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ON A CLASS OF ELLIPTIC NAVIER BOUNDARY VALUE
PROBLEMS INVOLVING THE (p1(·), p2(·))-BIHARMONIC

OPERATOR

A. Ayoujil, H. Belaouidel, M. Berrajaa and N. Tsouli

Abstract. In this article, we study the existence and multiplicity of weak solutions for
a class of elliptic Navier boundary value problems involving the (p1(·), p2(·))-biharmonic
operator. Our technical approach is based on variational methods and the theory of the
variable exponent Lebesgue spaces. We establish the existence of at least one solution and
infinitely many solutions of this problem, respectively.

1. Introduction

In recent years, the study of differential equations and variational problems with
p(·)-growth conditions was an interesting topic, which arises from nonlinear elec-
trorheological fluids and elastic mechanics. In that context we refer the reader to
Ruzicka [14], Zhikov [20] and the reference therein; see also [6, 7].

Fourth-order equations appear in various contexts. Some of these problems come
from different areas of applied mathematics and physics such as micro electro-mechani-
cal systems, surface diffusion on solids, flow in Hele-Shaw cells (see [9]). In addition,
this type of equations can describe the static from change of beam or the sport of
rigid body.

In this work, we consider the problem{
∆(|∆u|p1(x)−2∆u) + ∆(|∆u|p2(x)−2∆u) = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1)

where Ω is a bounded domain in RN , with smooth boundary ∂Ω, N ≥ 1, ∆2
pi(x)u :=

∆(|∆u|pi(x)−2∆u), is the pi(·)-biharmonic operator with pi(·) for i = 1, 2 are contin-
uous functions on Ω with p−i = inf

x∈Ω
pi(x) > N and p+

i = max
x∈Ω

pi(x) > N for i = 1, 2,

and f : Ω× R→ R is a Carathèodorey function.
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We point out that elliptic equations involving the p(·)-biharmonic equations are
not trivial generalizations of similar problems studied in the constant case since the
p(·)-biharmonic operator is not homogeneous and, thus, some techniques which can
be applied in the case of the p-biharmonic operators will fail in that new situation,
such as the Lagrange Multiplier Theorem.

The class of p(·)-biharmonic equations was considered by many authors in re-
cent years. Many researchers have investigated into beam equations under various
boundary conditions and through different approaches.

For example, in [3] the authors studied a class of p(·)-biharmonic of the form{
∆(|∆u|p(x)−2∆u) = λ|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
(2)

where Ω is a bounded domain in RN , with smooth boundary ∂Ω, N ≥ 1, λ ≥ 0,
by using variational methods based on the Mountain Pass Lemma and Ekeland’s
Variational Principle, they established several existence criteria for eigenvalues.

By an approach based mainly on an adequate variational techniques, in [15], the
authors studied some problems with indefinite weight under Neumann boundary con-
ditions and Navier boundary conditions.

In the case where p(·) = q(·), the authors in [2] established the existence of
infinitely many eigenvalue sequences for the problem (2) by using the Ljusternik-
Schnirelmann theory on C1-manifolds.

In [11], Lin Li et al. considered the above problem and using variational meth-
ods, by some assumptions on the Carathéodory function f , using the mountain pass
theorem, fountain theorem, local linking theorem and symmetric mountain pass the-
orem, they have established the existence of at least one solution and infinitely many
solutions of this problem, respectively.

In another direction, the authors in [5] have considered the fourth-order quasi-
linear elliptic equation and using variational methods, by some assumptions on the
Carathéodory function f , they have established the existence of three solutions for
the problem of the form

∆(|∆u|p(x)−2∆u) + a(x)|u|p(x)−2u = f(x, u) + λg(x, u) in Ω,

Bu = Tu = 0 on ∂Ω,

where Bu = Tu = 0 denotes the following boundary conditions:

1. B = B1, T = T1, Navier boundary condition, i.e. B1u = ∆u = 0 and
T1u = u = 0 on ∂Ω,

2. B = B2, T = T2, Neumann boundary condition, i.e B2u = ∂u
∂ν = 0 and

T2u = ∂
∂ν

(
|∆u|p(x)−2u

)
= 0 where ν is the outward unit normal.

