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Abstract. The concept prime ideals and corresponding radicals play an important
role in the study of nearrings. In this paper, we define different prime strong ideals of
a seminearring S and study corresponding prime radicals. In particular, we prove that
Pe = {S|Pe(S) = S} is a Kurosh-Amitsur radical class where Pe(S) denotes the intersection
of equiprime strong ideals of S.

1. Introduction

A non-empty set S is said to be a right (left) seminearring, if S is a semigroup with
respect to the addition (+), multiplication (·) and satisfies right (left) distributive law.
A natural example of a seminearring is the set of all mappings from a semigroup to it-
self with pointwise addition and composition of mappings. Hoorn and Rootsellar [20]
defined an ideal of a seminearring as the kernel of a seminearring homomorphism. By
using this concept, Javed [1, 2] discussed different types of prime ideals in seminear-
rings. Booth, Gronewald and Veldsman [6] defined the concept of equiprime ideal of
a nearring and proved that the equiprime radical leads to a Kurosh-Amitsur radical
class in nearings. Later, Veldsman [22] investigated equiprimeness of well-known ex-
amples of nearrings and established its relation with different types of primeness in
nearrings. Groenewald [11] defined completely prime radicals in nearrings and gave
an element-wise characterization of these radicals. Birkenmeier, Heatherly and Lee [5]
showed the interrelationship between different types of prime radicals and prime ide-
als in nearrings. Anderson, Kaarli and Weigandt [3] discussed radicals and semisimple
classes in Ω-groups and in nearrings. Rao and Prasad [19] introduced the concept of
an R-group of type 5/2 in nearrings. Further, they defined the Jacobson radical of
type 5/2 (J5/2) and proved that J5/2 is an ideal-heriditary Kurosh-Amitsur radical in
the class of zero-symmetric nearrings.
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The present paper aims to extend the concept of radicals to seminearrings. Kop-
pula, Kedukodi and Kuncham [13] defined the concept of strong ideal of a seminear-
ring and proved the classical isomorphism theorems in seminearrings. In this paper,
we define various prime ideals of seminearrings and obtain the interrelations among
them. Then we define various prime radicals in seminearings and prove that if Pe(S)
is an equiprime radical, then Pe is a Kurosh-Amitsur radical class. Section 2 of this
paper contains basic definitions and results related to rings, nearrings, seminearrings
and radicals. Section 3 contains definitions and examples of various prime ideals in
seminearrings. Section 4 establishes a Kurosh-Amitsur radical class for seminearrings.

2. Preliminaries

Definition 2.1 ([20]). A right seminearring is a system (S,+, ·) such that
(i) (S,+) is a semigroup. (ii) (S, ·) is a semigroup.

(iii) (s1 + s2)s3 = s1s3 + s2s3 for all s1, s2, s3 ∈ S.

(iv) There exists 0 ∈ S such that 0 + s = s+ 0 = s for all s ∈ S. (v) 0s = 0 for all
s ∈ S.
In this paper, all seminearrings are right seminearrings.

Definition 2.2 ([13]). A non-empty subset I of a seminearring S is said to be a
strong ideal of S, if I satisfies the following conditions:
(i) For x, y ∈ I, x+ y ∈ I (I + I ⊆ I). (ii) For s ∈ S, s+ I ⊆ I + s.

(iii) If x ≡I 0 then x ∈ I. (iv) Is ⊆ I for all s ∈ S (right strong ideal).

(v) s(I + s′) ⊆ I + ss′ for all s, s′ ∈ S (left strong ideal).

Proposition 2.3 ([13]). If I is a strong ideal of a seminearring S then the canonical
mapping π : S → S/I is a seminearring strong onto homomorphism. Conversely,
if h : S → R is a seminearring strong onto homomorphism then kerh is a strong
ideal of S.

Theorem 2.4 ([13]). (i) If I and J are strong ideals of a seminearring S then I ∩ J
is a strong ideal of J and (I + J)/I ∼= J/(I ∩ J).

(ii) If I and J are strong ideals of a seminearring S and I ⊆ J then S/J ∼= (S/I)/(J/I).

The results related to prime ideals in semirings can be found in Bataineh, Malas [4]
and Dubey, Sarohe [8].

Definition 2.5 ([14]). Sc = {s ∈ S | ss′ = s, for all s′ ∈ S} is called a constant
part of a seminearring S. S0 = {s ∈ S | s0 = 0} is called a zero-symmetric part of a
seminearring S

Definition 2.6 ([15]). A non-empty subset M of a semigroup (S,+) is said to be a
subsemigroup, if x, y ∈M implies x+ y ∈M .
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Definition 2.7 ([14]). An additive subsemigroup M of a seminearing S is said to be
a subseminearring, if 0 ∈M and MM ⊆M .

Definition 2.8 ([18]). A subseminearring M of a seminearing S is called invariant
if MS ⊆M and SM ⊆M .

Definition 2.9 ([10]). Let S be a hemiring and I be a non-empty subset of S. Then
I is said to be subtractive, if x ∈ I and x+ y ∈ I imply y ∈ I.

