topology generated by the metric d coincides with the topology of the space A .

Now we are ready to prove Theorem [1.2.](#page-1-1) Assume $c \leq \kappa < \lambda \leq 2^{\kappa}$. (We ignore the case $\kappa = \lambda$ because this case is covered by Proposition [2.3.](#page-3-3)) Let S be a discrete space of size κ and $\mathcal F$ an ω -free filter on S with $\chi(\mathcal F) = \lambda$. Consider the metrizable product space $S \times [0, 1]$ and fix $p \notin S \times [0, 1]$ and define a topological space $\Phi[\mathcal{F}]$ in the following way. The points in the space $\Phi[\mathcal{F}]$ are the elements of $\{p\} \cup (S \times [0, 1])$ and a subset U of $\{p\} \cup (S \times [0, 1])$ is open if and only if firstly $U \setminus \{p\}$ is open in the product space $S \times [0,1]$ and secondly the point p lies in U only if $(S \times [t,1]) \cup (F \times [0,1]) \subset U$ for some $t \in [0,1]$ and some $F \in \mathcal{F}$.

It is plain that this is a correct definition of a topological space such that the subspace $\Phi[\mathcal{F}] \setminus \{p\}$ is identical with the product space $S \times [0, 1]$. Similarly as above we picture $\Phi[\mathcal{F}]$ as a cone with apex p and the rulings $\{p\} \cup (\{x\} \times [0,1]) (x \in X)$ homeomorphic to the unit interval [0, 1]. (Obviously, the topology of $\Phi[\mathcal{F}]$ is strictly coarser than the topology of the cone $\mathcal{Q}^*(S)$.) It is straightforward to verify that $\Phi[\mathcal{F}]$ is a regular space. Hence by Corollary [3.4](#page-4-3) the space $\Phi[\mathcal{F}]$ is almost metrizable. (Since F is ω -free and [0, 1] is second countable, it is clear that $\{p\}$ is a G_{δ} -set.) Since the subspace $\{p\} \cup (\{s\} \times [t,1])$ of $\Phi[\mathcal{F}]$ is a homeomorphic copy of the compact unit interval [0, 1] for every $s \in S$ and every $t \in [0,1]$ and since S is discrete, it is clear that $\Phi[\mathcal{F}]$ is pathwise connected and locally pathwise connected. Trivially, $|\Phi[\mathcal{F}]| = \kappa$.

Clearly, if B is a filter base on S generating the filter F then $\{p\} \cup ((S \setminus F) \times]1 2^{-n}, 1[$ ∪ $(F \times [0, 1]) | n \in \mathbb{N}, F \in \mathcal{B}$ is a local basis at p in the space $\Phi[\mathcal{F}]$. Conversely, if \mathcal{U}_p is a local basis at p and if we choose for every $U \in \mathcal{U}_p$ a real number $t_U \in [0,1]$ and a set $F_U \in \mathcal{F}$ such that $(S \times [t_U, 1]) \cup (F_U \times [0, 1]) \subset U$ then $\{F_U \mid U \in \mathcal{U}_p\}$ is a filter base on S generating the filter F. Consequently, $\chi(p, \Phi[\mathcal{F}]) = \chi(\mathcal{F})$. Therefore, since $w(S \times [0,1]) = \kappa$, we have $w(\Phi[\mathcal{F}]) = \chi(\mathcal{F}) = \lambda$.

Now consider the pathwise connected, locally pathwise connected, amost metrizable space $\Phi[\mathcal{F}]$ for each of the 2^{λ} ω -free filters \mathcal{F} on S with $\chi(\mathcal{F}) = \lambda$. Since the size of each space is κ and the weight of each space is λ , by the same arguments about the size of equivalence classes as in the proof of Theorem [1.1](#page-1-0) (for $\mu = \kappa$), the statement in Theorem [1.2](#page-1-1) is true in case that $2^{\lambda} > 2^{\kappa}$ because it is evident that the topologies of the spaces $\Phi[\mathcal{F}_1]$ and $\Phi[\mathcal{F}_2]$ are distinct topologies on the set $\{p\} \cup (S \times [0,1])$ whenever \mathcal{F}_1 and \mathcal{F}_2 are distinct ω -free filters on S.

Now assume $2^{\lambda} = 2^{\kappa}$ and let \mathcal{P}_{κ} be a family as provided by Proposition [2.3.](#page-3-3) Choose one ω -free filter F on S with $\chi(\mathcal{F}) = \lambda$ and consider the space $\Phi[\mathcal{F}]$. Note that $x \in \Phi[\mathcal{F}]$ is a noncut point of $\Phi[\mathcal{F}]$ if and only if $x = (s, 0)$ for some $s \in S$. For every $H \in \mathcal{P}_{\kappa}$ create a space $X(H)$ in the following way. Consider the compact unit square $[0,1]^2$ and choose a point $a_1 \in [0,1]^2$. (Clearly, a_1 is a noncut point of $[0, 1]^2$. Note also that no connected open subset of $[0, 1]^2$ has cut points.) Choose a noncut point a_2 in $\Phi[\mathcal{F}]$ and a noncut point a_3 in H. Finally, let $X(H)$ be the

quotient of the topological sum of the three spaces $[0, 1]^2$ and $\Phi[\mathcal{F}]$ and H by the subspace $\{a_1, a_2, a_3\}$. Roughly speaking, $X(H)$ is created by sticking together the three spaces so that the three points a_1, a_2, a_3 are identified. It is clear that $X(H)$ is pathwise connected and locally pathwise connected and regular and $|X(H)| = \kappa$ and $w(X(H)) = \lambda$.

There is precisely one point $b \in X(H)$ with $\chi(b, X(H)) = \lambda$. This point b corresponds with the point $p \in \Phi[\mathcal{F}]$. By virtue of Lemma [6.1](#page-9-0) for $n = 3$ the subspace $X(H) \setminus \{b\}$ of $X(H)$ is metrizable. Consequently, if $H \in \mathcal{P}_{\kappa}$ then $X(H)$ is almost metrizable. The 2^{κ} spaces $X(H)(H \in \mathcal{P}_{\kappa})$ are mutually non-homeomorphic because each $H \in \mathcal{P}_{\kappa}$ can be recovered from $X(H)$ as follows.