Inspired by the above references, based on the use of Kransnoselskii genus and
Mountain Pass Theorem, the aim of this article is to establish, respectively, the exis-
tence of at least one solution and infinitely many solutions of problem (1) under the
following assumptions:

(F 0) f : Ω × R satisfies | f(x, t) |≤ c1(1 + |t|r(x)−1), for all (x, t) ∈ Ω × R, where
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r(x) ∈ C+(Ω), r(x) < p∗(x) for all x ∈ Ω p−i > r− := inf
x∈Ω

r(x) for i = 1, 2 and c1 is a

positive constant,

(F 1) f(x, t) = o(|t|r(x)−1) as t→ 0 and for all x ∈ Ω,

(F 2) f(x, t) ≥ c2|t|α(x)−1 as t→ 0 and for all x ∈ Ω, where α+ = sup
x∈Ω

α(x) < min
i=1,2

p−i ,

(F 3) lim sup
|t|→∞

F (x, t)

|t|θ(x)
≤ a(x) such that θ ∈ C+(Ω), with θ+ = sup

x∈Ω

θ(x) < min
i=1,2

p−i ,

where F (x, t) =
∫ t

0
f(x, s) ds and a ∈ L∞(Ω),

(F 4) there exists M > 0, β > max
i=1,2

p+
i such that for all x ∈ Ω and all t ∈ R with

|t| > M , 0 < βF (x, t) < f(x, t)t,

(F 5) f(x,−t) = −f(x, t) for all (x, t) ∈ Ω× R.
The main result of this paper is expressed by the following theorems.

Theorem 1.1. Assume that (F 0) and (F 3) hold. Then the problem (1) has a weak
solution.

Theorem 1.2. If (F 0), (F 1) and (F 4) hold, then the problem (1) has a nontrivial
weak solution.

Theorem 1.3. If (F 0)-(F 2) and (F 4)-(F 5) hold., then the problem (1) has infinitely
many weak solutions.

This paper is organized in three sections. In Section 2, we recall some basic
properties of the variable exponent Lebegue-Sobolev spaces. In Section 3, we give the
proof of the main result.

2. Preliminaries

For the sake of completeness of this paper, we need to recall some results on the
variable exponent spaces Lp(·)(Ω) and W k,p(·)(Ω), and some properties which we use
later. Let Ω be a bounded domain of RN and denote

C+(Ω) =
{
h(x) : h(x) ∈ C(Ω), h(x) > 1, ∀x ∈ Ω

}
.

For any h ∈ C+(Ω), we define

h+ = max
{
h(x) : x ∈ Ω

}
, h− = min

{
h(x) : x ∈ Ω

}
.

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(·)(Ω) =

{
u : Ω→ R measurable and

∫
Ω

|u(x)|p(x) dx <∞
}
,

endowed with the so-called Luxemburg norm |u|p(·) = inf
{
µ > 0 :

∫
Ω
|u(x)
µ |

p(·) dx ≤ 1
}

.

Then (Lp(·)(Ω), | · |p(·)) is a Banach space.
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Proposition 2.1 ( [8]). The space (Lp(·)(Ω), | · |p(·)) is separable, uniformly convex,

reflexive and its conjugate space is Lq(·)(Ω) where q(·) is the conjugate function of
p(·), i.e., 1

p(·) + 1
q(·) = 1. For u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), we have∣∣∣∣ ∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(·))|v|q(·) ≤ 2|u|p(·)|v|q(·).

The Sobolev space with variable exponent W k,p(·)(Ω) is defined as

W k,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ k

}
,

whereDαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, with multi-index α = (α1, . . . , αN ) and |α| =
∑N
i=1 αi.

The space W k,p(·)(Ω) equipped with the norm ‖u‖k,p(·) =
∑
|α|≤k |Dαu|p(·), also be-

comes a separable and reflexive Banach space. For more details, we refer the reader
to [8, 12,18]. For any k ≥ 1, denote

p∗k(·) =

{
Np(·)

N−kp(·) , if kp(·) < N,

+∞, if kp(·) ≥ N.

Proposition 2.2 ([8]). For p, r ∈ C+(Ω) such that r(·) ≤ p∗k(·), there is a continuous
embedding W k,p(·)(Ω) ↪→ Lr(·)(Ω). If we replace ≤ with <, the embedding is compact.