Definition 2.10 ([9]). A class of rings ρ is said to be hereditary, if R ∈ ρ and A is
an ideal of R imply A ∈ ρ. A class of rings ρ is said to be regular, if 0 6= A is an ideal
of S and S ∈ ρ imply that A has a non zero homomorphic image in ρ.

Note that hereditary implies regularity.

Definition 2.11 ([9]). An ideal I of a nearring N is said to be essential if I ∩E 6= 0
for all ideals 0 6= E of N ; it is denoted by I / ·N .

Definition 2.12 ([6]). A class µ of nearrings is called closed under essential extensions
(resp. essential left invariant extensions) if I ∈ µ, I / ·N (resp. I is an essential ideal
of N which is left invariant) imply that N ∈ µ.

An ideal I of a nearring N is called equiprime if a ∈ N/I, x, y ∈ N and arx−ary ∈
I for all r ∈ N imply x− y ∈ I.

For the results related to lattices, we refer to [12] and for boolean nearrings we
refer to [17].

Definition 2.13 ([6]). A class σ of seminearrings is said to satisfy condition (F1) if
for each strong ideal B of A, where A is a left invariant strong ideal of S, such that
A/B ∈ σ, B is a strong ideal of S.

Definition 2.14 ([9]). A seminearring S is a subdirect sum S =
∑

Subdirect

(Sλ | λ ∈ Λ), if

(i) S is a subseminearring of the direct product A =
∏

(Sλ | λ ∈ Λ);

(ii) πλ(S) = Sλ for every projection πλ : A→ Sλ, λ ∈ Λ.

Definition 2.15 ([21]). Let σ be a class of seminearrings and µ be a subclass of σ.
Then the subdirect closure of a class µ is µ = {S ∈ σ | S is a subdirect sum of the
seminearrings from µ}.

The class of seminearrings σ is said to be C-hereditary, if S ∈ σ and T is a left
invariant ideal of S imply T ∈ σ.

We refer to Kedukodi, Kuncham, Jagadeesha [16] for the related results in near-
rings.
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3. Prime ideals in seminearrings

Definition 3.1. A strong ideal I of a seminearring S is said to be equiprime strong
if a, x, y ∈ S with asx ≡I asy, ∀s ∈ S implies that either a ∈ I or x ≡I y.

A strong ideal I of a seminearring S is said to be 3-prime strong if a, b ∈ S with
asb ∈ I ∀s ∈ S implies that either a ∈ I or b ∈ I.

Example 3.2. Let S = {0, a, b, c, d}, and + and · be defined as follows.

+ 0 a b c d
0 0 a b c d
a a a b d d
b b b b b b
c c d d c d
d d d d d d

. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b d d
c 0 a b d d
d 0 a b d d

Then S is a seminearring with respect to + and ·, and I = {0, a} is an equiprime
and 3-prime strong ideal of S. The equivalence classes with respect to I are a/I =
0/I = {0, a}, b/I = {b} and c/I = {c, d}.

Example 3.3. Let S = {0, a, b, c}, and + and · be defined as follows:

+ 0 a b c
0 0 a b c
a a a a a
b b a b a
c c a a c

. 0 a b c
0 0 0 0 0
a a a a a
b 0 a b c
c a 0 c b

Then S is a seminearring with respect to + and ·, and I = {0} is a strong ideal
of S. The equivalence classes with respect to I are 0/I = {0}, a/I = {a}, b/I = {b}
and c/I = {c}. Note that I is a 3-prime strong ideal. However, I is not an equiprime
strong ideal, because ar0 ≡I ara, ∀r ∈ S implies a /∈ I and 0 6≡I a.

Proposition 3.4. Let S be a seminearring and I be a strong ideal of S. Then I is
subtractive if and only if x ≡I 0 implies x ∈ I, ∀x ∈ S.

Proof. Let I be subtractive. Take x ∈ S such that x ≡I 0. Then there exist i1, i2 ∈ I
such that i1 + x = i2 + 0. This implies i1 + x ∈ I. As I is subtractive, we get x ∈ I.
Conversely, let i ∈ I and i+ x ∈ I. Then there exists i3 ∈ I such that i+ x = i3 + 0.
This implies x ≡I 0. Hence by hypothesis, we get x ∈ I. Thus I is subtractive. �

Proposition 3.5. If I is an equiprime strong ideal of S then Sc ⊆ I.

Proof. Let s ∈ Sc. Then ss′ = s, ∀s′ ∈ S. Now, take x ∈ S. Then 0 + ss′x =
0 + ss′0, ∀s′ ∈ S. This implies ss′x ≡I ss′0, ∀s′ ∈ S. As I is equiprime, we get
s ∈ I or x ≡I 0. This implies s ∈ I or x ∈ I. If I is a proper strong ideal then x ∈ I,
a contradiction. Hence s ∈ I. Thus Sc ⊆ I. �
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Theorem 3.6. Every equiprime strong ideal of a seminearring S is a 3-prime strong
ideal.