Since cut points in H resp. in $\Phi[\mathcal{F}]$ lie dense and since $[0, 1]^2$ has no cut points, there is precisely one point q in $X(H)$ such that every neighborhood of q contains two nonempty connected open sets U_1, U_2 where U_1 has no cut points and where U_2 has cut points. (This point q must be the point obtained by identifying the three points a_1, a_2, a_3 .) The subspace $X(H) \setminus \{q\}$ has precisely three components and every component of $X(H) \setminus \{q\}$ is homeomorphic either with $\Phi[\mathcal{F}] \setminus \{a_2\}$ or with $H \setminus \{a_3\}$ or with $[0,1]^2 \setminus \{a_1\}$. Therefore, precisely one component is not metrizable. (If $s \in S$ then the space $\Phi[\mathcal{F}] \setminus \{(s, 0)\}\$ is not metrizable since it has no countable local basis at p.) The two metrizable components of $X(H) \setminus \{q\}$ can be distinguished by the observation that one component has infinitely many cut points while the other component has no cut points. If M is a metrizable component of $X(H) \setminus \{q\}$ which has cut points then the subspace $M \cup \{q\}$ of $X(H)$ is homeomorphic with H.

7. Proof of Theorem [1.3](#page-1-2)

Lemma 7.1. There exists a second countable, countably infinite Hausdorff space H such that $H \setminus E$ is connected and locally connected for every finite set E.

Proof. Let H be the set $\mathbb N$ equipped with the coarsest topology such that if p is a prime and $a \in \mathbb{N}$ is not divisible by p then $\mathbb{N} \cap \{p + ka \mid k \in \mathbb{Z}\}\$ is open. Referring to $[11, Nr. 61]$, H is a locally connected Hausdorff space such that the intersection of the closures of any two nonempty open subsets of H must be an infinite set. Therefore, if E is a finite set then the subspace $H \setminus E$ of H is connected. Since H is locally connected, $H \setminus E$ is locally connected for every finite set E,

The first step in proving Theorem [1.3](#page-1-2) is a proof of the following enumeration theorem about countable connected spaces.

THEOREM 7.2. For every $\lambda \leq \mathbf{c}$ there exist 2^{λ} mutually non-homeomorphic connected, locally connected Hausdorff spaces of size \aleph_0 and weight λ .

Proof. Let H be a connected, locally connected Hausdorff space with $|H| = w(H)$ \aleph_0 as provided by Lemma [7.1.](#page-11-0) Fix $e \in H$ and note that e is a noncut point in H. Put $M := H \setminus \{e\}$. So M is connected as well.

Let S be an infinite discrete space and let F be a free filter on S with $\chi(\mathcal{F}) \geq |S|$. Consider the product space $S \times M$ and fix $p \notin S \times M$ and consider $\Psi[\mathcal{F}] := \{p\} \cup$ $(S \times M)$ equipped with the following topology. A subset U of $\{p\} \cup (S \times M)$ is open if and only if $U \setminus \{p\}$ is open in the product space $S \times M$ and $p \in U$ implies that $(S \times (V \setminus \{e\})) \cup (F \times M) \subset U$ for some neighborhood V of e in H and some $F \in \mathcal{F}$. Similarly as in the proof of Theorem [1.2,](#page-1-1) $\Psi[\mathcal{F}]$ is a connected and locally connected Hausdorff space and $|\Psi[\mathcal{F}]| = |S|$ and $w(\Psi[\mathcal{F}]) = \chi(\mathcal{F})$.

Now let S be the discrete Euclidean space N. If $2^{\lambda} > c$ then with the help of 2^{λ} free filters on N with $\chi(\mathcal{F}) = \lambda$ we can track down 2^{λ} mutually non-homeomorphic spaces $\Psi[\mathcal{F}]$. (Note that there are only c permutations on N and use the argument on sizes of equivalence classes.) So it remains to settle the case $2^{\lambda} = c$.

Let Z be the space $\Psi[\mathcal{F}]$ for some free filter $\mathcal F$ on N with $\chi(\mathcal{F}) = \lambda$. So the underlying set of Z is $\{p\} \cup (\mathbb{N} \times (H \setminus \{e\}))$ and the countable Hausdorff space Z is connected and locally connected and $w(Z) = \lambda$ due to $\chi(p, Z) = \lambda$. The point p is the only cut point of Z and $Z \setminus \{p\}$ has infinitely many components. Keep in mind that $|H| = w(H) = \aleph_0$ and that if $a \in H$ then the spaces H and $H \setminus \{a\}$ and $H \setminus \{a, e\}$ are connected and locally connected. Fix $b \in H \setminus \{e\}$ and consider the subset $Z :=$ $\{(s,b) \mid s \in \mathbb{N}\}\$ of Z. Clearly, \hat{Z} is closed and discrete and $Z \setminus \{z\}$ is connected and locally connected for every $z \in \hat{Z}$. Choose for every $m \in \mathbb{N}$ and every $i \in \{1, \ldots, m\}$ spaces $H_i^{(m)}$ such that $H_i^{(m)}$ is homeomorphic with H and $H_i^{(m)} \cap H_j^{(n)} = \emptyset$ whenever $m \neq n$ or $i \neq j$. Furthermore assume that $H_i^{(m)} \cap Z = \emptyset$ for every m and every i. Let φ be a choice function on the class of all infinite sets, i.e. $\varphi(A) \in A$ for every infinite set A. Now define for every nonempty set $T \subset \mathbb{N}$ a Hausdorff space $Q[T]$ as follows. Consider the topological sum $\Sigma[T]$ of countably infinite and mutually disjoint spaces where the summands are Z and all spaces $H_i^{(m)}$ with $m \in T$ and $i \in \{1, ..., m\}$. Define an equivalence relation on $\Sigma[T]$ such that the non-singleton equivalence classes are precisely the sets $\{(m, b)\} \cup \{\varphi(H_1^{(m)}), \ldots, \varphi(H_m^{(m)})\}$ with $m \in T$. (Note that $(m, b) \in \hat{Z}$ for every $m \in T$.) Finally, let $Q[T]$ denote the quotient space of $\Sigma[T]$ with respect to this equivalence relation. Roughly speaking, $Q[T]$ is the union of Z and all spaces $H_i^{(m)}$ with $m \in T$ and $i \in \{1, ..., m\}$ where for every $m \in T$ the $m + 1$ points $(m, b), \varphi(H_1^{(m)}), \ldots, \varphi(H_m^{(m)})$ are identified. We consider Z to be a subset of $Q[T]$. One may picture $Q[T]$ as an expansion of Z created by attaching m copies of H to Z at the point $(m, b) \in \hat{Z}$ for every $m \in T$. It is evident that $Q[T]$ is a connected and locally connected countably infinite Hausdorff space. We have $w(Q[T]) = \lambda$ since Z is a subspace of $Q[T]$ with $w(Z) = \lambda$ and $\chi(x, Q[T]) = \aleph_0$ if $p \neq x \in Q[T]$. Thus the case $2^{\lambda} = c$ is settled by verifying that two spaces $Q[T_1]$ and $Q[T_2]$ cannot be homeomorphic if $\emptyset \neq T_1, T_2 \subset \mathbb{N}$ and $T_1 \neq T_2$. This must be true because the set $T \subset \mathbb{N}$ is completely determined by the topology of $Q[T]$ by the following observation.