We denote by W
k,p(·)
0 (Ω) the closure of C∞0 (Ω) in W k,p(·)(Ω). Note that the weak

solutions of problem (1) are considered in the generalized Sobolev space X = X1∩X2

equipped with the norm ‖u‖ = ‖u‖p1 + ‖u‖p2 , where

‖u‖r = inf

{
µ > 0 :

∫
Ω

(∣∣∣∆u(x)

µ

∣∣∣r(·) ≤ 1

}
and Xi =

(
W 2,pi(·)(Ω) ∩W 1,pi(·)

0 (Ω)
)
, i = 1, 2,

equipped with the norm ‖u‖ = ‖u‖pi .
Remark 2.3. According to [19, Theorem 4.4.], the norm ‖ · ‖2,p(·) is equivalent to the
norm | · |p(·) in the space X. Consequently, the norms ‖ · ‖2,p(·), ‖ · ‖ and | · |p(·) are
equivalent.

Proposition 2.4 ([4]). If we denote ρ(u) =
∫

Ω
|∆u|p(·) dx, then for u, un ∈ X, we have

(i) ‖u‖p < 1 (respectively=1; > 1) ⇐⇒ ρ(u) < 1 (respectively = 1; > 1);

(ii) ‖u‖p ≤ 1⇒ ‖u‖p+p ≤ ρ(u) ≤ ‖u‖p−p ;

(iii) ‖u‖p ≥ 1⇒ ‖u‖p−p ≤ ρ(u) ≤ ‖u‖p+p ;

(iv) ‖un‖p → 0 (respectively →∞) ⇐⇒ ρ(un)→ 0 (respectively →∞).

Let us define the functional

J(u) =

∫
Ω

1

p1(x)
|∆u|p1(x) dx+

∫
Ω

1

p2(x)
|∆u|p2(x) dx, ∀u ∈ X.

Using the same arguments as in [3, Proposition 2.5] and [1, Proposition 1.6], we can
show the following lemma.
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Lemma 2.5. J ∈ C1(X,R) and derivative operator J ′ of J is

J ′(u)v =

∫
Ω

|∆u|p1(x)−2∆u∆v dx+

∫
Ω

|∆u|p2(x)−2∆u∆v dx,∀u, v ∈ X.

and we have
(i) J ′ : X → X∗ is a bounded homeomorphism and strictly monotone operator,

(ii) J ′ is a mapping of type (S+), namely un ⇀ u and lim supn→∞ J ′(un)(un − u) ≤ 0
implies un → u.

The main tool used in proving Theorem 1.2 is the well known Mountain Pass
Theorem. It remains to show that there exists an e ∈ X with ‖e‖ > ρ and I(e) ≤ 0.
Further details can be found in [13,16].

In order to establish the existence of infinitely many solutions for the problem (1),
we will use the Kransnoselskii genus and more information on this subject may be
found [10].

Let E be a real Banach space and denote by
∑

the class of closed subsets A ⊂
E \ {0} that are symmetric with respect to the origin, that is, u ∈ A implies −u ∈ A.

Definition 2.6. Let A ∈
∑

. The Kransnoselskii genus γ(A) is defined as being the
least positive integer n such that there is an odd mapping ϕ ∈ C(A,Rn−{0}). When
such number does not exist, we consider γ(A) = +∞. Furthermore, by definition,
γ(∅) = 0.

Theorem 2.7 ([10]). Let E = RN and ∂Ω be the boundary of an open, symmetric
and bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Proposition 2.8 ([10]). Let A,B ∈
∑

. Then:
(i) if there exists an odd map f ∈ C(A,B), then γ(A) ≤ γ(B). Consequently, if there
exists an odd homeomorphism f : A→ B, then γ(A) = γ(B).

(ii) if A ⊂ B,then γ(A) ≤ γ(B).

(iii) γ(A ∪B) ≤ γ(A) + γ(B).

Theorem 2.9 ([10]). Let I ∈ C1(E,R) be a functional satisfying the Palais-Smale
condition. Also suppose that:
(i) I is bounded from below and even;

(ii) there is a compact set K ∈
∑

such that γ(K) = k and supx∈K I(x) < I(0). Then
I possesses at least k pairs of distinct critical points and their corresponding critical
values are less than I(0).