Proof. Let I be an equiprime strong ideal of a seminearring S and let a, b ∈ S, with
asb ∈ I, ∀s ∈ S. If a ∈ I then I is 3-prime strong. Suppose a /∈ I. As Sc ⊆ I, we have
as0 ∈ I, ∀s ∈ S. Now, fix s ∈ S. Then asb ∈ I + as0. This implies that asb ≡I as0.
As s ∈ S is arbitrary, we have asb ≡I as0 ∀s ∈ S. Since I is an equiprime strong ideal
of S and a /∈ I, we get b ≡I 0. This implies b ∈ I. Hence, I is a 3-prime strong. �

If {0} is an equiprime (3-prime) strong ideal of S, then S is said to be an equiprime
(3-prime) seminearring.

Example 3.7 ([22]). Let (S,+) be a cyclic group of prime order p (≥ 3). Define

multiplication on S as follows. For x, y ∈ S, xy =

{
x if y 6= 0

0 if y = 0.
. Then (S,+, ·) is a

3-prime seminearring. We give an example to show that, in general, S need not be
an equiprime seminearring.

Let S = Z3 with + and · defined as follows.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 1
2 0 2 2

Then S is a seminearring and I = {0} is a strong ideal of S. However I is not
an equiprime strong ideal, because 1s1 = 1s2, ∀s ∈ S, but 1 6= 0 and 1 6= 2.

Definition 3.8. A seminearring S is said to be equiprime if
(i) For all 0 6= x, y ∈ S, xSy 6= (0).

(ii) If x, y ∈ S and (0) 6= T is any invariant subsemigroup of S then tx = ty for all
t ∈ T implies x = y.
If S/I is an equiprime seminearring then the strong ideal I is called an equiprime
strong ideal of S.

Lemma 3.9. Let S be a seminearring. Then the following are equivalent.
(i) S is equiprime.

(ii) If x, y, 0 6= a ∈ S with asx = asy, ∀s ∈ S then x = y.

Proof. (i)⇒(ii) Let x, y, 0 6= a ∈ S with asx = asy, ∀s ∈ S; we will show that x = y.
As a 6= 0 and S is equiprime, we get aSa 6= (0). This implies aS 6= (0). Now, define
BK inductively as follows. Let B0 = aS and assume that Bk−1 has been defined.
Let BK = {Σiui : ui ∈ BK−1} ∪ {s′u : s′ ∈ S, u ∈ BK−1}. Then B =

⋃
BK is an

invariant subsemigroup of (S,+). Now, we will prove that ux = uy, ∀u ∈ B = ∪BK
by taking induction on k. Take k = 0 and u ∈ B0. Then there exists s ∈ S such
that u = as. Hence ux = asx = asy = uy, ∀u ∈ B0. Now, take k = 1 and u ∈ B1.
Then ux =

∑
i uix [ui ∈ B0] =

∑
i uiy = uy. Let u0 ∈ B0. Then ux = (su0)x
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= s(u0x) = s(u0y) = (su0)y = uy. Hence ux = uy, ∀u ∈ B1. Similarly, for
any k, ux = uy, ∀ u ∈ BK . Since S is equiprime and (0) 6= B is an invariant
subsemigroup of S, ux = uy, ∀u ∈ B then by (i), we get x = y.

(ii)⇒(i) First, we will show that (ii) implies that S is zero-symmetric. That is,
we have to prove that s′0 = 0, ∀s′ ∈ S. Assume that s′0 6= 0. We have (s′0)S(s′0) =
(s′0)S0. Then by (ii) we get s′0 = 0, which is a contradiction. Therefore S is zero-
symmetric.

Now, consider xSy = (0) with x 6= 0. We will prove that y = 0. As S is zero-
symmetric, we have xs′y = 0 = xs′0, ∀s′ ∈ S. Then, by (ii), we get y = 0.

Let (0) 6= B be an invariant subsemigroup of S and suppose that x, y ∈ S with
ax = ay ∀ a ∈ B. Assume that 0 6= a ∈ B. As B is an invariant subsemigroup of S,
we have as ∈ B, ∀s ∈ S and asx = asy, ∀s ∈ S. Hence, by (ii), we get x = y. �

Definition 3.10. A seminearring S is said to satisfy the condition (V1), if I and J
are strong ideals of S implies that (I ∩ J) + x = (I + x) ∩ (J + x), ∀ x ∈ S.

Proposition 3.11 ([13]). Let S be a seminearring and I, J be strong ideals of S. If
S satisfies the condition V1 then I ∩ J is a strong ideal of S.

In the sequel, we assume that seminearrings satisfy the condition V1.

4. Kurosh-Amitsur prime radical for seminearrings

Definition 4.1 ( [7]). A class ρ of seminearrings is said to be a Kurosh-Amitsur
radical class if
(i) ρ is homomorphically closed.

(ii) For every seminearring S, the sum ρ(S) = Σ(I / S | I ∈ ρ) is in ρ.