Let $\emptyset \neq T \subset \mathbb{N}$. For every point $x \in Q[T]$ let $\nu(x)$ denote the total number of all components of the subspace $Q[T] \setminus \{x\}$. The following three statements for $x \in Q[T]$ are evident. Firstly, $\nu(x) \ge \aleph_0$ if and only if $x = p$. Secondly, $1 < \nu(x) < \aleph_0$ if and only if $x = (m, b) \in \mathbb{Z}$ for some $m \in T$. Thirdly, $\nu(x) = 1$ if and only if x is an element of the set $Q[T] \setminus ((T \times \{b\}) \cup \{p\})$. Concerning the second statement we compute

 $\nu((m, b)) = m + 1$ for every $m \in T$. Consequently, $\{\nu(x) - 1 \mid x \in Q[T] \land \nu(x) \in$ $\mathbb{N}\setminus\{0\} = T$ whenever T is one of the **c** non-empty subsets of N.

Now in order to prove Theorem [1.3](#page-1-2) assume $\aleph_0 \leq \kappa < c$ and $\kappa \leq \lambda \leq 2^{\kappa}$. Referring to Theorem [7.2](#page-11-1) there is nothing more to show in case that $\kappa = \aleph_0$. So we also assume that $\kappa > \aleph_0$. Let S be a discrete space of size κ . By Proposition [4.2](#page-5-0) there are 2^{λ} free filters F on S with $\chi(\mathcal{F}) = \lambda$. For each one of these filters F consider the connected and locally connected Hausdorff space $\Psi[\mathcal{F}]$ of size κ and weight λ as defined in the previous proof. Hence in case that $2^{\lambda} > 2^{\kappa}$ we can track down 2^{λ} filters $\mathcal F$ on S such that the corresponding spaces $\Psi[\mathcal{F}]$ are mutually non-homeomorphic.

So it remains to settle the case $2^{\lambda} = 2^{\kappa}$. Choose any free filter F on S with $\chi(\mathcal{F}) = \lambda$ and and consider the space $\Psi := \Psi[\mathcal{F}]$ of size κ and weight λ . Fix a noncut point $z \in \Psi$. Keep in mind that Ψ has precisely one cut point p and that $\Psi[\mathcal{F}] \setminus \{p\}$ has precisely κ and hence *uncountably many* components.

In view of our proof of Theorem [7.2](#page-11-1) there is a family $\mathcal C$ of mutually non-homeomorphic *countable* Hausdorff spaces of weight κ (and hence not necessarily of weight λ) such that $|\mathcal{C}| = 2^{\kappa}$ and if $C \in \mathcal{C}$ then C is connected and locally connected and contains precisely one cut point $q(C)$ such that $C \setminus \{q(C)\}\$ has infinitely many components. In particular, all these components are countable and \aleph_0 is their total number.

For every $C \in \mathcal{C}$ consider the topological sum $\Psi + C$ and define an equivalence relation such that $\{z, q(C)\}\$ is an equivalence class and all other equivalence classes are singletons. Let $O[C]$ denote the quotient space of $\Psi + C$ with respect to this equivalence relation. So $Q[C]$ is obtained by sticking together the spaces Ψ and C at one point and this point is the identification of $z \in \Psi$ and $q(C) \in C$. It is clear that $Q[C]$ is a connected, locally connected Hausdorff space of size κ and weight λ . So we are done by verifying that for distinct $C_1, C_2 \in \mathcal{C}$ the spaces $Q[C_1]$ and $Q[C_2]$ are never homeomorphic. This must be true because each $C \in \mathcal{C}$ can be recovered from $Q[C]$ as follows.

There is a unique point ξ in $Q[C]$ such that $Q[C] \setminus {\xi}$ has precisely \aleph_0 components. (This point ξ is the one corresponding with the equivalence class $\{z, q(C)\}\)$.) Among these components there is precisely one of uncountable size. (This component is the one which contains the point $p \in \Psi$.) Let K be the unique uncountable component of $Q[C] \setminus \{\xi\}$. Then $Q[C] \setminus K$ is essentially identical, at least homeomorphic with the space C .

8. Proof of Theorem [1.4](#page-2-2)

Our goal is to derive Theorem [1.4](#page-2-2) from Theorem [1.1](#page-1-0) by using appropriate modifications of the cones $\mathcal{Q}^*(X)$ considered in Section [6.](#page-8-1) In order to accomplish this we need building blocks provided by the following lemma.

Lemma 8.1. There exists a second countable, connected, totally pathwise disconnected, nowhere locally connected, metrizable space M of size c which contains precisely one noncut point b, where $M \setminus \{x, b\}$ has precisely two components whenever $b \neq x \in M$.

Proof. Let f be a function from $\mathbb R$ into $\mathbb R$ such that the graph of f is a dense and connected subset of the Euclidean plane \mathbb{R}^2 (see [\[8\]](#page-21-9) for a construction of such a function f.) Automatically, f is discontinuous everywhere. Let M be the intersection of $[0, \infty) \times \mathbb{R}$ and the graph of f. It is straightforward to check that M fits with $b = (0, f(0)).$

Now we are ready to prove Theorem [1.4.](#page-2-2) Assume $c \leq \kappa \leq \lambda \leq 2^{\kappa}$ and let $\mathcal{Y} = \mathcal{Y}(\kappa, \lambda)$ be a family of precisely 2^{λ} mutually non-homeomorphic scattered, normal spaces of size κ and weight λ such that if $Y \in \mathcal{Y}$ then for a certain finite set $\gamma(Y) \subset Y$ the subspace $Y \setminus \gamma(Y)$ is metrizable (and hence of weight κ) and $\gamma(Y)$ is a G_{δ} -set in Y. Precisely, the set $\gamma(Y)$ is empty when $\kappa = \lambda$ and a singleton $\{y\}$ when $\kappa < \lambda$. (Clearly, if $\gamma(Y) = \{y\}$ then $\chi(y, Y) = \lambda$.) If $2^{\lambda} > 2^{\kappa}$ then such a family Y exists by considering the 2^{λ} almost discrete spaces provided by Theorem [1.1.](#page-1-0) If $\lambda > \kappa$ and $2^{\lambda} = 2^{\kappa}$ then such a family Y exists in view of the construction in Section [5](#page-7-0) which proves Theorem [1.1](#page-1-0) in case that $2^{\lambda} = 2^{\kappa}$. If $\lambda = \kappa$ then such a family $\mathcal Y$ exists by Proposition [2.2.](#page-3-1)

Let M be a metrizable space as in Lemma [8.1](#page-13-0) and let b denote the noncut point of M and fix a point $a \in M \setminus \{b\}$. For an infinite, scattered, normal space X consider the product space $X \times M$ and fix $p \notin X \times M$ and put $K(X) := \{p\} \cup (X \times (M \setminus \{b\}).$ Declare a subset U of $K(X)$ open if and only if $U \setminus \{p\}$ is open in the product space $X \times (M \setminus \{b\})$ and $p \in U$ implies that U contains $X \times (N \setminus \{b\})$ for some neighborhood N of b in the space M. It is plain that $K(X)$ is a well-defined regular space. Since M is metrizable and $\chi(p, K(X)) = \aleph_0$, if X is metrizable then $K(X)$ has a σ -locally finite base and hence $K(X)$ is metrizable.