3. Existence and muliplicity of weak solutions

In this section, we well state and prove our main result.
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Definition 3.1. We say that u ∈ X is a weak solution of (1) if∫
Ω

|∆u|p1(x)−2∆u∆v dx+

∫
Ω

|∆u|p2(x)−2∆u∆v dx =

∫
Ω

f(x, u)v dx,

for all v ∈ X.

The functional associated to (1) is given by

I(u) =

∫
Ω

1

p1(x)
|∆u|p1(x) dx+

∫
Ω

1

p2(x)
|∆u|p2(x) dx−

∫
Ω

F (x, u) dx. (3)

Note that under the condition (F 0) the functional I is of class C1(X,R) and

I ′(u)v =

∫
Ω

|∆u|p1(x)−2∆u∆v dx+

∫
Ω

|∆u|p2(x)−2∆u∆v dx−
∫

Ω

f(x, u)v dx,∀u, v ∈ X.

Then, we know that the weak solution of (1) corresponds to the critical point of the
functional I.

Proof of Theorem 1.1

Lemma 3.2. Under the assumptions (F 1) and (F 3), I is sequentially weakly lower
semi continuous and coercive.

Proof. From the continuity of F and assumption (F 3) we deduce that there exists a
positive constant c3 such that F (x, u) ≤ a(x)|u|θ(x) + c3, ∀u ∈ R ∀x ∈ Ω. We have
for ‖u‖ > 1 that

I(u) =

∫
Ω

1

p1(x)
|∆u|p1(x) dx+

∫
Ω

1

p2(x)
|∆u|p2(x) dx−

∫
Ω

F (x, u) dx

≥ 1

p+
1

∫
Ω

|∆u|p1(x) dx+
1

p+
2

∫
Ω

|∆u|p2(x) dx−
∫

Ω

(
a(x)|u|θ(x) + c3

)
dx

≥ 1

p+
1

∫
Ω

|∆u|p1(x) dx+
1

p+
2

∫
Ω

|∆u|p2(x) dx− |a|∞
∫

Ω

|u|θ(x) dx− c3|Ω|.

Since p−1 > N and p−2 > N , the embeddings W
1,p1(x)
0 (Ω) ↪→ C(Ω) and W

1,p2(x)
0 (Ω) ↪→

C(Ω) are continuous, so there exist positive constants c4 and c5 such that∫
Ω

|u|θ(x) dx ≤
∫

Ω

|u|θ(x)
∞ dx ≤ c4

∫
Ω

‖u‖θ(x)
p1 dx ≤ c4‖u‖θ

+

p1

and

∫
Ω

|u|θ(x) dx ≤
∫

Ω

|u|θ(x)
∞ dx ≤ c5

∫
Ω

‖u‖θ(x)
p2 dx ≤ c5‖u‖θ

+

p2 .

This implies that

I(u) ≥ 1

p+
1

∫
Ω

|∆u|p1(x) dx+
1

p+
2

∫
Ω

|∆u|p2(x) dx− |a|∞
∫

Ω

|u|θ(x) dx− c3|Ω|

≥ 1

p+
1

‖ u ‖p
−
1
p1 +

1

p+
2

‖u‖p
−
2
p2 − |a|∞

(
c5‖u‖θ

+

p2 + c4‖u‖θ
+

p1

)
− c3|Ω|

≥


2
p+1
‖u‖p

−
1 − |a|∞max (c4, c5) ‖u‖θ+ − c3|Ω|, if p−1 ≥ p

+
2

2
p+2
‖u‖p

−
2 − |a|∞max (c4, c5) ‖u‖θ+ − c3|Ω|, if p+

1 ≤ p
−
2 .
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Since θ+ ≤ mini=1,2 p
−
i then I is coercive. As the function u 7→

∫
Ω
F (x, u) dx is

weakly lower semi-continuous and J is convex uniformly, we deduce that I is weakly
lower semi-continuous. Therefore I has a global minimum point u ∈ X, that is a
weak solution to problem (1). �

Proof of Theorem 1.2

We first start with the following lemma.

