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Abstract. In this paper, we consider paracontact metric manifolds satisfying certain
flatness conditions on the conformal curvature tensor. Specifically, we study ξ-conformally
flat K-paracontact manifolds and ϕ-conformally flat K-paracontact and paraSasakian mani-
folds. Also we discuss ϕ-conformally flat compact regular K-paracontact manifolds. Finally,
we study conformally flat paracontact metric manifolds.

1. Introduction

If a pseudo-Riemannian metric g on a manifold M is conformally related with a
flat pseudo-Euclidean metric, then g is called conformally flat. A pseudo-Riemannian
manifold with a conformally flat pseudo-Riemannian metric is called a conformally flat
manifold. Using the tools of conformal transformation, Weyl (see [12,13]) introduced
a generalized curvature tensor which vanishes whenever the metric is conformally flat
(for this reason named the confomal curvature tensor). It is well-known that pseudo-
Riemannian manifold M of dimension m is conformally flat if and only if the Weyl
conformal curvature tensor field C, which is a tensor field of type (1, 3) defined by

C(X,Y )Z = R(X,Y )Z − 1

m− 2
{S(Y, Z)X + g(Y,Z)QX − S(X,Z)Y

− g(X,Z)QY }+
r

(m− 1)(m− 2)
{g(Y,Z)X − g(X,Z)Y },

vanishes for m > 3, and for m = 3,

(∇XQ)Y − (∇YQ)X =
1

4
{(Xr)Y − (Y r)X},

where Q is the Ricci operator determined by S(X,Y ) = g(QX,Y ), and r is the scalar
curvature of the metric g. The Weyl conformal curvature tensor field C vanishes
identically for m = 3 and it is invariant under conformal changes of the metric.

2010 Mathematics Subject Classification: 53C15, 53C25, 53D10

Keywords and phrases: Conformal curvature tensor; paracontact metric manifold; K-
paracontact manifold; paraSasakian manifold; regular K-paracontact manifold.

215



216 Conformal curvature tensor on paracontact manifolds

Now suppose that (M,ϕ, ξ, η, g) is a paracontact metric manifold (see Section 2).
Then the module of a differentiable vector field on M can be decomposed into the
direct sum TM = ϕ(TM)⊕ L, where L is the distribution generated by the charac-
teristic vector field ξ. Thus the conformal curvature tensor C is defined as a map

C : TM × TM × TM → ϕ(TM)⊕ L.
The three following cases can arise:

(i) The projection of the image of C in ϕ(TM) is zero, i.e., C(X,Y, Z, ϕW ) = 0, for
all X,Y, Z,W ∈ TM .

(ii) Projection of C(X,Y )ϕTM onto L is zero for everyX,Y ∈ TM , i.e., C(X,Y )ξ = 0,
for all X,Y ∈ TM .

(iii) Projection to the contact subbundle of the restriction of C to the contact sub-
bundle vanishes, i.e., ϕ2C(ϕX,ϕY )ϕZ = 0, for all X,Y, Z ∈ TM .

In contact metric manifolds, the above three cases are studied respectively in [15,16],
and [3]. In the present paper, we study various geometric properties of conformal
curvature tensor on paracontact metric manifolds. Though some of the present results
are analogous to those obtained in [1, 3, 15, 16], our approach to get corresponding
results in paracontact metric manifold is quite different.

Our work is structured as follows. In Section 2, we recall some basic informa-
tion about paracontact metric manifolds. In Section 3, we focus on ξ-conformally
flat K-paracontact manifold and we show that a K-paracontact metric manifold is ξ-
conformally flat if and only if it is η-Einstein paraSasakian. As a consequence, some
other results about ξ-conformally flat K-paracontact manifolds are obtained. Sec-
tion 4 is devoted to the study of ϕ-conformally flat K-paracontact and paraSasakian
manifolds, and some curvature identities are obtained on K-paracontact manifold.
Further we show that a paraSasakian manifold of dimension > 3 is ϕ-conformally
flat if and only if it is of constant curvature −1. Next we prove that ϕ-conformally
flat K-contact manifold is a principal S1-bundle over an almost paraKaehler space
of paraholomorphic sectional curvature 4n+r

2n(2n−1) − 3. Conformally flat paracontact

metric manifolds are considered in Section 5 and we prove that a (2n+1)-dimensional
conformally flat paracontact metric manifold with Qϕ = ϕQ is of constant curvature
−1 if n > 1 and 0 or −1 if n = 1.