Now for $Y \in \mathcal{Y}$ consider the subspace $L(Y) := K(Y) \setminus (\gamma(Y) \times (M \setminus \{a, b\}))$ of $K(Y)$ and the subspace $S(Y) := L(Y) \setminus (\gamma(Y) \times \{a\})$ of $L(Y)$. Trivially, the spaces K(Y) and $L(Y)$ and $S(Y)$ coincide if $\kappa = \lambda$. Furthermore the space $S(Y)$ coincides with the metrizable space $K(Y \setminus \gamma(Y))$. Therefore and by Corollary [3.4,](#page-4-3) $L(Y)$ is an almost metrizable space since $\gamma(Y) \times \{a\}$ is a G_δ-set in $K(Y)$ of size 0 or 1. We have $|L(Y)| = \kappa$ and $w(L(Y)) = \lambda$ because if $\gamma(Y) = \{y\}$ then $\chi((y, a), L(Y)) = \lambda$. It is evident that $S(Y)$ is connected and totally pathwise disconnected and nowhere locally connected. Consequently, $L(Y)$ is totally pathwise disconnected and nowhere locally connected. And $L(Y)$ is connected since the connected set $S(Y)$ is dense in $L(Y)$.

Finally, the spaces $L(Y)(Y \in \mathcal{Y})$ are mutually non-homeomorphic because every $Y \in \mathcal{Y}$ can be recovered from $L(Y)$. Indeed, for $x \in L(Y)$ let $\mathcal{C}(x)$ denote the family of all components of the subspace $L(Y) \setminus \{x\}$ of $L(Y)$. Then $C(x)$ is an infinite set if and only if $x = p$. Because the scattered space Y has infinitely many isolated points and if $u \in Y$ is isolated then $\{u\} \times (M \setminus \{b\})$ lies in $\mathcal{C}(x)$. If $u \in Y \setminus \gamma(Y)$ and $b \neq v \in M$ then $|\mathcal{C}((u, v))| \leq 2$ (and $|\mathcal{C}((u, v))| = 2$ when u is isolated in Y). And if $\gamma(Y) = \{y\}$ then $|\mathcal{C}((y, a))| = 1$. Thus $\{p\} = \{x \in L(Y) \mid |\mathcal{C}(x)| \ge \aleph_0\}$, whence the point p can be recovered from the space $L(Y)$. Now let C be the family of all components of the space $L(Y) \setminus \{p\}$. Since Y is totally disconnected, the members of C are precisely the sets $\{u\} \times (M \setminus \{b\})$ with $u \in Y \setminus \gamma(Y)$ plus the singleton $\gamma(Y) \times \{a\}$ if and only if $\gamma(Y) \neq \emptyset$. Naturally, the quotient space of $L(Y) \setminus \{p\}$ by the equivalence relation

defined via the partition C is homeomorphic with Y for every $Y \in \mathcal{Y}$. This concludes the proof of Theorem [1.4.](#page-2-2)

9. Compact spaces of excessive weights

While $w(X) \leq |X|$ for every compact Hausdorff space X (see [\[2,](#page-21-1) 3.3.6]), for compact T_1 -spaces X one cannot rule out $w(X) > |X|$ and actually we can prove the following enumeration theorem by applying Theorems [1.1–](#page-1-0)[1.3.](#page-1-2)

THEOREM 9.1. If $\kappa \leq \lambda \leq 2^{\kappa}$ then there exist two families C_1, C_2 of mutually nonhomeomorphic compact T_1 -spaces of size κ and weight λ such that $|\mathcal{C}_1| = |\mathcal{C}_2| = 2^{\lambda}$ and all spaces in C_1 are scattered, all spaces in C_2 are connected and locally connected, and if $\kappa \geq c$ then all spaces in \mathcal{C}_2 are arcwise connected and locally arcwise connected.

In order to prove Theorem [9.1](#page-15-0) we consider T_1 -compactifications of Hausdorff spaces. If Y is an infinite Hausdorff space with $|Y| \leq w(Y)$ then define a topological space $\Gamma(Y)$ which expands Y in the following way. Put $\Gamma(Y) = Y \cup \{z\}$ where $z \notin Y$ and declare $U \subset \Gamma(Y)$ open either when U is an open subset of Y or when $z \in U$ and $Y \backslash U$ is finite. It is clear that in this way a topology on $\Gamma(Y)$ is well-defined such that Y is a dense subspace of $\Gamma(Y)$. Obviously, $\Gamma(Y) \setminus \{x\}$ is open for every $x \in \Gamma(Y)$ and hence $\Gamma(Y)$ is a T_1 -space. Since all neighborhoods of z cover the whole space $\Gamma(Y)$ except finitely many points, $\Gamma(Y)$ is compact. Trivially, $|\Gamma(Y)| = |Y|$. We have $w(\Gamma(Y)) = w(Y)$ since $w(Y) \geq |Y|$ and Y is a subspace of $\Gamma(Y)$ and, by definition, there is a local basis at z of size $|Y|$.

Evidently, if Y is scattered then $\Gamma(Y)$ is scattered. On the other hand it is clear that if Y is dense in itself then $\Gamma(Y)$ is connected and every neighborhood of z is connected. So if Y is connected and locally connected then $\Gamma(Y)$ is connected and locally connected.

We claim that if Y is pathwise connected then $\Gamma(Y)$ is arcwise connected. Assume that the Hausdorff space Y is pathwise connected and hence arcwise connected and let $a \in Y$. Of course it is enough to find an arc which connects the point a with the point $z \notin Y$. Since Y is arcwise connected, we can define a homeomorphism φ from [0, 1] onto a subspace of Y such that $\varphi(0) = a$. Define an injective function f from [0, 1] into $\Gamma(Y)$ via $f(1) = z$ and $f(t) = \varphi(t)$ for $t < 1$. Let U be an open subset of $\Gamma(Y)$. If $z \in U$ then $U \backslash Y$ is finite and thus $f^{-1}(U)$ is a cofinite and hence open subset of [0,1]. If $z \notin U$ then U is an open subset of Y and hence $f^{-1}(U) = \varphi^{-1}(U) \setminus \{1\}$ is an open subset of $[0, 1]$. Thus the injective function f is continuous.

