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Abstract. In order to establish some common fixed point theorems on Hausdorff uni-
form spaces endowed with a graph we will define a new kind of generalized contraction for
self-mappings. A few related examples are also provided to support our main results. Finally
an application of our results in b-metric spaces is exhibited.

1. Introduction

Following [6], a pair (X, υ) is called a uniform space, if X is a nonempty set and υ is
a special kind of filter on X ×X satisfying the following conditions:
(υ1) for each U ∈ υ, ∆ = {(x, x) : x ∈ X} ⊆ U ,

(υ2) U ∈ υ and U ⊆W ⊆ X ×X implies W ∈ υ,

(υ3) U ∈ υ and W ∈ υ implies U ∩W ∈ υ,

(υ4) U ∈ υ implies U−1 ∈ υ,

(υ5) if U ∈ υ, then there exists V ∈ υ with V ◦V ⊆ U . (The composition of two sub-
sets V and U of X×X is defined by V ◦ U = {(x, z) : ∃y ∈ X : (x, y) ∈ V, (y, z) ∈ U}).
A uniform space (X, υ) is said to be Hausdorff if the intersection of all members of υ
reduces to the diagonal ∆ of X. This guarantees the uniqueness of limits of sequences.

Knill [10] was the first who extended the notion of contractive mapping in uniform
spaces. Later, a few mathematicians studied various types of fixed point theorems
in non-metrizable spaces (e.g. [1–4, 7, 12, 14, 16, 17]). Aamri and El Moutawakil [1]
introduced the concept of an A-distance and an E-distance to prove some common
fixed point theorems for contractive and expansive maps in uniform spaces. In 2004,
Ran and Reurings [13] obtained a generalization of Banach’s fixed point theorem for
continuous self-mappings on a complete metric space endowed with a partial order-
ing. Jachymski [9] noted that every partially ordered metric space (X, d,�) can be
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considered as a special case of a metric space (X, d) endowed with a directed graph G,
where V (G) = X and E(G) = {(x, y) ∈ X ×X : x � y}. This observation, motivated
a few mathematicians to extend and unify some fixed point theorems in metric spaces
endowed with a graph (e.g. [5, 8, 11,15]).

The aim of this paper is to obtain common fixed point theorems for two self-
mappings on a Hausdorff uniform space endowed with a graph when the space is
equipped with an A-distance. More precisely, we obtain a general result for existence
and uniqueness of common fixed points for two generalized contractive self-mappings.
Our main results generalize [1, Theorem 3.1] and lead to some applications in b-metric
spaces.

2. Preliminaries

In this section we introduce the concepts that we will use in the rest of the paper.
We start with the following definition.

Definition 2.1 ([1]). Let (X, υ) be a uniform space. A function ρ : X ×X → R≥0 is
called an A-distance, if for any U ∈ υ there exists δ > 0 such that if ρ(z, x) ≤ δ and
ρ(z, y) ≤ δ for some z ∈ X, then (x, y) ∈ U. If ρ also satisfies ρ(x, y) ≤ ρ(x, z)+ρ(z, y)
for each x, y, z ∈ X, then ρ is called an E-distance.

Example 2.2. Let (X, d) be a metric space, then the metric d is an E-distance for
the uniformity generated by the metric.

Example 2.3. Consider X = [0,+∞) with the uniformity generated by the Euclidean
metric. Then ρ(x, y) = max{x, y} is an E-distance defined on X.

The following examples show that there are A-distances which are not E-distances.

Example 2.4. Let X be a nonempty set and d : X ×X → R≥0 be such that
(i) d(x, y) = d(y, x), (ii) d(x, y) < ε and d(y, z) < ε implies that d(x, z) < 2ε.
Define υ = {Vε : ε > 0} in which Vε = {(x, y) ∈ X2 : d(x, y) < ε}. Then υ defines a
uniformity on X and d is an A-distance on (X, υ). For example if X = {a, b, c} and
d : X ×X → R≥0 is a symmetric function which is defined by d(a, b) = 3, d(b, c) = 2,
d(a, c) = 6, d(a, a) = d(b, b) = d(c, c) = 0, then it is easy to verify that conditions (i)
and (ii) hold, (X, υd) is a uniformity and d is an A-distance on X. Note that d(a, c) �
d(a, b) + d(b, c). Therefore d is not an E-distance.

Example 2.5. Let X be a nonempty set and d : X × X → [0,∞) for some s > 1
satisfies the following properties:
(i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x), (iii) d(x, z) ≤ s[d(x, y) + d(y, z)]
for all x, y, z ∈ X. Then (X, d) is called a b-metric space.