2. Preliminaries

In this section, we collect some definitions and properties on almost paracontact metric
manifolds which we will use later. For more information and details, we recommend
the references [6, 14].

A (2n + 1)-dimensional smooth connected manifold M is said to be an almost
paracontact manifold if there exist a (1, 1) tensor field ϕ, a vector field ξ and a 1-form
η defined on M such that ϕ2 = I − η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, and the
eigendistributions D+ and D− of ϕ corresponding to the respective eigenvalues 1 and
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−1 have equal dimension n. If an almost paracontact manifold is endowed with a
semi-Riemannian metric g such that

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ), (1)

where signature of g is necessarily (n + 1, n) for all X,Y ∈ TM , then (M,ϕ, ξ, η, g)
is called an almost paracontact metric manifold. The curvature tensor R is taken
with the sign convention R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] (this convention is opposite
in [4, 5, 10]).

The fundamental 2-form of an almost paracontact metric manifold (M,ϕ, ξ, η, g)
is defined by Φ(X,Y ) = g(X,ϕY ). If dη = Φ, then the manifold (M,ϕ, ξ, η, g) is said
to be paracontact metric manifold and g the associated metric. In such case η is a
contact form (that is, η ∧ (dη)n 6= 0), ξ is its Reeb vector field and M is a contact
manifold (see [7, 10]). The tensor h = 1

2£ξϕ, where £ is the usual Lie derivative, is
symmetric and satisfies hϕ = −ϕh, hξ = 0. Furthermore, we also have

∇Xξ = −ϕX + ϕhX, (2)

(∇ξh)X = −ϕX + h2ϕX + ϕR(ξ,X)ξ. (3)

A paracontact metric manifold is said to be a K-paracontact manifold if ξ is a Killing
vector field, equivalently, h = 0. In a K-paracontact manifold, we have the following
formulas (see [11]).

∇Xξ = −ϕX, (4)

R(X, ξ)ξ = −X + η(X)ξ, (5)

S(X, ξ) = −2nη(X) (or Qξ = −2nξ), (6)

for all X ∈ TM , where S is the Ricci tensor.

From (1) and (5), we also have

R(ξ, Y, Z, ξ) = g(ϕY, ϕZ), (7)

for all Y, Z ∈ TM .

A paracontact metric manifold is said to be paraSasakian if the almost paracom-
plex structure J on M ×R defined by

J

(
X, f

d

dt

)
=

(
ϕX + fξ, η(X)

d

dt

)
,

is integrable, where X ∈ TM , t is the coordinate on R and f is a C∞ function on
M × R. It is well known that a paracontact metric manifold M is paraSasakian if
and only if

(∇Xϕ)Y = −g(X,Y )ξ + η(Y )X, (8)

for all X,Y ∈ TM . A paraSasakian manifold is always a K-paracontact manifold.
A 3-dimensional K-paracontact manifold is a paraSasakian manifold [4], which may
not be true in higher dimensions [6]. On any paraSasakian manifold, the following
relations are well known (see [8, 11])

R(X,Y )ξ = η(X)Y − η(Y )X, (9)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (10)
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S(X, ξ) = −2nη(X),

for all X,Y ∈ TM . Unlike the contact metric case, the condition (9) does not imply
that the manifold is paraSasakian [6]. Further, on a paraSasakian manifold Qϕ = ϕQ
holds (see [8, Lemma 4]).