(iii) ρ(S/ρ(S)) = 0 for every seminearring S.

ρ(S) is called a ρ-radical of S.

Proposition 4.2 ([9]). If the conditions (i) and (ii) of Definition 4.1 are satisfied on
a class ρ of seminearrings, then the condition (iii) is equivalent to the following one.
(iii’) If I is a strong ideal of the seminearring S and I, S/I ∈ ρ then S ∈ ρ.

If ρ satisfies (iii’) then ρ is said to be closed under extensions.

Proposition 4.3 ([9]). If the conditions (i) and (iii’) are satisfied on a class ρ of
seminearrings, then the condition (ii) is equivalent to the following one.
(ii’) If I1 ⊆ I2 ⊆ · · · ⊆ Iα ⊆ · · · is an ascending chain of strong ideals of a seminear-
ring S and if each Iα is in ρ then

⋃
Iα is in ρ.

If ρ satisfies (ii’) then we say that ρ has the inductive property.

Theorem 4.4 ([9]). A class ρ of seminearrings is a radical class if and only if
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(i) ρ is homomorphically closed, (ii) ρ has the inductive property,

(iii) ρ is closed under extensions.

Theorem 4.5 ([9]). Let ρ be a class of seminearrings. Then the following conditions
are equivalent:
(A) ρ is a radical class.

(B1) If S ∈ ρ then for every onto homomorphism S → T 6= 0 there exists an ideal U
of T such that 0 6= U ∈ ρ.

(B2) If S is a seminearring and for every onto homomorphism S → T 6= 0 there is
an ideal U of T such that 0 6= U ∈ ρ then S ∈ ρ.

(C) ρ satisfies (B1), is closed under extensions and has the inductive property.

Theorem 4.6. If ρ is a regular class of seminearrings then the class Uρ = {S | S
has no nonzero homomorphic image in ρ} is a radical class.

Proof. We will prove that Uρ satisfies the conditions (B1) and (B2) of Theorem 4.5.
Suppose S has a nonzero homomorphic image T and T has no nonzero ideal in Uρ.
Then T has a nonzero homomorphic image R in ρ. This implies that S has a nonzero
homomorphic image in ρ. That is, S /∈ Uρ. Hence Uρ satisfies (B1).

Now, assume that S /∈ Uρ. Then S has a nonzero homomorphic image R in ρ.
Let 0 6= K be an ideal of R. As ρ is regular, K has a nonzero homomorphic image in
ρ. This implies K /∈ Uρ. Hence Uρ satisfies (B2). Then by Theorem 4.5, we get Uρ
is a radical class. �

Definition 4.7 ([9]). A Hoehnke radical ρ is a mapping which assigns to each semi-
nearring S an ideal ρ(S) subject to
(i) h(ρ(S)) ⊆ ρ(h(S)), for every homomorphism h : S → h(S),

(ii) ρ(S/ρ(S)) = 0 for every seminearring S.

A Hoehnke radical ρ is:

(iii) complete, if T is an ideal of S and ρ(T ) = T imply T ⊆ ρ(S);

(iv) idempotent, if ρ(ρ(S)) = ρ(S) for every seminearring S.

Theorem 4.8. If ρ is a Kurosh-Amitsur radical class then ρ is a complete, idempotent
Hoehnke radical. Conversely, if ρ is a complete, idempotent Hoehnke radical, then
there exists a Kurosh-Amitsur radical class µ such that µ = {S | ρ(S) = S} with
ρ(S) = µ(S) for every seminearring S.

Proof. Let ρ be a Kurosh-Amitsur radical class and h : S → h(S) be a homomorphism.
(i) As ρ is a KA-radical class, we have, from the Definition 4.1, taht ρ(S) ∈ ρ and
hence h(ρ(S)) ∈ ρ. Since h is an onto homomorphism and ρ(S) is an ideal of S, we
have that h(ρ(S)) is an ideal of h(S) and hence h(ρ(S)) ⊆ ρ(h(S)).

(ii) Clearly holds from the Definition 4.1.
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(iii) Let T be an ideal of S and ρ(T ) = T . Then we have T = ρ(T ) ∈ ρ and hence
T ⊆ ρ(S).

(iv) We know that ρ(S) is an ideal of S and ρ(S) ∈ ρ, hence ρ(ρ(S)) = ρ(S).
Now, we assume that ρ is a complete, idempotent Hoehnke radical. Define a class µ
as µ = {S | ρ(S) = S}. Let S ∈ µ and h : S → S′ be an onto homomorphism. Then
S′ = h(S) = h(ρ(S)) ⊆ ρ(h(S)) = ρ(S′). Hence S′ ∈ µ. Now, µ(S) =

∑
(T / S | T ∈

µ) =
∑

(T / S | ρ(T ) = T ). As T ⊆ µ(S) and ρ(T ) = T , by completeness we have
T ⊆ ρ(µ(S)). This implies µ(S) ⊆ ρ(µ(S)). Hence we get µ(S) = ρ(µ(S)). This gives
µ(S) ∈ µ.