We may consider (X, d) as a Hausdorff uniform space with the uniformity υd
generated by Uε = {(x, y) : d(x, y) < ε} for ε > 0. Let U ∈ υd, then there is ε > 0
such that Uε ⊆ U . Let δ = ε

2s , then d(z, x) < δ and d(z, y) < δ imply that d(x, y) ≤
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s(d(x, z) + d(z, y)) < 2sδ = ε. Hence (x, y) ∈ Uε if d(z, x) < δ and d(z, y) < δ. This
means that d ia an A-distance. However, the triangle inequality is not true. Therefore
d is not an E-distance.

We also need the following notions.

Definition 2.6 ([1]). Let (X, υ) be a uniform space endowed with an A-distance ρ.

(i) A sequence {xn}n∈N in X is called ρ-Cauchy if limn,m→∞ ρ(xn, xm) = 0. Two
sequences {xn}n∈N and {yn}n∈N are said to be ρ-Cauchy equivalent if each of them
is ρ-Cauchy and lim

n→∞
ρ(xn, yn) = 0.

(ii) A sequence {xn}n∈N in X is said to be ρ-convergent to a point x ∈ X, if
lim
n→∞

ρ(xn, x) = 0.

(iii) X is called S-complete if every ρ-Cauchy sequence in X is ρ-convergent.

(iv) f : X → X is called ρ-continuous if lim
n→∞

ρ(xn, x) = 0 implies lim
n→∞

ρ(fxn, fx) = 0.

(v) For A ⊆ X define diam(A) = sup{ρ(x, y) : x, y ∈ A}. A is said to be ρ-bounded
if diam(A) <∞.

The following lemma implies uniqueness of limit of ρ-convergent sequences in
Hausdorff uniform spaces.

Lemma 2.7 ([14]). Let (X, υ) be a Hausdorff uniform space and ρ be an A-distance on
X. Let {xn} be an arbitrary sequence in X. Then for each x, y, z ∈ X, the following
conditions hold.

(a) If lim
n→∞

ρ(xn, y) = 0 and lim
n→∞

ρ(xn, z) = 0 then y = z. Especially if ρ(x, y) = 0

and ρ(x, z) = 0, then y=z.

(b) If lim
n,m→∞

ρ(xn, xm) = 0 for all m > n, then {xn} is a Cauchy sequence in (X, υ).

Let (X, υ) be a uniform space and G be a directed graph such that V (G) = X
and E(G) ⊇ ∆. We assume G has no parallel edges, so we can identify G by the pair
(V (G), E(G)). If G is such a graph, we say that X is endowed with the graph G.

By G−1 we denote the conversion of a graph G. That is V (G−1) = V (G) and

E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}. The letter G̃ denotes the undirected
graph obtained from G by ignoring the direction of edges. Under this convention
E(G̃) = E(G) ∪ E(G−1).

A graph G is called connected if there is a path between any two vertices of it.
G is weakly connected if G̃ is connected. If G is such that E(G) is symmetric and x
is a vertex in G, then the subgraph Gx consisting of all edges and vertices which are
contained in some path beginning at x is called the component of G containing x. In
this case V (Gx) = [x]G, where [x]G is the equivalence class of the following relation
R defined on V (G) by the rule: yRx if and only if there is a path in G from x to y.
Clearly Gx is connected.



B. Hosseini, A.K. Mirmostafaee 235

3. Results

We denote by Ψ the set of all functions ψ : R≥0 → R≥0, which are non-decreasing,
ψ(0) = 0, ψ(r) > 0 for each r > 0 and limn→∞ ψn(r) = 0. It follows from the
definition that ψ(r) < r for all ψ ∈ Ψ and r > 0.

In this section, we obtain some results on existence of common fixed points for
two generalized contractive mappings in uniform spaces endowed with an A-distance
ρ, which may not satisfy the triangle’s inequality. In order to achieve this goal, we
need to the following definition.

Definition 3.1. Let (X, υ) be a Hausdorff uniform space endowed with a graph G
and A-distance ρ, ψ ∈ Ψ and f, g : X → X. We say that f is a (ρ, ψ,G)-contraction
with respect to g if the following statements hold:
(i) For each x ∈ X there exists y ∈ [x]G̃ such that fx = gy.

(ii) f and g are G-invariant, i.e., (x, y) ∈ E(G) implies that (fx, fy), (gx, gy) ∈ E(G).

(iii) If x ∈ X and y ∈ [x]G̃, then ρ(fx, fy) ≤ ψ(ρ(gx, gy)).