A paracontact metric manifold M is said to be η-Einstein if there exist smooth
functions a and b such that S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), for all X,Y ∈ TM
and if M is paraSasakian then a and b are constants [14, Proposition 4.7]. If b = 0,
M becomes an Einstein manifold. On K-paracontact manifold, from (6) we have

a+ b = −2n. (11)

On the other hand, the scalar curvature satisfies r = a(2n+ 1) + b. So K-paracontact
metric manifold is η-Einstein if and only if

S(X,Y ) =
( r

2n
+ 1
)
g(X,Y )−

( r

2n
+ 2n+ 1

)
η(X)η(Y ). (12)

Hence K-paracontact manifold is Einstein if and only if

S(X,Y ) = −2ng(X,Y ), (13)

for all X,Y ∈ TM .

Weyl conformal curvature tensor field C on a paracontact manifold is given by

C(X,Y )Z = R(X,Y )Z − 1

2n− 1
{S(Y, Z)X + g(Y,Z)QX − S(X,Z)Y

− g(X,Z)QY }+
r

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y }. (14)

As discussed in the introduction, there arise the cases (i), (ii) and (iii). Analoguesly
to the contact metric case, an almost paracontact metric manifold satisfying these
three cases are said to be conformally symmetric [15], ξ-conformally flat [16] and
ϕ-conformally flat [3], respectively.

3. ξ-conformally flat K-paracontact manifold

First we prove the following theorem.

Theorem 3.1. Let M be a ξ-conformally flat K-paracontact manifold of dimension
> 3. Then the scalar curvature r of M satisfies

∇r = ξ(r)ξ, (15)

where ∇r is the gradient of scalar curvature r.

Proof. If M is ξ-conformally flat K-paracontact manifold, then the equation (14)
becomes

R(X,Y )ξ =
1

2n− 1
{S(Y, ξ)X + η(Y )QX − S(X, ξ)Y − η(X)QY }

− r

2n(2n− 1)
{η(Y )X − η(X)Y }, (16)
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which gives

R(X, ξ)Y =
1

2n− 1
{g(Y,Qξ)X + η(Y )QX − g(QX,Y )ξ − g(X,Y )Qξ}

− r

2n(2n− 1)
{η(Y )X − g(X,Y )ξ}. (17)

Putting Y = ξ in (16), differentiating this covariantly along an arbitrary vector field
W and using (17), we get:

(∇WR)(X, ξ)ξ =
1

2n− 1
{g((∇WQ)ξ, ξ)X + (∇WQ)X − g((∇WQ)X, ξ)ξ

− η(X)(∇WQ)ξ} − Wr

2n(2n− 1)
{X − η(X)ξ}.

Taking inner product of above equation with Y and contracting with respect to X
and W yields

2n+1∑
i=1

εig((∇eiR)(ei, ξ)ξ, Y ) =
1

2n− 1
{g((∇YQ)ξ − (∇ξQ)Y, ξ)}

+
2n− 2

4n(2n− 1)
{Y r − η(Y )ξ(r)}, (18)

where {ei} is an orthonormal basis of vector fields in M and εi = g(ei, ei). From the
second Bianchi identity we easily obtain

2n+1∑
i=1

εig((∇eiR)(Y, ξ)ξ, ei) = g((∇YQ)ξ − (∇ξQ)Y, ξ). (19)

Then from (18) and (19), noting that n > 1 we get

g((∇YQ)ξ − (∇ξQ)Y, ξ) =
1

4n
{Y r − η(Y )ξ(r)}. (20)

On the other hand, from (16), (5) and (6), it follows that QX = aX + bη(X)ξ, where
a = r

2n + 1 and b = −r
2n − (2n+ 1), and so

(∇ξQ)Y − (∇YQ)ξ = (ξa+ ξb)(Y + η(Y )ξ)− (Y a+ Y b)ξ + b(ϕY ).

Using (11), the above equation becomes (∇YQ)ξ − (∇ξQ)Y = b(ϕY ). Then (20)
leads to Y r = η(Y )ξ(r) which gives (15). �

Now, we present a necessary and sufficient condition for K-paracontact manifold
to be ξ-conformally flat.