Lemma 3.3. If (F 0) and (F 4) hold, then I satisfies the Palais-smale condition (PS)
in X, namely, if any sequence (un) such that I(un) is bounded and I ′(un) → 0 as
n→ +∞, has convergent subsequence.

Proof. Suppose that

I(un) is bounded and I ′(un)→ 0 asn→ +∞. (4)

Since p−i > r− for i = 1, 2, then∫
Ω

|u| dx ≤ c6‖u‖p1 and

∫
Ω

|u| dx ≤ c7‖u‖p2 , (5)∫
Ω

|u|r(x) dx ≤ c8‖u‖r
+

r + c9‖u‖r
−

r . (6)

By (5), (6), (F 4) and Proposition 2.4 we have

I(un)− 1

β
I ′(un)un

=

∫
Ω

1

p1(x)
|∆un|p1(x) dx+

∫
Ω

1

p2(x)
|∆un|p2(x) dx−

∫
Ω

F (x, un) dx

− 1

β

(∫
Ω

|∆un|p1(x) dx+

∫
Ω

|∆un|p2(x) dx−
∫

Ω

f(x, un)un dx

)
≥
(

1

p+
1

− 1

β

)
max(‖un‖

p+1
p1 , ‖un‖

p−1
p1 ) +

(
1

p+
2

− 1

β

)
max(‖un‖

p+2
p2 , ‖un‖

p−2
p2 )

+

∫
Ω

[
1

β
f(x, un)un − F (x, un)

]
dx

≥
(

1

p+
1

− 1

β

)
max(‖un‖

p+1
p1 , ‖un‖

p−1
p1 ) +

(
1

p+
2

− 1

β

)
max(‖un‖

p+2
p2 , ‖un‖

p−2
p2 ).

Since p−i > r− for i = 1, 2, then the sequence (un) is bounded. Thus, passing to a
subsequence if necessary, there exists u ∈ X such that un ⇀ u weakly in X. Thanks to
the compact embedding X ↪→ Lr(x)(Ω), we get un → u in Lr(x)(Ω), un(x)→ u(x)
a. e. x ∈ Ω. Since (un) is bounded sequence and by (4), we have

I ′(un)(un − u) =

∫
Ω

|∆un|p1(x)−2∆un∆(un − u) dx+

∫
Ω

|∆un|p2(x)−2∆un∆(un − u) dx

−
∫

Ω

f(x, un)(un − u) dx → 0 as n→∞.
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Using the condition (F 0) and the Hölder inequality, we deduce that∣∣∣∣∫
Ω

f(x, un)(un − u) dx

∣∣∣∣ ≤ ∫
Ω

|f(x, un)||(un − u)| dx

≤ c1
∫

Ω

|(1 + |un|r(x)−1)||(un − u)| dx

≤ C1

(
|1| r(x)

r(x)−1

+
∣∣∣|un|r(x)−1

∣∣∣
r(x)
r(x)−1

)
|(un − u)|r(x) → 0 asn→∞, (7)

which yields ∫
Ω

f(x, un)(un − u) dx→ 0 asn→ +∞. (8)

By (7) and (8), we have∫
Ω

|∆un|p1(x)−2∆un∆(un − u) dx+

∫
Ω

|∆un|p2(x)−2∆un∆(un − u) dx→ 0,

According to Lemma 2.5, the functional J ′ is of type (S+). Thus un → u strongly in
X as n→ +∞ and the functional I satisfies the (PS) condition. �

To prove Theorem 1.2, we need to check that I satisfies the conditions of the
Mountain Pass Theorem.

Since r+ < p−1 and r+ < p−2 , X1 ↪→ Lr
+

(Ω) and X2 ↪→ Lr
+

(Ω) then there exists
c9 and c10 such that |u|r+ ≤ c10‖u‖p1 and |u|r+ ≤ c11‖u‖p2 for allu ∈ X. Let ε > 0 be

small enough such that εcr
+

10 < 1
2r+ . By assumptions (F 0) and (F 1), we have

F (x, t) ≤ ε|t|r
+

+ c(ε)|t|r(x). (9)