Example 3.2. Let (X, d) be a b-metric space and let f : X → X be a mapping such
that for some 0 ≤ α < 1 satisfies d(fx, fy) ≤ αd(x, y) for all x, y ∈ X. Define graph
G0 with V (G0) = X and E(G0) = X × X and define function ψ : R≥0 → R≥0 by
ψ(r) = αr for each r ∈ R≥0. Then f is a (d, ψ,G0)-contraction with respect to g = I,
where I is a identity mapping on X.

Example 3.3. Let X = { 1
2n : n ∈ N} ∪ {−12n : n ∈ N} ∪ Z \ {0}. For each x, y ∈ X

define ρ(x, y) = |x − y|2. Then (X, ρ) satisfies conditions (i)–(iii) in Example 2.5 for
s = 2, so ρ is a b-metric on X. Thus ρ defines a Hausdorff uniformity υρ on X. By
Example 2.5, ρ is an A-distance on (X, υρ). Define graph G by V (G) = X and

E(G)=∆(X) ∪
{

(n+1, n) : n ∈ N
}
∪
{

(−n−1,−n) : n ∈ N
}
∪
{( 1

2n
,

1

2n+1

)
: n ∈ N

}
∪
{(−1

2n
,
−1

2n+1

)
: n ∈ N

}
∪
{

(x,−x) : x ∈ X
}
∪
{(
−1,−1

2

)
,
(

1,
1

2

)}
.

Then G is weakly connected. Let ψ : R≥0 → R≥0 be defined by ψ(r) = r
3 which

belongs to Ψ and let f, g : X → X be defined by

fx =


1

2n+1 if x = n for some n ∈ N
−1

2n+1 if x = −nfor some n ∈ N
1

2n+2 if x = 1
2n for some n ∈ N

−1
2n+2 if x = −1

2n for some n ∈ N

and gx =


1
2n if x = n for some n ∈ N
−1
2n if x = −nfor some n ∈ N
1

2n+1 if x = 1
2n for some n ∈ N

−1
2n+1 if x = −1

2n for some n ∈ N.
We show that f is a (ρ, ψ,G)-contraction with respect to g.
(i) G is weakly connected and

f(X) =
{
± 1

4
,±1

8
,± 1

16
, . . . ,± 1

2n
, . . .

}
⊆ g(X) =

{
± 1

2
,±1

4
,±1

8
,± 1

16
, . . . ,± 1

2n
, . . .

}
.

Thus for each x ∈ X there exists y ∈ [x]G̃ = X such that fx = gy.

(ii) For each (x, y) ∈ E(G) we have (fx, fy), (gx, gy) ∈ E(G).
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(iii) For each x ∈ X and y ∈ [x]G̃ = X, ρ(fxfy) ≤ ψ(ρ(gx, gy)).
Note that (X, υρ) is not S-complete. Since { 1

2n }n∈N is a ρ-Cauchy sequence in X and
there is no element in X to which { 1

2n }n∈N converges.

The following lemma is direct consequence of Definition 3.1.

Lemma 3.4. Let (X, υ) be a Hausdorff uniform space endowed with a graph G and
A-distance ρ. Assume that ψ : R≥0 → R≥0 belongs to Ψ and f, g : X → X. Suppose
that f is a (ρ, ψ,G)-contraction with respect to g. Then f is also (ρ, ψ,G−1) and

(ρ, ψ, G̃)-contraction with respect to g.

Remark 3.5. Let (X, υ) be a Hausdorff uniform space endowed with a graph G and
an A-distance ρ and let ψ ∈ Ψ. Assume that f, g : X → X be such that f is a
(ρ, ψ,G)-contraction with respect to g. Let x0 ∈ X. Definition 3.1(i) implies that
there exists x1 ∈ [x0]G̃ such that fx0 = gx1. Again there exists x2 ∈ [x1]G̃ = [x0]G̃
such that fx1 = gx2. By continuing this procedure, we can obtain a sequence {fxn}
such that for each n ∈ N, xn ∈ [x0]G̃ and fxn−1 = gxn.

In what follows, whenever x0 ∈ X, {fxn} will be the sequence described above.

Definition 3.6. Let f, g : X → X. The mapping f is called orbitally bounded with
respect to g at x0 ∈ X if for every choice xn ∈ [x0]G̃ with fxn−1 = gxn, the set
orb(x0, f, g) = {x0, fx0, fx1, · · · } is ρ-bounded. f is called orbitally bounded with
respect to g if it is orbitally bounded with respect to g at each point of X.

Example 3.7. Let X, ρ, G, f and g be as was described in Example 3.3. Trivially
X is not ρ-bounded. For each arbitrary element x0 ∈ X we have

diam(orb(x0, f, g)) = sup{ρ(fxi, fxj), ρ(x0, fxi) : i, j ∈ N} ≤ (x0)2.