Theorem 3.2. A K-paracontact metric manifold is ξ-conformally flat if and only if
it is η-Einstein paraSasakian.

Proof. Let M be ξ-conformally flat. Then we have (16). Thus from (5) and (6), it
follows that

QX = aX + bη(X)ξ, (21)

where a = r
2n + 1 and b = −r

2n − (2n+ 1), which is equivalent to (12). Making use of
(21) in (16) yields

R(X,Y )ξ = −{η(Y )X − η(X)Y }. (22)



220 Conformal curvature tensor on paracontact manifolds

We know from [9, p. 259] that R(ξ,X)Y = −∇X∇Y ξ +∇∇XY ξ, and it follows from
(4) that R(ξ,X)Y = (∇Xϕ)Y which in view of (22) implies

g((∇Xϕ)Y,Z) = g(R(ξ,X)Y,Z) = g(R(Y,Z)ξ,X) = g(−g(X,Y )ξ + η(Y )X,Z),

and thus (8) holds and M is paraSasakian.
Conversely, if M is η-Einstein paraSasakian, then using (9), (10) and (12) in (14)

we have

C(X,Y )ξ = R(X,Y )ξ −
(

2a+ b

2n− 1
− r

2n(2n− 1)

)
(η(Y )X − η(X)Y )

= R(X,Y )ξ + (η(Y )X − η(X)Y = 0.

So M is ξ-conformally flat. This completes the proof. �

Corollary 3.3. Let M be a ξ-conformally flat K-paracontact manifold. If there
exist functions λ and µ on M such that (∇XQ)Y − (∇YQ)X = λX +µY , then M is
Einstein.

Proof. From Theorem 3.2, M is paraSasakian and so Qϕ = ϕQ holds on M . Now
the result follows from Lemma 5.1. �

Corollary 3.4 ([11]). A conformally flat K-paracontact manifold is paraSasakian
and of constant curvature −1.

Proof. For n > 1, conformally flatness implies C = 0 which gives divC = 0 or
equivalently (∇XQ)Y − (∇YQ)X = 1

4n{(Xr)Y − (Y r)X}. For n = 1, conformally
flatness means (∇XQ)Y −(∇YQ)X = 1

4{(Xr)Y −(Y r)X}. Hence from Corollary 3.3,
M is paraSasakian and Einstein, that is, equation (13) holds. Thus C(X,Y )Z = 0
and (13) implies R(X,Y )Z = −{g(Y,Z)X − g(X,Z)Y }, which means that M is of
constant curvature −1. �

4. ϕ-conformally flat K-paracontact and paraSasakian manifold

Theorem 4.1. A ϕ-conformally flat K-paracontact manifold M is η-Einstein.

Proof. One can easily observe that (iii) holds if and only if

g(C(ϕX,ϕY )ϕZ,ϕW ) = 0, (23)

for all vector fields X,Y, Z,W ∈ TM . Using (14) in (23), we get

g(R(ϕX,ϕY )ϕZ,ϕW ) =
1

2n− 1
[S(ϕY, ϕZ)g(ϕX,ϕW ) + g(ϕY, ϕZ)S(ϕX,ϕW )

− S(ϕX,ϕZ)g(ϕY, ϕW )− g(ϕX,ϕZ)S(ϕY, ϕW )]

− r

2n(2n− 1)
[g(ϕY, ϕZ)g(ϕX,ϕW )− g(ϕX,ϕZ)g(ϕY, ϕW )]. (24)

Note that if {ei, ξ}2ni=1 is a local pseudo-orthonormal ϕ-basis, then {ϕei, ξ}2ni=1 is
also a local pseudo-orthonormal ϕ-basis. Putting X = W = ei and summing over i
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gives
2n∑
i=1

εig(R(ϕei, ϕY )ϕZ,ϕei) =

2n∑
i=1

εi

{ 1

2n− 1
[S(ϕY, ϕZ)g(ϕei, ϕei)

+g(ϕY, ϕZ)S(ϕei, ϕei)− S(ϕei, ϕZ)g(ϕY, ϕei)− g(ϕei, ϕZ)S(ϕY, ϕei)]