As µ(S) = ρ(µ(S)), by completeness we get µ(S) ⊆ ρ(S) and by idempotence
we have ρ(S) = ρ(ρ(S)). This implies ρ(S) ∈ µ. That is, ρ(S) ⊆ µ(S), hence
ρ(S) = µ(S). Now, from Definition 4.7 (ii), we get µ(S/µ(S)) = ρ(S/ρ(S)) = 0.
Thus, µ is a KA-radical class with µ(S) = ρ(S). �

Theorem 4.9 ([9]). A seminearring S is a subdirect sum of the seminearrings Sλ, λ ∈
Λ if and only if there exist strong ideals Tλ, λ ∈ Λ, in S such that

⋂
Tλ = 0 and

Sλ = S/Tλ.

Definition 4.10. Let µ be a class of seminearrings. Then µ is said to be a semisimple
class
(i) If S ∈ µ, then every nonzero strong ideal T of S has a nonzero homomorphic
image in µ (regular).

(ii) If for any seminearring S and for every nonzero strong ideal T of S, there exists
an onto homomorphism T → U 6= 0 such that U ∈ µ, then S ∈ µ.

In the following, µ denotes a class of seminearrings.

Proposition 4.11. If µ is a radical class, then Sµ = {B | µ(B) = 0} is a semisimple
class.

Proof. Let B ∈ Sµ. Then µ(B) = 0. Now assume that T is a nonzero strong ideal
of B and T has no nonzero homomorphic image in Sµ. As µ is a radical class, we
have µ(T/µ(T )) = 0. This gives T/µ(T ) ∈ Sµ. This implies T/µ(T ) = 0. Then
T = µ(T ) ∈ µ. As T ∈ µ and T is a strong ideal of B, we get 0 6= T ⊆ µ(B), which
is a contradiction. Hence T has a nonzero homomorphic image in Sµ.

Now, assume that B /∈ Sµ. Then µ(B) 6= 0. As µ is homomorphically closed,
there is no nonzero homomorphic image of µ(B) in Sµ. Thus, Sµ is a semisimple
class. �

Theorem 4.12. If µ is a semisimple class, then SUµ = µ.

Proof. Let B ∈ µ. Then every nonzero ideal of B has a nonzero homomorphic image
in µ. This implies B has no nonzero strong ideals in Uµ. That is, Uµ(B) = 0. Then
B ∈ SUµ and hence µ ⊆ SUµ.

Now, take B ∈ SUµ. Then Uµ(B) = 0. This implies no nonzero strong ideal of
B is in Uµ. That is, no nonzero strong ideal of B has a nonzero homomorphic image
in µ. Hence B ∈ µ and, thus, SUµ = µ. �
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For the sake of completeness, we give proof of the following proposition.

Proposition 4.13. If µ is a semisimple class, then µ is closed under subdirect sums.

Proof. Let Sλ ∈ µ, λ ∈ Λ. Then we will prove that
∑
Subdirect Sλ ∈ µ. Take T is a

nonzero ideal of
∑
Subdirect Sλ. Then there exists an index λ such that the restriction

of the homomorphism φλ :
∑
Subdirect Sλ → Sλ to T is nonzero. That is, φλ(T ) 6= 0

and it is an ideal of Sλ. As µ is regular, φλ(T ) has a nonzero homomorphic image U
in µ. This implies U is a nonzero homomorphic image of T and U ∈ µ, hence we get∑
Subdirect Sλ ∈ µ. �

Definition 4.14. The class of seminearrings µ is said to satisfy the coinductive prop-
erty, if for any descending chain of strong ideals T1 ⊇ T2 ⊇ · · ·Tλ ⊇ · · · of a semin-
earring S with S/Tλ ∈ µ, ∀λ, S/ ∩ Tλ ∈ µ holds.

Proposition 4.15 ([9]). If µ is a semisimple class, then µ has the coinductive property.

Proof. Since S/ ∩ Tλ =
∑
Subdirect Sλ ∈ µ, thus µ has the coinductive property. �

Proposition 4.16. If µ is a semisimple class, then µ is closed under extensions.

Proof. Let T and B/T be in µ. Then we will show that B is in µ. As µ is regular, we
have Uµ is a radical class. Then Uµ(B) ∈ Uµ. As Uµ(B) → Uµ(B)/(Uµ(B) ∩
T ) is an onto homomorphism, we get Uµ(B)/(Uµ(B) ∩ T ) ∈ Uµ. This implies
Uµ(B)/(Uµ(B)∩T ) ∼= (Uµ(B) +T )/T ∈ Uµ. Since (Uµ(B) +T )/T is a strong ideal
of B/T ∈ µ = SUµ, then (Uµ(B) +T )/T ∈ SUµ and we have (Uµ(B) +T )/T ∈ Uµ.
Hence Uµ((Uµ(B) + T )/T ) = (Uµ(B) + T )/T = 0 ⇒ Uµ(B) ⊆ T . As Uµ(B) is a
strong ideal of T and Uµ(B) ∈ Uµ, we get Uµ(B) ⊆ Uµ(T ). As T ∈ µ = SUµ, we
get Uµ(T ) = 0. This implies Uµ(B) = 0. Hence B ∈ SUµ = µ. �

Definition 4.17. Let S be a seminearing and µ be a class of seminearrings. Then
(S)µ =

⋂
{Tλ / S | S/Tλ ∈ µ}.