Thus f is orbitally bounded with respect to g.

In order to state the main results of this section, we need some auxiliary results.

Lemma 3.8. Let (X, υ) be a Hausdorff uniform space endowed with a graph G and
A-distance ρ. Assume that ψ ∈ Ψ and f, g : X → X. Let f be a (ρ, ψ,G)-contraction
with respect to g and let f be orbitally bounded with respect to g at x0, y0 ∈ X. If
[x0]G̃ = [y0]G̃, then the corresponding sequences {fxn} and {fyn}, where fxn−1 =
gxn and fyn−1 = gyn for all n ∈ N, are ρ-Cauchy equivalent.

Proof. Since for each n ∈ N we have xn ∈ [xn−1]G̃ = [x0]G̃, it follows that

ρ(fxn, fxn+m) ≤ ψ(ρ(gxn, gxn+m)) = ψ(ρ(fxn91, fxn+m91)) ≤ ψ2(ρ(gxn91, gxn+m91))

= ψ2(ρ(fxn92, fxn+m92)) ≤ . . . ≤ ψn(ρ(fx0, fxm)) ≤ ψn(diam(orb(x, f, g))),

for all n,m ∈ N . Hence limn,m→∞ ρ(fxn, fxn+m) = 0. By Lemma 2.7(b), {fxn} is
a ρ-Cauchy sequence. Similarly, one can see that {fyn} is also ρ-Cauchy. Moreover,
since for each n ∈ N, [yn]G̃ = [xn]G̃ = [x]G̃ = [y]G̃, we have

ρ(fxn, fyn) ≤ ψ(ρ(gxn, gyn) = ψ(ρ(fxn91, fyn91)) ≤ ψ2(ρ(gxn91, gyn91))

= ψ2(ρ(fxn92, fyn92)) ≤ . . . ≤ ψn(ρ(fx, fy))
n→∞−−−−→ 0.

Therefore {fxn} and {fyn} are ρ-Cauchy equivalent. �
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The next result states that in a Hausdorff uniform space (X, υ), endowed with
a graph G and an A-distance ρ with ρ(x, x) = 0 for all x ∈ X, under certain cir-
cumstances, the condition of weak connectedness of G is equivalent to two other
conditions.

Lemma 3.9. Let (X, υ) be a Hausdorff uniform space endowed with a graph G and
A-distance ρ. Assume that ψ : R≥0 → R≥0 belongs to Ψ and f, g : X → X. Let f
be a (ρ, ψ,G)-contraction with respect to g. If ρ(x, x) = 0, for each x ∈ X, then the
following conditions are equivalent.
(a) G is weakly connected.

(b) If f is orbitally bounded with respect to g at x, y ∈ X, then the sequences {fxn}
and {fyn} are ρ-Cauchy equivalent, where x0 = x, y0 = y, fxn−1 = gxn, fyn−1 =
gyn, xn ∈ [xn−1]G̃ and yn ∈ [yn−1]G̃ for each n ∈ N.

(c) f and g have at most one common fixed point.

Proof. (a)⇒ (b) follows immediately from Lemma 3.8.
Let (b) hold. If a0 and b0 are distinct common fixed points of f and g, by

Definition 3.1(i), there exists a1 ∈ [a0]G̃ such that fa0 = ga1. If ρ(a0, fa1) 6= 0,
we have ρ(a0, fa1) = ρ(fa0, fa1) ≤ ψ(ρ(ga0, ga1)) = ψ(ρ(a0, a0)) = 0, which is a
contradiction. Therefore ρ(a0, fa1) = 0. By Lemma 2.7(a), fa1 = a0. Fix some
n ∈ N and let fai = a0 for i ≤ n. There is an+1 ∈ [an]G̃ such that fan =
gan+1. If fan+1 6= a0, then by Lemma 2.7(a), ρ(a0, fan+1) 6= 0. Therefore we have
ρ(a0, fan+1) = ρ(fa0, fan+1) ≤ ψ(ρ(ga0, gan+1)) = ψ(ρ(ga0, fan)) = 0, which is a
contradiction. Therefore fan = a0 for each n. Similarly, one can show that there is a
sequence {bn} such that bn+1 ∈ [bn]G̃ = [b0]G̃, fbn = gbn+1 and fbn = b0, for each
n ∈ N. By our assumption, {fan} and {fbn} are ρ-Cauchy equivalent. Since for each
n ∈ N, fan = a0 and fbn = b0, by Lemma 2.7(a), a0 = b0. Thus (c) holds.