Since every neighborhood of z contains all but finitely many points from Y , by exactly the same arguments we conclude that if Y is locally pathwise connected then every neighborhood of z is an arcwise connected subspace of $\Gamma(Y)$. Consequently, if the Hausdorff space Y is locally pathwise connected then the T_1 -space $\Gamma(Y)$ is locally arcwise connected.

The space Y can be recovered from $\Gamma(Y)$ (up to homeomorphism) provided that Y has at least two limit points. Because then it is evident that z is the unique point

 $x \in \Gamma(Y)$ such that the subspace $\Gamma(Y) \setminus \{x\}$ of $\Gamma(Y)$ is Hausdorff.

By virtue of Theorem [1.1,](#page-1-0) for $\kappa \leq \lambda \leq 2^{\kappa}$ let $\mathcal{Y}_1(\kappa,\lambda)$ be a family of mutually non-homeomorphic, scattered Hausdorff spaces of size κ and weight λ such that $|\mathcal{Y}_1(\kappa,\lambda)| = 2^{\lambda}$. By virtue of Theorem [1.3,](#page-1-2) for $\kappa < c$ and $\kappa \leq \lambda \leq 2^{\kappa}$ let $\mathcal{Y}_2(\kappa,\lambda)$ be a family of mutually non-homeomorphic connected and locally connected Hausdorff spaces of size κ and weight λ such that $|\mathcal{Y}_2(\kappa,\lambda)| = 2^{\lambda}$. By virtue of Theo-rem [1.2,](#page-1-1) for $c \leq \kappa \leq \lambda \leq 2^{\kappa}$ let $\mathcal{Y}_{3}(\kappa, \lambda)$ be a family of mutually non-homeomorphic pathwise connected and locally pathwise connected Hausdorff spaces of size κ and weight λ such that $|\mathcal{Y}_3(\kappa,\lambda)| = 2^{\lambda}$. Now put $\mathcal{C}_1 := \{ \Gamma(Y) | Y \in \mathcal{Y}_1(\kappa,\lambda) \}$ and $\mathcal{C}_2 := \{\Gamma(Y) \mid Y \in \mathcal{Y}_i(\kappa, \lambda)\}\$ where $i = 2$ when $\kappa < c$ and $i = 3$ when $\kappa \geq c$. Then C_1, C_2 are families which prove Theorem [9.1.](#page-15-0)

The condition $\kappa \geq c$ in Theorem [9.1](#page-15-0) is inevitable since, trivially, $|X| \geq c$ for every infinite, *arcwise connected* space. There arises the question whether $|X| \ge c$ is inevitable for infinite, *pathwise connected* T_1 -spaces. (Of course, every finite T_1 -space X is discrete and hence not pathwise connected when $|X| \geq 2$. It is well-known that a pathwise connected T_1 -space of size \aleph_0 does not exist (see also Proposition [9.2](#page-16-0) below). So the essential question is whether there are pathwise connected T_1 -spaces X with $\aleph_0 < |X| < c$ (provided that there are cardinals μ with $\aleph_0 < \mu < c$). The following proposition shows that there is no chance to track down such spaces X .

PROPOSITION 9.2. Pathwise connected T_1 -spaces X with $2 \leq |X| \leq \aleph_0$ do not exist. It is consistent with ZFC that $|\{\kappa \mid \aleph_0 < \kappa < c\}| > \aleph_0$ and pathwise connected T_1 -spaces X with $\aleph_0 < |X| < c$ do not exist.

If X is a T₁-space and $f : [0,1] \to X$ is continuous then $\{f^{-1}(\{x\}) \mid x \in X\} \setminus \{\emptyset\}$ is a decomposition of [0, 1] into precisely $|f([0, 1])|$ nonempty closed subsets. Therefore, Proposition [9.2](#page-16-0) is an immediate consequence of

PROPOSITION 9.3. Every partition of $[0, 1]$ into at least two closed sets is uncountable. It is consistent with ZFC that uncountably many cardinals κ with $\aleph_0 < \kappa < c$ exist while still a partition P of [0,1] into closed sets with $\aleph_0 < |\mathcal{P}| < c$ does not exist.

Certainly, the first statement in Proposition [9.3](#page-16-1) is an immediate consequence of Sierpiński's theorem $[2, 6.1.27]$. However, in order to prove Proposition [9.3](#page-16-1) we need another approach than in the proof of [\[2,](#page-21-1) 6.1.27].

Assume that P is a partition of [0, 1] into closed sets with $|\mathcal{P}| \geq 2$. For $S \subset [0, 1]$ let ∂S denote the boundary of S in the compact space [0, 1]. (Notice that then $\partial[0,1] = \emptyset$.) Put $\mathcal{V} := {\partial A \mid A \in \mathcal{P}}$ and $W := \bigcup \mathcal{V}$. Then $\emptyset \notin \mathcal{V}$ since $[0,1] \notin \mathcal{P}$ and hence V is a partition of W with $|V| = |P|$. The nonempty set W is a closed subset of [0, 1] because $W = [0,1] \setminus \bigcup \{A \setminus \partial A \mid A \in \mathcal{P}\}\$ since $\mathcal P$ is a partition of [0, 1]. We claim that the closed sets $V \in \mathcal{V}$ are nowhere dense in the compact metrizable space W.

Let $A \in \mathcal{P}$ and assume indirectly that a is an interior point of ∂A in W. Then there is an interval I open in the compact space [0, 1] with $a \in I$ and $I \cap W \subset \partial A$. Since a lies in the boundary of A the interval I intersects $[0,1] \setminus A$ and hence for some $B \neq A$ in the family P we have $I \cap B \neq \emptyset$. However, $I \cap \partial B = \emptyset$ in view of $(\partial A) \cap (\partial B) = \emptyset$ and $I \cap W \subset \partial A$. Therefore, $I \cap B$ is a nonempty set which is open

and closed in the connected space I and hence $I \cap B = I$ contrarily with $A \cap I \neq \emptyset$ and $A \cap B = \emptyset$.

Thus $\mathcal V$ is a partition of the compact Hausdorff space W into nowhere dense subsets with $|\mathcal{V}| = |\mathcal{P}|$. Therefore $|\mathcal{P}| < \aleph_0$ is impossible since W is a space of second category. This concludes the proof of the first statement. Under the assumption of Martin's Axiom (see [4, 16.11]) also the weaker inequality $|\mathcal{V}| = |\mathcal{P}| < c$ is impossible because it is well-known that Martin's axiom implies that no separable, compact Hausdorff space can be covered by less than c nowhere dense subsets. (Actually, Martin's axiom is equivalent to the statement that in every compact Hausdorff space of countable cellularity any intersection of less than c dense, open sets is dense.) Therefore, the proof of Proposition [9.3](#page-16-1) is concluded by checking that the existence of uncountably many infinite cardinals below c is consistent with ZFC plus Martin's Axiom. This is certainly true because by applying the Solovay-Tennenbaum theorem [\[4,](#page-21-6) 16.13] there is a model of ZFC in which Martin's Axiom holds and the identity $2^{\aleph_0} = \aleph_{\omega_1+1}$ is enforced. (If $\mathbf{c} = \aleph_{\omega_1+1}$ then $|\{\kappa \mid \kappa < \mathbf{c}\}| = \aleph_1 > \aleph_0$.)