In view of (9) with ‖u‖ < 1 and by (3), we have

I(u) =

∫
Ω

1

p1(x)
|∆u|p1(x) dx+

∫
Ω

1

p2(x)
|∆u|p2(x) dx−

∫
Ω

F (x, u) dx

≥ 1

p+
1

‖u‖p
+
1
p1 +

1

p+
2

‖u‖p
+
2
p2 − ε

∫
Ω

|u|r
+

dx− c(ε)
∫

Ω

|u|r(x) dx

≥


2
p+1
‖u‖p

+
1 − εcr+10 ‖u‖r

+ − c(ε)‖u‖r− , if p+
1 ≤ p

+
2

2
p+2
‖u‖p

+
2 − εcr+10 ‖u‖r

+ − c(ε)‖u‖r− , if p+
1 ≥ p

+
2 .

(10)

Therefore, since r+ < p−1 and r+ < p−2 , there exist ρ > 0 and δ > 0 such that
I(u) ≥ δ > 0 for every ‖ u ‖= ρ.

From (F 4) we have F (x, t) > c12|t|β − c13, for all x ∈ Ω and |t| > M . For
ω ∈ X \ {0} and t > 1 we have

I(tω) =

∫
Ω

1

p1(x)
|∆tω|p1(x) dx+

∫
Ω

1

p2(x)
|∆tω|p2(x) dx−

∫
Ω

F (x, tω) dx

≤|t|
p+1

p−1

∫
Ω

|∆ω|p1(x) dx+
|t|p

+
2

p−2

∫
Ω

|∆ω|p2(x) dx− c12|t|β
∫

Ω

|ω|β dx− c13|Ω|.
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Due to β > max
(
p+

1 , p
+
2

)
, we have

I(tω)→ −∞ as t→ +∞. (11)

Since I(0) = 0, it follows from (10) and (11) that I satisfies the conditions of Mountain
Pass Theorem. By Lemma (3.3), I satisfies (PS) condition in X. Therefore I admits
at least one nontrivial critical point.

Proof of Theorem 1.3

For the proof of Theorem (1.3) we will need the following steps.
Step 1. By Lemma (3.3) I satisfies the (PS) condition.

Step 2. I is bounded from below. Indeed, by (10) and (F 5) we have that I is
bounded from below and even.

Step 3. We notice that Xp+1
:=
(
W 2,p+1 (Ω) ∩W 1,p+1

0 (Ω)
)
⊂ X1 and Xp+2

:=(
W 2,p+2 (Ω) ∩W 1,p+2

0 (Ω)
)
⊂ X2.

Consider {e1, e2, . . .}, a Schauder basis of the space Xp+1
∩Xp+2

, and for each k ∈ N,

consider, Xk the subspace of Xp+1
∩Xp+2

generated by k vectors {e1, e2, . . . , ek}.

It is clear that Xk is a subspace of X. So we notice that Xk ⊂ Lr(x)(Ω) be-
cause Xp+1

∩Xp+2
⊂ Lr(x). Thus, the norms ‖ · ‖ and | · |r are equivalent on a finite

dimensional space Xk. Consequently, there exists a positive constant Ck such that
−|u|r ≤ −Ck‖u‖ for all u ∈ Xk. By (F 2) we obtain −F (x, u) ≤ − c2

α(x) |u|
α(x) − c14.

Then we have ∫
Ω

−F (x, u) dx ≤ −
∫

Ω

c2
α(x)

|u|α(x) dx− c14|Ω|,

so that

∫
Ω

−F (x, u) dx ≤ − c2
α+

Ck‖u‖α
+

− c14|Ω|. (12)

Therefore by (12) and (3) we have

I(u) ≤



1
p−1
‖ u ‖p

−
1
p1 + 1

p−2
‖u‖p

−
2
p2 − c2

α+Ck‖u‖α
+ − c14|Ω|, if ‖u‖p1 ≤ 1 and ‖u‖p2 ≤ 1

1
p−1
‖ u ‖p

−
1
p1 + 1

p−2
‖u‖p

+
2
p2 − c2

α+Ck‖u‖α
+ − c14|Ω|, if ‖u‖p1 ≤ 1 and ‖u‖p2 ≥ 1

1
p−1
‖ u ‖p

+
1
p1 + 1

p−2
‖u‖p

+
2
p2 − c2

α+Ck‖u‖α
+ − c14|Ω|, if ‖u‖p1 ≥ 1 and ‖u‖p2 ≥ 1

1
p−1
‖ u ‖p

+
1
p1 + 1

p−2
‖u‖p

−
2
p2 − c2

α+Ck‖u‖α
+ − c14|Ω|, if ‖u‖p1 ≥ 1 and ‖u‖p2 ≤ 1.