If (c) is true but G is not weakly connected, i.e., G̃ is disconnected, then for some
a0 ∈ X, both sets [a0]G̃ and X \ [a0]G̃ are nonempty. Fix b0 ∈ X \ [a0]G̃ and define
f, g : X → X by

fx =

{
a0 if x ∈ [a0]G̃
b0 if x ∈ X \ [a0]G̃

and gx = x for all x ∈ X. Trivially fix{f, g} = {a0, b0}. It is enough to show that f
is a (ρ, ψ,G)-contraction with respect to g.
(i) Let x ∈ X. Then either x ∈ [a0]G̃ or x ∈ X \ [a0]G̃. Hence either fx = a0
or fx = b0. If fx = a0, then a0 ∈ [x]G̃ and fx = ga0 = a0. If fx = b0 then
b0, x ∈ X \ [a0]G̃, so [b0]G̃ = [x]G̃. Thus b0 ∈ [x]G̃ and fx = gb0 = b0.

(ii) Let (x, y) ∈ E(G), then either x, y ∈ [a0]G̃ or x, y ∈ X \ [a0]G̃. By the definition
either fx = fy = a0 or fx = fy = b0 in both cases (fx, fy) ∈ E(G), also (gx, gy) =
(x, y) ∈ E(G).

(iii) Fix x ∈ X and y ∈ [x]G̃. Then we have two following cases: 1) x, y ∈ [a0]G̃;
2) x, y ∈ X \ [a0]G̃. In the first case, we get ρ(fx, fy) = ρ(a0, a0) = 0 ≤ ψ(ρ(gx, gy)),
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and in the second case, we have ρ(fx, fy) = ρ(b0, b0) = 0 ≤ ψ(ρ(gx, gy)) for any
arbitrary ψ ∈ Ψ.

We also need the following result.

Lemma 3.10. Let (X, υ) be a Hausdorff uniform space endowed with a graph G and
an A-distance ρ. Let f and g be self-mappings on X and ψ ∈ Ψ be such that f is
a (ρ, ψ,G)-contraction with respect to g. Assume that fx0, gx0 ∈ [x0]G̃, for some

x0 ∈ X. Let G̃x0 be the component of G̃ containing x0. Then [x0]G̃ is both f and

g-invariant and f |[x0]G̃
is a (ρ, ψ, G̃x0

)-contraction with respect to g|[x0]G̃
.

Moreover, for arbitrary y0, z0 ∈ [x0]G̃, if f is orbitally bounded with respect to g
at y0 and z0, the sequences {fyn} and {fzn} are ρ-Cauchy equivalent, where fyn =
gyn−1 and fzn = gzn−1 for each n ≥ 1.

Proof. Let x ∈ [x0]G̃. We will show that fx, gx ∈ [x0]G̃. By our assumption, there

exists a path {ri}Ni=0 in G̃ from x0 to x, i.e., r0 = x0 , rN = x and (ri−1, ri) ∈ E(G̃)
for all 1 ≤ i ≤ N.

By Definition 3.1(ii), we get (fri−1, fri) ∈ E(G̃) for all 1 ≤ i ≤ N. It means that

{fri}Ni=0 is a path in G̃ from fr0 = fx0 to frN = fx. It follows that frN = fx ∈
[fx0]G̃ = [x0]G̃. Similarly one can see that gx ∈ [x0]G̃. Thus [x0]G̃ is both f and
g-invariant.

Now, we will show that f |[x0]G̃
is a (ρ, ψ, G̃x0

)-contraction with respect to g|[x0]G̃
.

(i) Let y0 ∈ [x0]G̃. Since f is a (ρ, ψ,G)-contraction with respect to g, by Defini-
tion 3.1(i), there exists y1 ∈ [y0]G̃ = [x0]G̃ such that fy0 = gy1.

(ii) (x, y) ∈ E(G̃x0
) implies (x, y) ∈ E(G̃). Thus (fx, fy), (gx, gy) ∈ E(G̃). In

order to show that (fx, fy), (gx, gy) ∈ E(G̃x0
), we note that if (x, y) ∈ E(G̃x0

), then
x, y ∈ [x0]G̃. By the above argument fx, fy, gx, gy ∈ [x0]G̃. Therefore (fx, fy) and

(gx, gy) are in E(G̃x0
).

(iii) Since E(G̃x0) ⊆ E(G̃) and f is a (ρ, ψ, G̃)-contraction with respect to g, we get
ρ(fx0, fy0) ≤ ψ(ρ(gx0, gy0)), for all y0 ∈ [x0]G̃.