REMARK 9.4. There is an interesting observation concerning compactness and the Hausdorff separation axiom. By applying Theorem [9.1](#page-15-0) and [\(II\),](#page-1-3) there exist precisely **c** compact, countable, second countable T_1 -spaces up to homeomorphism. If in this statement T_1 is sharpened to T_2 then we obtain an *unprovable hypothesis*. Indeed, due to Mazurkiewicz and Sierpiński [\[10\]](#page-21-10), there exist precisely \aleph_1 countable (and hence second countable) compact Hausdorff spaces up to homeomorphism. The hypothesis $\aleph_1 < c$ is irrefutable since it is a trivial consequence of [\(I\).](#page-0-1) This discrepancy of provability vanishes when uncountable compacta are counted up to homeomorphism. Indeed, by virtue of [\[6,](#page-21-11) Theorem [1.3\]](#page-1-2) it can be accomplished that in Theorem [9.1](#page-15-0) for $\kappa = \lambda > \aleph_0$ all spaces in the family C_1 are Hausdorff spaces. (Note that $w(X) = |X|$ for every scattered, compact Hausdorff space.)

10. Pathwise connected, scattered spaces

Naturally, a scattered T_1 -space is totally disconnected and hence far from being pathwise connected. Furthermore it is plain that no scattered space is *arcwise* connected. Therefore and in view of Proposition [9.2](#page-16-0) the following enumeration theorem is worth mentioning.

THEOREM 10.1. If $\kappa \leq \lambda \leq 2^{\kappa}$ then there exist two families \mathcal{C}, \mathcal{L} of mutually nonhomeomorphic pathwise connected, scattered T_0 -spaces of size κ and weight λ such that $|\mathcal{C}| = |\mathcal{L}| = 2^{\lambda}$ and all spaces in C are compact and if $\kappa \leq c$ or $2^{\kappa} < 2^{\lambda}$ then all spaces in $\mathcal L$ are locally pathwise connected.

The existence of the family $\mathcal C$ in Theorem [10.1](#page-17-0) can be derived from Theorem [1.1](#page-1-0) in view of the following considerations. Let X be an infinite Hausdorff space. Fix $b \notin X$ and define a topology on the set $B(X) = X \cup \{b\}$ by declaring $U \subset B(X)$ open when either $U = B(X)$ or U is an open subset of X. Then $\{b\}$ is closed and $B(X)$ is

the only neighborhood of b. Obviously, $B(X)$ is a compact T_0 -space and b is a limit point of every nonempty subset of $X = B(X) \setminus \{b\}$. It is trivial that $|B(X)| = |X|$ and clear that $w(B(X)) = w(X)$. For any pair x, y of distinct points in $B(X)$ define a function f from [0, 1] into $B(X)$ via $f(t) = x$ when $t < \frac{1}{2}$ and $f(\frac{1}{2}) = b$ and $f(t) = y$ when $t > \frac{1}{2}$. It is plain that f is continuous, whence $\overline{B}(X)$ is pathwise connected. Obviously, if X is scattered then $B(X)$ is scattered. Finally, the space X can be recovered from $B(X)$ since a singleton $\{a\}$ is closed in $B(X)$ if and only if $a = b$.

Unfortunately, if X is scattered and not discrete then $B(X)$ is not locally connected. Fortunately, finishing the proof of Theorem [10.1](#page-17-0) we can track down a family $\mathcal L$ as desired by adopting the proofs of Theorem [1.3](#page-1-2) and Theorem [7.2](#page-11-1) in Section [7](#page-11-2) line by line such that, throughout, the building block H in the definition of $\Phi[\mathcal{F}]$ provided by Lemma [10.2](#page-18-1) is replaced with the space G provided by the following lemma. In Section [7](#page-11-2) the restriction $\kappa < c$ is only for avoiding an overlap between Theorem [1.2](#page-1-1) and Theorem [1.3](#page-1-2) and can clearly be expanded to $\kappa \leq c$. The case $2^{\kappa} < 2^{\lambda}$ is settled by the 2^{λ} spaces $\Psi[\mathcal{F}]$ of arbitrary size κ .

LEMMA 10.2. There exists a second countable, scattered, countably infinite T_0 -space G such that $G \backslash E$ is pathwise connected and locally pathwise connected for every finite set E.

Proof. Let G be the set $\{n \in \mathbb{Z} \mid n \geq 2\}$ equipped with *divisor topology* as defined in [\[11,](#page-21-7) 57]. A basis of the divisor topology is the family of all sets ${m \in \mathbb{Z} \mid m \geq n}$ $2 \wedge m \mid n$ with $n \in G$. In view of the considerations in [\[11\]](#page-21-7), it is straightforward to verify that G fits. \Box

REMARK 10.3. If $i \in \{0,1,2\}$ and \mathcal{F}_i is a family of mutually non-homeomorphic compact T_i-spaces X with $w(X) \leq \kappa$ then $|\mathcal{F}_i| \leq 2^{\kappa}$ is true for $i = 2$. (Because any compact Hausdorff space of weight at most κ is embeddable into the Hilbert cube $[0,1]^{\kappa}$ and, since $w([0,1]^{\kappa}) = \kappa$ and $|X| = 2^{\kappa}$, the compact Hausdorff space $[0,1]^{\kappa}$ has precisely 2^{κ} closed subspaces.) However, the estimate $|\mathcal{F}_i| \leq 2^{\kappa}$ is false for $i = 0$ because $|\mathcal{F}_0| = 2^{2^{\kappa}}$ can be achieved for every κ . (In view of [\(II\)](#page-1-3) and since $\max\{|X|, w(X)\} \leq \min\{2^{|X|}, 2^{w(X)}\}$ for every infinite T_0 -space $X, 2^{2^k}$ is the maximal possible cardinality.) Indeed, consider for $X = [0,1]^{\kappa}$ the compact T₀space $B(X) = X \cup \{b\}$ of size 2^k and weight κ defined as above. Clearly, for every nonempty $S \subset X$ the subspace $S \cup \{b\}$ of $B(X)$ is compact. Since X is Hausdorff and $w(X) = \kappa$, there are $2^{|X|} = 2^{2^{\kappa}}$ mutually non-homeomorphic subspaces of X and hence $2^{2^{k}}$ mutually non-homeomorphic compact subspaces of $B(X)$. There arises the interesting question whether the estimate $|\mathcal{F}_i| \leq 2^{\kappa}$ is generally true for $i = 1$.