− r

2n(2n− 1)
[g(ϕY, ϕZ)g(ϕei, ϕei)− g(ϕei, ϕZ)g(ϕY, ϕei)]

}
,

which further, using (7), yields

S(ϕY, ϕZ) = ag(ϕY, ϕZ), (25)

where a = 1 + r
2n . Replacing Y by ϕY gives

S(Y, ϕZ) = ag(Y, ϕZ), (26)

and so ϕQY = aϕY . Further operating by ϕ, it gives QY = aY +(2n+a)η(X)ξ, and
so M is η-Einstein. �

Making use of Theorem 3.2 and Theorem 4.1, we obtain the following:

Corollary 4.2. A ϕ-conformally flat paraSasakian manifold is always ξ-conformally
flat.

Theorem 4.3. Let M be a ϕ-conformally flat K-paracontact manifold of dimension
2n+ 1. Then the Ricci operator Q commutes with ϕ, the curvature tensor R and the
scalar curvature r of M satisfy

g(R(ϕX,ϕY )ϕZ,ϕW ) =
r + 4n

2n(2n− 1)
[g(ϕY, ϕZ)g(ϕX,ϕW )

− g(ϕX,ϕZ)g(ϕY, ϕW )], (27)

(ϕX)r =0, if n > 1. (28)

Proof. The commutativity of Q and ϕ follows from (26) and using (25) in (24),
we get (27). Now differentiating (25) covariantly along an arbitrary vector field X
and using (26) we get g((∇XQ)ϕY, ϕZ) = (Xa)g(ϕY, ϕZ), from which we obtain∑2n
i=1 εig((∇ϕeiQ)ϕei, ϕZ) =

∑2n
i=1 εi(ϕeia)g(ϕei, ϕZ). Therefore, we have

1

2
(ϕZ)r − g((∇ξQ)ξ, ϕZ) =

(ϕZ)r

2n
. (29)

On the other hand, from (6) we have (∇ξQ)ξ = 0. Thus (29) leads to (28), if n > 1.
This completes the proof. �

Theorem 4.4. Let M be a paraSasakian manifold of dimension > 3. Then M is
ϕ-conformally flat if and only if it is of constant curvature −1.

Proof. Replacing X,Y, Z,W by ϕX,ϕY, ϕZ, ϕW respectively in (27), using (9), (10)
and (1), followed by a simple computation, we obtain

R(X,Y, Z,W ) =
4n+ r

2n(2n− 1)
{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

+
r + 2n(2n+ 1)

2n(2n− 1)
{g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )
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+ g(Y,W )η(X)η(Z)− g(X,W )η(Y )η(Z)}. (30)

Applying the above equation to the equation [14, (3.36)], we get

r + 4n

2n(2n− 1)
{g(Y, ϕZ)g(X,W )− g(X,ϕZ)g(Y,W ) + g(Y,Z)g(X,ϕW )

− g(X,Z)g(Y, ϕW )}+
r + 4n2 + 2n

2n(2n− 1)
{g(X,ϕZ)η(Y )η(W )

− g(Y, ϕZ)η(X)η(W ) + g(Y, ϕW )η(X)η(Z)− g(X,ϕW )η(Y )η(Z)}
=− g(X,ϕW )g(Y, Z) + g(X,ϕZ)g(Y,W )− g(Y, ϕZ)g(X,W ) + g(Y, ϕW )g(X,Z).

Contracting the above equation with respect to X and W gives (r+ 2n(2n+ 1))(n−
1)g(Y, ϕZ) = 0. Since n > 1, the above equation shows that r = −2n(2n + 1).
Substituting this in (30) gives R(X,Y )Z = −{g(Y,Z)X − g(X,Z)Y }, which means
M is of constant curvature −1. �

In [2], the authors introduced the notion of regular contact manifold, in which
every point p of a contact manifold has a cubical coordinate neighborhood U of p
such that the integral curves of ξ in U pass through U only once. Further, the orbits
of ξ are closed curves if the manifold is compact. We denote by B the space of orbits
of ξ. Then there is a natural projection π : M → B and B is a 2n-dimensional
differentiable manifold such that π is a differentiable map. If M2n+1 is a compact
regular contact manifold, then M is a principal S1-bundle over B, where S1 is the
1-dimensional compact Lie group which is isomorphic to the 1-parameter group of
global transformations generated by ξ (see [2]).