Now, let y0, z0 ∈ [x0]G̃ be such that f is orbitally bounded with respect to g at
y0 and z0. Since [y0]G̃ = [z0]G̃, by Lemma 3.8, the sequences {fyn} and {fzn} are
ρ-Cauchy equivalent, where fyn = gyn−1 and fzn = gzn−1 for each n ≥ 1. �

Now, we are ready to state of the main result of this section which gives some
sufficient conditions for the existence and uniqueness of a common fixed point for self-
mappings f and g where f is a (ρ, ψ,G)-contraction with respect to g on a Hausdorff
uniform space (X, υ).

Theorem 3.11. Let (X, υ) be a Hausdorff uniform space endowed with a graph G
and an A-distance ρ, such that ρ(x, x) = 0 for all x ∈ X. Let ψ ∈ Ψ, X be S-complete
and the triple (X, ρ,G) have the following property.
(*) For any sequence {xn}n∈N in X with limn→∞ ρ(xn, x) = 0 and (xn, xn+1) ∈ E(G)
for each n ∈ N, there exists a subsequence {xkn}n∈N such that (xkn , x) ∈ E(G) for
each n ∈ N.
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Assume that f, g : X → X are commuting ρ-continuous mappings on X such that f
is a (ρ, ψ,G)-contraction with respect to g and f is orbitally bounded with respect to
g. Define Xf,g = {x0 ∈ X : fx0, gx0 ∈ [x0]G̃ and (gxn, fxn) ∈ E(G) for all n ∈ N},
where fxn−1 = gxn, xn ∈ [xn−1]G̃ for each n ∈ N. Then for each x ∈ X(f,g),
the mappings f |[x]G̃ and g|[x]G̃ have a unique common fixed point. In particular, if
X(f,g) 6= ∅ and G is weakly connected, then f and g have a unique common fixed point.

Proof. Let x0 ∈ X(f,g), then fx0, gx0 ∈ [x0]G̃, (gxn, fxn) = (fxn−1, fxn) ∈ E(G)
for each n ∈ N. Since f is orbitally bounded with respect to g at each point
of X, Lemma 3.8 implies that for all y0 ∈ [x0]G̃, the sequences {fxn}n∈N and
{fyn}n∈N are ρ-Cauchy equivalent where fxn−1 = gxn and fyn−1 = gyn, for each
n ∈ N. Since X is S-complete, there is u ∈ X such that limn→∞ ρ(fxn, u) = 0.
Since for each n ∈ N, fxn−1 = gxn, we get limn→∞ ρ(fxn, u) = limn→∞ ρ(gxn, u).
Therefore limn→∞ ρ(gxn, u) = 0. By our assumption f and g are ρ-continuous,
hence limn→∞ ρ(gfxn, gu) = limn→∞ ρ(fgxn, fu) = 0. Since fg = gf , we have
limn→∞ ρ(fgxn, fu) = limn→∞ ρ(fgxn, gu) = 0, and by Lemma 2.7(a), gu = fu. We
will show that fu is a common fixed point of f and g. Since fx0, gx0 ∈ [x0]G̃, by
Lemma 3.10, [x0]G̃ is both f and g-invariant. Moreover, for each n ∈ N, xn ∈ [x0]G̃,
therefore fxn ∈ [x0]G̃, for all n.

On the other hand limn→∞ ρ(fxn, u) = 0 and (fxn−1, fxn) ∈ E(G), for all n ∈ N.
Therefore by (*) there exists a subsequence {fxkn}n∈N such that (fxkn , u) ∈ E(G)
for all n ∈ N. Hence (ffxkn , fu) ∈ E(G) for all n ∈ N. Since for each n, ffxkn ∈
[x0]G̃, there is a finite sequence r0 = x0, r1, r2, . . . , rM−1 = ffxk1 , rM = fu such

that (ri−1, ri) ∈ E(G̃). It means fu ∈ [x0]G̃. By applying a similar argument, we
see that u ∈ [x0]G̃. Thus [fu]G̃ = [u]G̃. If ρ(fu, ffu) 6= 0, we have ρ(fu, ffu) ≤
ψ(ρ(gu, gfu)) = ψ(ρ(fu, ffu)) < ρ(fu, ffu) which is a contradiction. On the other
hand ρ(fu, fu) = 0, by Lemma 2.7(a). Hence ffu = fu and gfu = fgu = ffu = fu.

Therefore fu is a common fixed point of f and g. Since G̃x0 is weakly connected, by
Lemma 3.9, fu is a unique common fixed point of f and g.