11. Counting P-spaces

A natural modification of the proof of Theorem [1.1](#page-1-0) leads to a noteworthy enumeration theorem about P-spaces. As usual (see [\[1\]](#page-21-8)), a Hausdorff space is a P -space if and only if any intersection of countably many open sets is open. More generally, a Hausdorff

space X is a P_{α} -space if and only if α is an infinite cardinal number and $\bigcap \mathcal{U}$ is an open subset of X whenever U is a family of open subsets of X with $0 \neq |\mathcal{U}| < \alpha$. So if $\alpha = \aleph_0$ then every Hausdorff space is a P_α -space and if $\alpha = \aleph_1$ then X is a P_α -space if and only if X is a P-space. Clearly, if X is a P_{α} -space and $|X| < \alpha$ then X is discrete. (It is plain that if X is a P_{α} -space and $|X| = \alpha$ and α is a singular cardinal then X is discrete.)

For an infinite cardinal α let us call a Hausdorff space α -normal when it is completely normal and every closed set is an intersection of at most α open sets. So a Hausdorff space is perfectly normal if and only if it is \aleph_0 -normal. It is dull to consider *perfectly normal P*-spaces because, trivially, a perfectly normal *P*-space must be discrete. More generally, if $\mu < \alpha$ then every μ -normal P_{α} -space is discrete. However, the enumeration problem concerning *completely normal P*-spaces and α -normal P_{α} -spaces is not trivial and can be solved under certain cardinal restrictions.

As usual, κ^+ denotes the smallest cardinal greater than κ , whence $\kappa^+ \leq 2^{\kappa}$ and $\aleph_1 = (\aleph_0)^+$. Furthermore, for arbitrary κ, μ the cardinal number $\kappa^{\leq \mu}$ is defined as usual (see [\[4\]](#page-21-6)). Note that if $\mu \leq \kappa^+$ then $\kappa^{\leq \mu} = |\{T \mid T \subset S \wedge |T| < \mu\}|$ whenever S is a set of size κ. In particular, $\kappa^{\langle \aleph_0 \rangle} = \kappa$ and $\kappa^{\langle \aleph_1 \rangle} = \kappa^{\aleph_0}$ for every κ. Naturally, if $\mu = \kappa^+$ then $\kappa^{\leq \mu} = 2^{\kappa}$. Consequently, if $\mu > \kappa$ then $\kappa < \kappa^{\leq \mu}$. (If κ is a cardinal number of cofinality smaller than μ^{++} then $\kappa < \kappa^{<\mu}$ due to [\[4,](#page-21-6) Theorem 5.14].) On the other hand, for every μ the cardinals κ satisfying $\kappa^{\leq \mu} = \kappa$ form a proper class \mathcal{K}_{μ} such that $2^{\theta} \in \mathcal{K}_{\mu}$ for every cardinal θ with $\theta^+ \geq \mu$ and if $\kappa \in \mathcal{K}_{\mu}$ then the cardinal successor κ^+ of κ also lies in \mathcal{K}_{μ} due to the Hausdorff formula [\[4,](#page-21-6) (5.22)]. In particular, the cardinals $\mathbf{c}, \mathbf{c}^+, \mathbf{c}^{++}, \dots$ lie in \mathcal{K}_{μ} for $\mu = \aleph_1$. Furthermore, if $\kappa^{\leq \mu} = \kappa \leq \lambda$ and there are only finitely many cardinals θ with $\kappa \leq \theta \leq \lambda$ then $\lambda^{<\mu} = \lambda$. (Note, again, that $\kappa^{<\alpha} = \kappa$ implies $\alpha \leq \kappa$.)

THEOREM 11.1. Let α be an uncountable cardinal. Assume $\kappa = \kappa^{\leq \alpha}$ and $\kappa \leq \lambda \leq 2^{\kappa}$ and $\lambda^{<\alpha} = \lambda \leq 2^{\mu} < 2^{\lambda}$ for some $\mu \leq \kappa$ with $\mu^{<\alpha} = \mu$. Then there exist 2^{λ} mutually non-homeomorphic scattered, strongly zero-dimensional, hereditarily paracompact, α normal P_{α} -spaces of size κ and weight λ . In particular, for every κ with $\kappa = \kappa^{\aleph_0}$ there exist precisely 2^{2^k} mutually non-homeomorphic paracompact P-spaces of size κ and weight 2^{κ} up to homeomorphism.

As usual (see [\[1,](#page-21-8)[4\]](#page-21-6)), a filter F is κ -complete if and only if $\bigcap \mathcal{A} \in \mathcal{F}$ for every $\mathcal{A} \subset \mathcal{F}$ with $0 \neq |\mathcal{A}| < \kappa$. Trivially, every filter is \aleph_0 -complete. Obviously, an ω -free filter is not κ-complete for any $\kappa > \aleph_0$. Let us call a filter $\mathcal F$ κ-free if and only if $\bigcap \mathcal A = \emptyset$ for some $A \subset \mathcal{F}$ with $|A| \leq \kappa$. (So a filter is ω -free if and only if it is \aleph_0 -free.) Clearly, if the topology of an almost discrete space X is the single filter topology defined with a free filter F then for every infinite cardinal α the (completely normal) space X is α-normal if and only if F is α-free, and X is a P_{α} -space if and only if F is α-complete. Therefore, in view of the following counterpart of Proposition [4.2,](#page-5-0) Theorem [11.1](#page-19-0) can be easily proved by simply adopting the proof of the case $2^{\lambda} > 2^{\mu}$ in Theorem [1.1](#page-1-0) line by line while replacing the property ω -free with α -complete and α -free throughout.

PROPOSITION 11.2. If $|Y| = \kappa = \kappa^{\leq \mu}$ and $\kappa \leq \lambda = \lambda^{\leq \mu} \leq 2^{\kappa}$ then there exist 2^{λ} μ -complete, μ -free filters F on Y such that $\chi(\mathcal{F}) = \lambda$.

For the proof of Proposition [11.2](#page-19-1) we need a lemma that also guarantees the existence of the family \mathcal{A}_{ω} in the proof of Proposition [4.2](#page-5-0) since $\kappa^{\leq \mu} = \kappa$ for $\mu = \aleph_0$.

LEMMA 11.3. Let Y be an infinite set of size κ and assume $\kappa^{\leq \mu} = \kappa$. Then there exists a family A of subsets of Y such that $|A| = 2^{\kappa}$ and A has a subfamily K of size μ with $\bigcap \mathcal{K} = \emptyset$ and if $\mathcal{D}, \mathcal{E} \neq \emptyset$ are disjoint subfamilies of A of size smaller than μ then $\bigcap \mathcal{D}$ is not a subset of $\bigcup \mathcal{E}$.