Proposition 4.18 ([9]). If µ is a regular class, closed under extensions and subdirect
sums then the following conditions are equivalent.
(i) Uµ(S) = (S)µ for every seminearring S,

(ii) ((S)µ)µ = (S)µ for every seminearring S,

(iii) ((S)µ)µ is a strong ideal of S for every seminearring S.

Proposition 4.19. If µ is any semisimple class, then Uµ(S) = (S)µ for any semin-
earring S.

Proof. As µ is regular, we have Uµ is a radical class. Then Uµ(S/Uµ(S)) = 0. This
implies S/Uµ(S) ∈ SUµ = µ. Hence (S)µ ⊆ Uµ(S). As each S/Tλ ∈ µ and µ is closed
under subdirect sums, we get S/(S)µ = S/ ∩ Tλ ∼=

∑
Subdirect S/Tλ ∈ µ. Suppose

we assume that Uµ(S) * (S)µ. Then Uµ(S)/(S)µ is a nonzero strong ideal of the
seminearring S/(S)µ ∈ µ. As Uµ(S) → Uµ(S)/(S)µ is an onto homomorphism, we
get Uµ(S)/(S)µ ∈ Uµ and Uµ(S)/(S)µ ⊆ Uµ(S/(S)µ) = 0, which is a contradiction.
Hence Uµ(S) = (S)µ. �
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Theorem 4.20 ([9]). The following conditions are equivalent.

(i) µ is a semisimple class.

(ii) µ is regular, closed under subdirect sums, closed under extensions and ((S)µ)µ/S
for every seminearring S.

(iii) µ is regular, closed under subdirect sums and ((S)µ)µ = (S)µ for every semi-
nearring S.

(iv) µ is regular, closed under extensions, has the coinductive property and satisfies:

? If T / S and T is minimal with respect to S/T ∈ µ and if U is a strong ideal of
T and U is minimal with respect to T/U ∈ µ then U is a strong ideal of S.

Theorem 4.21 ([21]). Let µ0 be a class of zerosymmetric seminearrings. If µ0 is
regular, satisfies condition (F1) and is closed under essential left invariant extensions,
then Uµ0 is a C-hereditary radical class in the variety of all seminearrings, SUµ0 = µ0

and SUµ0 is hereditary.

Denote the class of all equiprime seminearrings by µe and 3-prime seminearrings by µ3.

Definition 4.22. Let S be a seminearring. Then Pe(S) =
⋂
{I / S | S/I ∈ µe} is an

equiprime radical and P3(S) =
⋂
{I / S | S/I ∈ µ3} is a 3-prime radical.

Proposition 4.23. The class µe is hereditary on invariant subsemigroups. In par-
ticular, the class µe is hereditary.

Proof. Let S ∈ µe and I be an invariant subsemigroup of S. If I = 0 then I ∈ µe.
Let I 6= 0. Then take 0 6= p, q ∈ I. Now, we will prove that pIq 6= 0. Suppose
pIq = 0. Then pSIq ⊆ pIq = 0. As p 6= 0 and S is an equiprime seminearring,
we get Iq = 0. Now, ISq ⊆ Iq = 0. As q 6= 0, we get I = 0, a contradiction.
Hence 0 6= p, q implies pIq 6= 0. Now, take a, b ∈ I and 0 6= T be any invariant
subsemigroup of I with tx = ty for all t ∈ T . Then we will prove that x = y. Let
K = {k ∈ S | ksx = ksy, ∀s ∈ S}. We will prove that K 6= 0. Now take 0 6= t ∈ T .
As S is an equiprime seminearring and 0 6= I, we get 0 6= tSI ⊆ tI. Now, take i ∈ I
and s ∈ S. Then tis ∈ tI ⊆ T . Hence tisx = tisy. This implies ti ∈ K. Then
0 6= tI ⊆ Kand hence K 6= 0.