If G is weakly connected then [x]G̃ = X. Therefore f = f |[x]G̃ and g = g|[x]G̃ have

a unique common fixed point. �

In 2004, Aamri and El Moutawakil [1] investigated the existence and uniqueness
of common fixed point for two self-mappings on a Hausdorff uniform space as follows.

Theorem 3.12 ([1, Theorems 3.1 and 3.2]). Let (X, υ) be a Hausdorff uniform spaces
and ρ be an A-distance on X. Suppose X is ρ-bounded and S-complete. Suppose that
ψ : R≥0 → R≥0 satisfies ψ(t) > 0 and limn→∞ ψn(t) = 0 for each t > 0. Let f and g
be commuting ρ-continuous or τ(υ)-continuous self mappings of X such that
(i) f(X) ⊆ g(X), (ii) ρ(f(x), f(y)) ≤ ψ(ρ(g(x), g(y))), for all x, y ∈ X.
Then f and g have a common fixed point. Moreover if ρ is an E-distance, then f and
g have a unique common fixed point.

Let X be ρ-bounded and f be a (ρ, ψ,G)-contraction with respect to g. Then
trivially f is orbitally bounded with respect to g. Thus Theorem 3.11 is a refinement
of Theorem 3.12.
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The following result shows that one can replace ρ-continuity of f by continuity of
the A-distance ρ in Theorem 3.11.

Theorem 3.13. Let (X, υ) be a Hausdorff uniform space endowed with a graph G
and a continuous A-distance ρ such that ρ(x, x) = 0 for all x ∈ X and ψ ∈ Ψ. Let X
be S-complete and the triple (X, ρ,G) have the property (*).

Assume that f and g are commuting mappings on X such that f is a (ρ, ψ,G)-
contraction with respect to g. Let g be ρ-continuous and let f be orbitally bounded
with respect to g. Define Xf,g = {x0 ∈ X : fx0, gx0 ∈ [x0]G̃ and (gxn, fxn) ∈
E(G) for all n ∈ N}, where fxn−1 = gxn, xn ∈ [xn−1]G̃ for each n ∈ N.

Then for each x ∈ X(f,g), the mappings f |[x]G̃ and g|[x]G̃ have a unique common
fixed point. In particular, if X(f,g) 6= ∅ and G is weakly connected, then f and g have
a unique common fixed point.

Proof. By applying the same argument as in the beginning of the proof of Theo-
rem 3.11, we can find a sequence {xn}n≥0 and u ∈ X such that fx0, gx0 ∈ [x0]G̃,
(gxn, fxn) ∈ E(G), fxn−1 = gxn for all n ≥ 1 and lim

n→∞
ρ(fxn, u) = lim

n→∞
ρ(gxn, u) = 0.

Since gx0 ∈ [x0]G̃ and for each n ≥ 0, (gxn, gxn+1) ∈ E(G), by (*) there exists
a subsequence {gxkn} of {gxn} such that (gxkn , u) ∈ E(G) for each n ∈ N. Hence
[gxkn ]G̃ = [u]G̃, for each n ∈ N. Thus

ρ(fgxkn , fu) ≤ ψ(ρ(ggxkn , gu)) ≤ ρ(ggxkn , gu), (1)

Since limn→∞ ρ(gxkn , u) = 0 and g is ρ-continuous, Definition 2.6(iv) implies that
limn→∞ ρ(ggxkn , gu) = 0. By (1) we get limn→∞ ρ(fgxkn , fu) = 0.

On the other hand, ρ-continuity of g implies that limn→∞ ρ(gfxn, gu) = 0. Since
f and g are commuting, limn→∞ ρ(fgxn, gu) = 0. By Lemma 2.7(a), fu = gu.

The equality [fxn]G̃ = [u]G̃, for each n ∈ N together with continuity of ρ and
ρ-continuity of g implies that

lim
n→∞

ρ(ffxn, fu) ≤ lim
n→∞

ψ(ρ(gfxn, gu)) ≤ lim
n→∞

ρ(gfxn, gu) = ρ(gu, gu) = 0.

It means that the sequence {ffxn} is ρ-convergent to fu. The rest of the proof is
similar to the end part of the proof of Theorem 3.11. �

Corollary 3.14. Let (X, d) be a complete b-metric space endowed with a graph G
with the following property.
(**) For any sequence {xn}n∈N in X with lim

n→∞
d(xn, x) = 0 and (xn, xn+1) ∈ E(G)

for each n ∈ N, there exists a subsequence {xkn}n∈N such that (xkn , x) ∈ E(G) for
each n ∈ N.
Let d be continuous, ψ ∈ Ψ and f, g : X → X be commuting mappings such that g is
continuous and f is orbitally bounded with respect to g and the following conditions
holds.
(i) For each x ∈ X there exists y ∈ [x]G̃ such that fx = gy.