Proof. For an infinite set S put $\mathcal{P}_{\mu}(S) := \{T | T \subset S \wedge |T| < \mu\}$. Let Y be a set of size κ and assume $\kappa^{\leq \mu} = \kappa$, whence $\kappa \geq \mu$. Choose any set X of size κ . Then $|\mathcal{P}_{\mu}(X)| = \kappa^{\leq \mu} = \kappa$ and hence $|\mathcal{P}_{\mu}(\mathcal{P}_{\mu}(X))| = \kappa^{\leq \mu} = \kappa$. Therefore we may identify Y with the set $\mathcal{P}_{\mu}(X) \times \mathcal{P}_{\mu}(\mathcal{P}_{\mu}(X))$. Now for $Y := \mathcal{P}_{\mu}(X) \times \mathcal{P}_{\mu}(\mathcal{P}_{\mu}(X))$ put $A[S] := \{(H, H) \in Y \mid \emptyset \neq H \cap S \in \mathcal{H}\}\$ whenever $S \subset X$. Clearly, $A[S] = \emptyset$ if and only if $S = \emptyset$. We observe that $A[S_1] \neq A[S_2]$ whenever $S_1, S_2 \subset X$ are distinct. Indeed, if S_1, S_2 are subsets of X and $s \in S_1 \setminus S_2$ then $({s}, {s}\}) \in A[S_1] \setminus A[S_2]$. Put $\mathcal{A} := \{A[S] | \emptyset \neq S \subset X\}$. Then $|\mathcal{A}| = 2^{\kappa}$ and we claim that \mathcal{A} is a family as desired.

For $0 \neq |I \times J| < \mu$ let $\{S_i \mid i \in I\}$ and $\{T_j \mid j \in J\}$ be disjoint families of nonempty subsets of X. Choose $a_{i,j} \in (S_i \setminus T_j) \cup (T_j \setminus S_i)$ for every $(i,j) \in I \times J$ and $b_i \in S_i$ for every $i \in I$ and put $V := \{a_{i,j} \mid i \in I, j \in J\} \cup \{b_i \mid i \in I\}$. Then $|V| < \mu$ and $\emptyset \neq V \cap S_i \neq V \cap T_j$ whenever $i \in I$ and $j \in J$. Hence the pair $(V, \{V \cap S_i \mid i \in I\})$ lies in $\bigcap_{i \in I} A[S_i]$ but not in $\bigcup_{j \in J} A[T_j]$. Finally, since $|H| < \mu$ whenever $(H, \mathcal{H}) \in A[S]$, if K is any subfamily of $\{A[\{x\} \mid x \in X\}$ with $|\mathcal{K}| = \mu$ then $\bigcap \mathcal{K} = \emptyset.$ $\mathcal{K} = \emptyset$.

REMARK 11.4. The previous proof is very similar to Hausdorff's classic construction of independent sets as carried out in the proof of [\[4,](#page-21-6) 7.7]. However, by Hausdorff (and in [\[4,](#page-21-6) 7.7]) only the special case $\mu = \aleph_0$ is considered and, unfortunately, from Hausdorff's construction one cannot obtain ω -free resp. α -free filters in a natural way. In order to accomplish this we have modified the proof of $[4, 7.7]$ in a subtle but crucial way by including the condition $\emptyset \neq H \cap S$ in our definition of A[S]. This condition guarantees that A has a subfamily K as desired and hence that the family \mathcal{A}_{ω} in the proof of Proposition [4.2](#page-5-0) actually exists.

Now in order to prove Proposition [11.2](#page-19-1) let A and K be families as in Lemma [11.3.](#page-20-0) For every family H with $\mathcal{K} \subset \mathcal{H} \subset \mathcal{A}$ and $|\mathcal{H}| = \lambda$ put $\mathcal{B}_{\mathcal{H}} := \{ \bigcap \mathcal{G} \mid \emptyset \neq \mathcal{G} \subset \mathcal{H} \wedge |\mathcal{G}| < \infty \}$ μ . Then $\emptyset \notin \mathcal{B}_{\mathcal{H}}$ and thus $\mathcal{B}_{\mathcal{H}}$ is a filter base for a μ -complete filter $\mathcal{F}[\mathcal{H}]$. Since $\mathcal{K} \subset \mathcal{F}[\mathcal{H}]$, the filter $\mathcal{F}[\mathcal{H}]$ is μ -free. Since $\lambda^{<\mu} = \lambda$, we have $|\mathcal{B}_{\mathcal{H}}| = \chi(\mathcal{F}[\mathcal{H}]) = \lambda$ by exactly the same arguments as in the proof of Proposition [4.2.](#page-5-0)

REMARK 11.5. Since for no cardinal $\kappa > \aleph_0$ the existence of a κ -complete ultrafilter is provable in ZFC (see [\[4\]](#page-21-6)), in Theorem [11.1](#page-19-0) we cannot include the property ex tremally disconnected. While Theorem [11.1](#page-19-0) modifies Theorem [1.1](#page-1-0) for P-spaces, there is no pendant of Theorem [1.2](#page-1-1) for P-spaces because an infinite P-space is clearly not pathwise connected and, moreover, every regular P -space X is zero-dimensional. (If $x \in U$ where $U \subset X$ is open then choose open neighborhoods U_n of x such that

 $U \supset \overline{U_n} \supset U_n \supset \overline{U_{n+1}} \supset U_{n+1}$ for every $n \in \mathbb{N}$. Then $V := \bigcap_{n=1}^{\infty} U_n = \bigcap_{n=1}^{\infty} \overline{U_n}$ is an open-closed neighborhood of x and $V \subset U$.)

REFERENCES

- [1] W.W. Comfort, S. Negrepontis, The Theory of Ultrafilters, Springer 1974.
- [2] R. Engelking, General Topology, revised and completed edition, Heldermann 1989.
- [3] R.E. Hodel, *The number of metrizable spaces*, Fund. Math. **115** (1983), 127-141.
- [4] T. Jech, Set Theory, 3rd ed. Springer 2002.
- [5] G. Kuba, *Counting metric spaces*, Arch. Math. **97** (2011), 569-578.
- [6] G. Kuba, Counting linearly ordered spaces, Colloq. Math. 135 (2014), 1–14.
- [7] G. Kuba, Counting ultrametric spaces, Colloq. Math. 152 (2018), 217–234.
- [8] W. Kulpa, On the existence of maps having graphs connected and dense, Fund. Math. 76 (1972), 207–211.
- [9] F.W. Lozier, R.H. Marty, The number of continua, Proc. Amer. Math. Soc. 40 (1973), 271–273.
- [10] S. Mazurkiewicz, W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17–27.
- [11] L.A. Steen, J.A. Seebach Jr., *Counterexamples in Topology*, Dover 1995.

(received 29.06.2018; in revised form 18.07.2019; available online 17.12.2019)

Institute of Mathematics, University of Natural Resources and Life Sciences, 1180 Wien, Austria

E-mail: gerald.kuba@boku.ac.at