Now, we will prove that K is an invariant subsemigroup of S. Let z ∈ KS. Then
there exist k ∈ K, s ∈ S such that z = ks. As k ∈ K, we have ksx = ksy, ∀s ∈ S. Let
s1 ∈ S. Then (ks)s1x = k(ss1)x = ks2x = ks2y = k(ss1)y = (ks)s1y. This implies
z = ks ∈ K. Hence KS ⊆ K. Similarly, we can prove that SK ⊆ K. Hence K is an
invariant subsemigroup of S. For each s ∈ S, k ∈ K we have ksx = ksy. As S is an
equiprime seminearring and K is an invariant subsemigroup of S, ksx = ksy, ∀k ∈ K
implies sx = sy, ∀s ∈ S. Again by considering that S is equiprime, sx = sy, ∀s ∈ S
implies x = y. Hence 0 6= I is equiprime. As every equiprime seminearring is
zerosymmetric, we have that all the strong ideals of an equiprime seminearring are
invariant. Thus, the class µe is hereditary. �
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Definition 4.24. Let A be a strong ideal of B and B be a left invariant strong ideal
of a seminearring S such that B/A ∈ µ and x, y ∈ S. Then the class µ is said to
satisfy the condition (U1)
(i) If (xm)/A = (ym)/A, ∀ m ∈ B then x ∈ A+ y and y ∈ A+ x,

(ii) If (mx)/A = (my)/A, ∀m ∈ B then x ∈ A+ y and y ∈ A+ x.

Proposition 4.25. If a class of seminearrings µ satisfies the condition U1 with B
a left invariant strong ideal of the seminearring S such that B/A ∈ µ, then A is a
strong ideal of S.

Proof. Let x ∈ S, m ∈ B and a1, a2 ∈ A. Then a1 + (x+ a2)m = a1 + xm+ a2m. As
A is an ideal of S, there exists a3 ∈ A such that a1 + xm+ a2m = a1 + (xm+ a3) =
a1 + (a4 + xm) = a5 + xm, for some a4, a5 ∈ A. That is, a1 + (x+ a2)m = a5 + xm,
implying (x+ a2)m/A = xm/A. Then by Definition 4.24 (i), we get x+ a2 ∈ A+ x,
implying x+ A ⊆ A+ x. Let x ∈ S and x ≡A 0. This implies there exist a1, a2 ∈ A
such that a1 + x = a2 + 0. Now, take m ∈ B. Then

(a1 + x)m = a2m⇒ a1m+ xm = a2m

⇒ a3 + xm = a2m [a1m = a3 ∈ A]⇒ xm/A = a2m/A.

Again by Definition 4.24 (i), we get x ∈ A+ a2. This implies x ∈ A.
Now, we will prove that AS ⊆ A. Let y ∈ AS. Then there exists a ∈ A such

that y = as. Now, take m ∈ B. Then (as)m = a(sm) ∈ aB ⊆ A. This implies there
exists a2 ∈ A such that (as)m = a2 + 0m. This gives (as)m/A = om/A. Then by
Definition 4.24 (i), we get as ∈ A.

Now, we will show that s(A + s′) ⊆ A + ss′, ∀s, s′ ∈ S. Suppose that (s(a +
s′))m/A 6= ss′m/A. Now, take b ∈ B. Then we get b(s(a+s′)m)/A = b(ss′m/A) [b(s(a+
s′)m) = bs(am+s′m) = a2+bss′m], which is a contradiction. Hence [s(a+s′)]m/A =
(ss′m)/A, ∀m ∈ B. Then by Definition 4.24 (i), we get s(a+ s′) ∈ A+ ss′. Thus A
is a strong ideal of S. �

Proposition 4.26. If B is a left invariant strong ideal of a seminearring S with
B/A ∈ µ and µ satisfies the condition U1, then (A : B)S is a strong ideal of S.

Proof. By Proposition 4.25, A is a strong ideal of S. Now, take x, y ∈ (A : B)S . Then
xB ⊆ A and yB ⊆ A. This gives xB + yB ⊆ A + A = A. That is, (x + y)B ⊆ A.
Hence x + y ∈ (A : B)S . Let x ∈ S and i ∈ (A : B)S . Then we will prove that
x+ i ∈ (A : B)S +x. Take m ∈ B and a1 ∈ A. Then a1 + (x+ i)m = a1 + (xm+ im).
As A is an ideal of S, there exists a2 ∈ A such that a1+(xm+im) = a1+(a2+xm) =
(a1 + a2) + xm = a3 + xm[(a1 + a2) = a3 ∈ A]. This implies (x + i)m/A = xm/A.
Then by Definition 4.24 (i), we get x+ i ∈ A+ x ⊆ (A : B)S + x.

Now, take x, x′ ∈ S, i ∈ (A : B)S . Then we will prove that x(i + x′) ⊆ (A :
B)S + xx′. Let a1 ∈ A and m ∈ B. Then a1 + [x(i + x′)m] = a1 + [x(im +
x′m)] = a1 + [x(im + x′m)]. As A is an ideal of S, there exists a2 ∈ A such that
a1+[x(im+x′m)] = a1+a2+xx′m = a3+xx′m. This implies x(i+x′)m/A = xx′m/A.
Then by the Definition 4.24 (i), we get x(i + x′) ⊆ A + xx′ ⊆ (A : B)S + xx′. Let
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x ≡(A:B)S 0. Then there exist y1, y2 ∈ (A : B)S such that y1 + x = y2 + 0. Now, take
m ∈ B. Then

(y1 + x)m = y2m+ 0⇒ y1m+ xm = y2m+ 0⇒ xm/A = 0/A

⇒ xm ∈ A⇒ x ∈ (A : B)S .