Let M be a compact regular K-paracontact manifold. Note that M is a contact
manifold with the contact form η (see Section 2). Since ξ is Killing, the metric g
is invariant under the action of the group S1. Hence we can define a metric g̃ and
a (1, 1) tensor field J by g̃(X,Y ) = g(X̂, Ŷ ), and JX = π∗ϕX̂ for all X,Y ∈ TB,
where ̂ denotes the horizontal lift with respect to η. The induced structure (J, g̃) is
an almost paraKaehler structure on B (see [11]).

Let us denote by ∇̃ the Riemannian connection associated with g̃ and by R̃ the
corresponding Riemannian curvature tensor. Then we have (see [11])

R̃(X,Y, Z,W ) = R(X̂, Ŷ , Ẑ, Ŵ ) + 2g(X̂, ϕŶ )g(ϕẐ, Ŵ )

− g(Ẑ, ϕX̂)g(ϕŶ , Ŵ ) + g(Ẑ, ϕŶ )g(ϕX̂, Ŵ ), (31)

for all X,Y, Z,W ∈ TB. Approaching in a similar manner as in [11], from (31) and
(27), we find the paraholomorphic sectional curvature of the base manifold B:

− R̃(X,JX, JX,X)

g̃(X,X)2
=

4n+ r

2n(2n− 1)
− 3.

Hence we have the following theorem.

Theorem 4.5. A ϕ-conformally flat compact regular K-paracontact manifold is a
principal S1-bundle over an almost paraKaehler space of paraholomorphic sectional
curvature 4n+r

2n(2n−1) − 3.
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5. Conformally flat paracontact metric manifold

We begin with the following lemma.

Lemma 5.1. Let M be a paracontact metric manifold with Qϕ = ϕQ. If there exist
functions λ and µ on M such that

(∇XQ)Y − (∇YQ)X = λX + µY, (32)

then M is Einstein.

Proof. As Qϕ = ϕQ, we have ϕ2Qξ = ϕQϕξ = 0. Thus ϕ2Qξ = Qξ− g(Qξ, ξ)ξ gives
Qξ = g(Qξ, ξ)ξ which means Qξ = (tr `)ξ. Differentiating this along an arbitrary
vector field X and using (2), we get

(∇XQ)ξ = Q(ϕX − ϕhX) +X(tr `)ξ − (tr `)(ϕX − ϕhX). (33)

Taking inner product of (32) with ξ, we get

g((∇XQ)Y − (∇YQ)X, ξ) = λη(X) + µη(Y ).

Since g((∇XQ)Y,Z) = g((∇XQ)Z, Y ), the above equation becomes

g((∇XQ)ξ, Y )− g((∇YQ)ξ,X) = λη(X) + µη(Y ).

Making use of (33) in above, one can get

g(Q(ϕX − ϕhX), Y ) +X(tr `)η(Y )− (tr `)g(ϕX − ϕhX, Y )− g(Q(ϕY − ϕhY ), X)

− Y (tr `)η(X) + (tr `)g(ϕY − ϕhY,X) = λη(X) + µη(Y ). (34)

Replacing X by ϕX and Y by ϕY in (34), using Qϕ = ϕQ and hϕ = −ϕh gives

−2QϕX −QϕhX − hQϕX + 2(tr `)ϕX = 0. (35)

Substituting ϕX for X in (35) yields QhX − hQX = 2QX − 2(tr `)X. Applying ϕ
on both sides of the above equation, we get

ϕQhX − ϕhQX = 2(ϕQX − (tr `)ϕX). (36)