In case ‖u‖p1 ≤ 1 and ‖u‖p2 ≤ 1, we chooseR > 0 small enough such that 1
p−1
Rp
−
1 −α

+

+

1
p−2
Rp
−
2 −α

+

< c2
α+Ck. Thus, for 0 < % < R, we consider the setK = {u ∈ Xk : ‖u‖ = %}.

For all u ∈ K, we have

I(u) ≤%α
+

(
1

p−1
%p
−
1 −α

+

+
1

p−2
%p
−
2 −α

+

− c2
α+

Ck

)
≤Rα

+

(
1

p−1
Rp
−
1 −α

+

+
1

p−2
Rp
−
2 −α

+

− c2
α+

Ck

)
≤ I(0).
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Since

I(u) ≤



‖u‖α+
(

1
p−1
‖ u ‖p

−
1 −α

+

p1 + 1
p−2
‖u‖p

−
2 −α

+

p2 − c2
α+Ck

)
if ‖u‖p1 ≤ 1 and ‖u‖p2 ≤ 1

‖u‖α+
(

1
p−1
‖ u ‖p

−
1 −α

+

p1 + 1
p−2
‖u‖p

+
2 −α

+

p2 − c2
α+Ck

)
if ‖u‖p1 ≤ 1 and ‖u‖p2 ≥ 1

‖u‖α+
(

1
p−1
‖ u ‖p

+
1 −α

+

p1 + 1
p−2
‖u‖p

+
2 −α

+

p2 − c2
α+Ck

)
if ‖u‖p1 ≥ 1 and ‖u‖p2 ≥ 1

‖u‖α+
(

1
p−1
‖ u ‖p

+
1 −α

+

p1 + 1
p−2
‖u‖p

−
2 −α

+

p2 − c2
α+Ck

)
if ‖u‖p1 ≥ 1 and ‖u‖p2 ≤ 1,

applying similar reasoning to the other cases, we conclude that I(u) < 0 = I(0).

We can considere the odd homeomorphism g : K → Sk−1 defined by g(u) =
(ξ1, ξ2, . . . , ξk), where Sk−1 is the sphere in Rk. From Theorem (2.7) and Proposi-
tion (2.8) we conclude that γ(k) = k, thanks to Theorem (2.9), I has at least k pairs
of different critical points. Since k is arbitrary, we obtain infinitely many critical
points of I.

References

[1] G.A. Afrouzi, N.T. Chung, M. Mirzapour, Existence of solutions for a class of p(x)-biharmonic
problems without (A-R) type conditions, Int. J. Math. Anal., 12 (11) (2018), 505–515.

[2] A. Ayoujil, A.R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable
exponent, Nonlinear Anal., 71 (2009), 4916–4926.

[3] A. Ayoujil, A. El Amrouss, Continuous spectrum of a fourth order nonhomogeneous elliptic
equation with variable exponent, Electron. J. Differ. Equ., 2011 (2011), 1–24.

[4] A. El Amrouss, F. Moradi, M. Moussaoui, Existence of solutions for fourth-order PDEs with
variable exponent, Electron. J. Differ. Equ. 2009:153 (2009), 1–13.

[5] A. El Amrouss, A. Ourraoui, Existence of solutions for a boundary problem involving p(x)-
biharmonic operator, Bol. Soc. Paran. Mat., 31 (1) (2013), 179–192.

[6] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J.
Math. Anal. Appl., 300 (2004), 30–42.

[7] X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear
Anal. T.M.A., 52 (2003), 1843–1852.

[8] X. L. Fan, D. Zhao, On the spaces Lp1(x) and Wm,p1(x), J. Math. Anal. Appl., 263 (2001),
424–446.

[9] A. Ferrero, G. Warnault, On a solutions of second and fourth order elliptic with power type
nonlinearities, Nonlinear Anal. T.M.A., 70 (2009), 2889–2902.
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