Now, we will prove that (A : B)SS ⊆ (A : B)S . Let z ∈ (A : B)SS. Then there exist
y ∈ (A : B)S and x ∈ S such that z = yx. Then zB = (yx)B = y(xB) ⊆ yB ⊆ A.
Hence z = yx ∈ (A : B)S . Thus, (A : B)S is a strong ideal of S. �

Proposition 4.27. If A is a left invariant strong ideal of a seminearring S with A/B
being an equiprime seminearring and µe satisfies the condition U1, then (B : A)S is
an equiprime strong ideal of S.

Proof. By Proposition 4.26, (B : A)S is a strong ideal of S. Now, take x, y ∈ S such
that x, y /∈ (B : A)S . There exist a, b ∈ A such that xa /∈ B and ya /∈ B. As B is
an equiprime strong ideal of A, we have xaAyb * B. Hence xAy * (B : A)S . Let
M be an invariant subsemigroup of S such that (B : A)S ⊂ M . Now, take x, y ∈ S
such that ax/(B : A)S = ay/(B : A)S ∀a ∈ M . Then there exist y1, y2 ∈ (B : A)S
such that

y1 + ax = y2 + ay ⇒ (y1 + ax)d = (y2 + ay)d, ∀d ∈ A
⇒ y1d+ axd = y2d+ ayd⇒ axd/B = ayd/B.

As B ⊆ (B : A)S ⊂M , B is an equiprime strong ideal of A and a(xd)/B = a(yd)/B,
and we get xd/B = yd/B,∀d ∈ A. Then by Definition 4.24 (i), we get x ∈ B + y ⊆
(B : A)S + y. Hence x/(B : A)S = y/(B : A)S . Thus (B : A)S is an equiprime strong
ideal of S. �

Lemma 4.28. Let S be a seminearring and T be an essential strong ideal of S such
that ST ⊆ T and T ∈ µe. If the class µe satisfies the condition U1 and 0 6= y ∈ S
then yT 6= 0 and Ty 6= 0.

Proof. By Proposition 4.26, we have (0 : T )S is a strong ideal of S. Suppose (0 : T )S 6=
0. Since T is an essential strong ideal of S, then (0 : T )S ∩ T 6= 0. Let 0 6= x ∈ (0 :
T )S ∩ T . Then xT = 0. Now, xTx ⊆ xT = 0. Since T is an equiprime seminearring,
xTx = 0 is a contradiction. Hence (0 : T )S = 0 and yT 6= 0, ∀0 6= y ∈ S. Suppose
Ty = 0. As T is zero-symmetric, we have (yT )(Ty)T = 0, implying (yT )T (yT ) = 0.
Since T is equiprime, we get yT = 0, a contradiction. Hence Ty 6= 0. �

Proposition 4.29. If the class µe satisfies condition U1, then µe is closed under
essential left invariant extensions.

Proof. Let S be a seminearring and T be an essential strong ideal of S with ST ⊆ T
and T ∈ µe. Let 0 6= x, y ∈ S. Then by Lemma 4.28, xT 6= 0 and Ty 6= 0. Since T is
an equiprime seminearring, we get xTTTy 6= 0. This implies xSy 6= 0. Now, suppose
0 6= A is an invariant subsemigroup of S and x, y ∈ S with x 6= y. Then we will show
that there exists an a ∈ A with ax 6= ay. Suppose that ax = ay, ∀a ∈ A. As x 6= y,
by Definition 4.24, there exists t ∈ T such that xt 6= yt. As 0 6= A, by Lemma 4.28 we
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get 0 6= AT ⊆ ST ⊆ T and 0 6= AT ⊆ AS ⊆ A. Hence, A∩T 6= 0. Note that A∩T is
an invariant subsemigroup of T . Let e ∈ A ∩ T . Then e(xt) = (ex)t = (ey)t = e(yt).
Since T is an equiprime seminearring, we get xt = yt, which is a contradiction. Hence
ax 6= ay. �

By Proposition 4.23, we have that the class µe is hereditary and hence by Propo-
sition 4.6, we get Uµe is a Kurosh-Amitsur radical class.

Theorem 4.30. If S is a seminearring then Uµe = Pe = {S | Pe(S) = S}.

Proof. Let S ∈ Uµe. Then S has no nonzero homomorphic image in µe. This implies
S has no nonzero equiprime ideals. That is, S = Pe(S). Hence Uµe ⊆ Pe. Now, take
S ∈ Pe, that is S = Pe(S). This implies S has no nonzero equiprime strong ideals.
That is, S has no nonzero homomorphic image in µe. Hence S ∈ Uµe. Thus we get
Uµe = Pe. �

Using Theorem 4.21 and Propositions 4.27, 4.23 and 4.29 we have the following.

Proposition 4.31. Pe is a C-hereditary Kurosh-Amitsur radical class in the variety
of all the seminearrings, SPe = µe and SPe is hereditary.
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