Since Qϕ = ϕQ and hϕ = −ϕh, the equation (35) becomes

−ϕQhX + ϕhQX = 2(ϕQX − (tr `)ϕX). (37)

Adding (36) and (37) gives ϕQX = (tr `)ϕX. Applying ϕ on both sides of above
equation gives

QX = (tr `)X. (38)

Hence M is an Einstein manifold. �

Note that divC = 0 is equivalent to

g((∇XQ)Y − (∇YQ)X,Z) =
1

4n
{(Xr)g(Y, Z)− (Y r)g(X,Z)}, (39)

which is (32) with λ = 1
4nXr and λ = −1

4n Y r. This gives the following

Corollary 5.2. A paracontact metric manifold M of dimension > 3 with Qϕ = ϕQ
which has harmonic conformal curvature tensor is Einstein.

At this time we recall the following results obtained by Zamkovoy [14] and Cal-
varuso [4].
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Lemma 5.3 ([14, Theorem 3.12]). If a paracontact manifold M is of constant sectional
curvature c and dimension 2n+ 1 > 3, then c = −1 and ‖h‖2 = 0.

Lemma 5.4 ([4, Theorem 3.5]). A three-dimensional locally symmetric paracontact
metric manifold is either flat or of constant sectional curvature −1.

These lemmas are used to prove the following paracontact analogue result of [1],
and is one of the main result of present paper.

Theorem 5.5. Let M be a (2n+ 1)-dimensional conformally flat paracontact metric
manifold with Qϕ = ϕQ. Then M is of constant curvature −1 if n > 1 and 0 or −1
if n = 1.

Proof. For n > 1, conformally flatness means C = 0 which gives divC = 0 or
equivalently (39). Then Lemma 5.1 implies that M is Einstein. Thus C(X,Y )Z = 0
and (38) implies that M is of constant curvature. Then Lemma 5.3 implies that M
is of constant curvature −1

For n = 1, conformally flatness means (∇XQ)Y −(∇YQ)X = 1
4{(Xr)Y −(Y r)X},

and it follows from Lemma 5.1 that M is Einstein. As 3-dimensional Einstein manifold
is of constant curvature, it is locally symmetric. Now Lemma 5.4 completes the
proof. �

Theorem 5.6. Let M be a (2n+ 1)-dimensional conformally flat paracontact metric
manifold such that ξ is the eigenvector of the Ricci operator everywhere on M and
K(ξ,X) = K(ξ, ϕX) for every unit vector field X ⊥ ξ. Then M is of constant
curvature −1 if n > 1 and 0 or −1 if n = 1.

Proof. The conformally flatness implies

R(X, ξ)ξ =
1

2n− 1
{(tr `)X +QX − S(X, ξ)ξ − η(X)Qξ}+

r

2n(2n− 1)
{X − η(X)ξ}.

Using (3) and the hypothesis Qξ = (tr `)ξ, we get

QX−2(tr `)η(X)ξ+(tr `)X− r

2n
(X−η(X)ξ) = (2n−1)(h2X−ϕ2X−ϕ(∇ξh)X). (40)

Applying ϕ on both sides gives

ϕQX + (tr `)ϕX − r

2n
(ϕX) = (2n− 1)(ϕh2X − ϕX − (∇ξh)X). (41)

Replacing X by ϕX in (40) gives

QϕX + (tr `)ϕX − r

2n
(ϕX) = (2n− 1)(h2ϕX − ϕX − ϕ(∇ξh)X). (42)

Now subtracting (42) from (41) yields

ϕQX −QϕX = −2(2n− 1)(∇ξh)X. (43)

The following formula is obtained by Perrone in [10]:

K(ξ,X)−K(ξ, ϕX) = 2εXg((∇ξh)X,ϕX),

for any unit vector field X ⊥ ξ, where εX = g(X,X) = ±1. Thus the hypothesis
K(ξ,X) = K(ξ, ϕX) for all unit vector field X ⊥ ξ shows that ∇ξh = 0. Then (43)
yields Qϕ = ϕQ. Now the conclusion follows from Theorem 5.5. �
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