(ii) For each x, y ∈ X, if (x, y) ∈ E(G) then (fx, fy), (gx, gy) ∈ E(G).

(iii) For each x ∈ X and each y ∈ [x]G̃, we have d(fx, fy) ≤ ψ(d(gx, gy)).
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Define Xf,g = {x0 ∈ X : fx0, gx0 ∈ [x0]G̃ and (gxn, fxn) ∈ E(G) for all n ∈ N},
where fxn91 = gxn, xn ∈ [xn91]G̃ for each n ∈ N. The mappings f |[x]G̃ and g|[x]G̃
have a unique common fixed point forfor each x ∈ X(f,g). In particular, if X(f,g) 6= ∅
and G is weakly connected, then f and g have a unique common fixed point.

Proof. By Example 2.5, d generates a Hausdorff uniformity on X and, with respect to
it, d is an A-distance for X. Conditions (i)-(iii) imply that f is a (d, ψ,G)-contraction
with respect to g. Thus the result follows from Theorem 3.13. �

Example 3.15. Let X =
{

1
n : n ≥ 1

}
∪
{
−1
n : n ≥ 1

}
∪ {0}. For x, y ∈ X define

d(x, y) = |x − y|2. Then d is a b-metric on X. Indeed (X, d) satisfies conditions (1)-
(3) in Example 2.5 for s = 2. Thus d defines a Hausdorff uniformity υd on X. By
Example 2.5, d is an A-distance on (X, υd).

Let {xn} be a Cauchy sequence in X. It means that for each ε > 0 there exists
N0 ∈ N such that m,n > N0 implies that d(xm, xn) < ε. Therefore either xn = x, for
some x ∈ X and for large enough n, or xn → 0 as n→∞. Thus X is complete.

Define graph G, by V (G) = X and

E(G) = ∆(X) ∪
{(1

2
,

1

3

)
,
(−1

2
,
−1

3

)}
∪
{( 1

n
,

1

n+ 1

)
: n ≥ 4

}
∪
{(−1

n
,
−1

n+ 1

)
: n ≥ 4

}
∪
{( 1

n
, 0
)

: n ≥ 1
}
∪
{(−1

n
, 0
)

: n ≥ 1
}
.

Then G is weakly connected. Assume that ψ : R≥0 → R≥0 is defined by ψ(r) = r
2

which belongs to Ψ and let f, g : X → X be defined by

fx =


1
3 if x = 1
−1
3 if x = −1

0 if x 6= 1,−1

and gx =


x if x = 0, 1,−1, 13 ,

−1
3

1
1+n if x = 1

n , n > 1, n 6= 3
−1
1+n if x = −1

n , n > 1, n 6= 3

.

Then fgx = gfx for all x ∈ X, and f(X)=
{

0, 13 ,
−1
3

}
⊆g(X)=

{
0,±1,± 1

3 ,±
1
5 ,±

1
6 , . . .

}
.

Moreover, f is orbitally bounded with respect to g at each point of X.
Assume that {xn} is a sequence in X such that limn→∞ d(xn, x) = 0 for some

x ∈ X. By the definition of d, we get limn→∞ |xn − x|2 = 0.
Hence limn→∞ |xn−x| = 0. It means for each ε > 0 there exists Nε ∈ N such that

n ≥ Nε implies that |xn − x| < ε. Hence either xn = x for large enough n or x = 0.
In both cases we get limn→∞ d(gxn, gx) = 0, thus g is continuous.

Also, the triple (X, d,G) satisfies the property (**) of Corollary 3.14. One can
easily check that the following conditions hold.
(i) G is weakly connected and f(X) ⊆ g(X). Thus for each x ∈ X there exists
y ∈ [x]G̃ = X such that fx = gy.

(ii) For each (x, y) ∈ E(G) we have (fx, fy), (gx, gy) ∈ E(G).

(iii) For each x ∈ X and y ∈ [x]G̃ = X, d(fxfy) ≤ ψ(d(gx, gy)).
Therefore f is (ρ, ψ,G)-contraction with respect to g. Moreover 0 ∈ Xf,g 6= ∅. Since
G is weakly connected [0]G̃ = X. By Corollary 3.14, f and g have a unique common
fixed point on [0]G̃ = X, i.e. x = 0.



242 Common fixed points of generalized contractive mappings

Acknowledgement. The authors would like to thank the anonymous reviewers
for their careful reading of the manuscript and useful suggestions.

References

[1] M. Aamri, D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive
maps in uniform spaces, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 20(1) (2004), 83–91.
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